TY - CONF A1 - Selleng, Christian A1 - Gröger, K. A1 - Fontana, Patrick A1 - Meng, Birgit A1 - Altenberger, U. T1 - Effect of 90°C thermal treatment on Ultra-High Performance Concrete N2 - Ultra High Performance Concrete (UHPC) is characterized by high strength and high durability. This is achieved by an optimized grain size distribution, especially within fine grains, and addition of superplasticizer, which allow the reduction of the water/cement ratio in the cement paste and thereby the increase of the density of UHPC. Thermal treatment, i.e. curing at elevated temperature and pressure, contributes to a further increase of compressive strength. The aim of the presented study was to analyze the effect of thermal treatment at 90 ◦C and atmospheric pressure on UHPC samples. Varying factors were the age of the samples when heat treatment started (initial storage time), the duration of heat treatment and the type of heat treatment. It was applied in three ways: 1. treated without any protection, 2. sealed in plastic foil and 3. treated in hot water. Afterwards the samples were analyzed with respect to their mechanical properties and their phase composition. Furthermore, the weight (water absorption) of the samples was observed over 28 days and was correlated with the strength test results. The development of strength depends on the combination of initial storage time and the duration of heat treatment and is also influenced by the type of thermal treatment. The highest compressive strengths have been observed by implementing the hot water treatment. Thereby the weight of the samples increase due to additional absorbed water. This enables an increased hydration of cement clinker inducing a higher strength. T2 - GeoBerlin 2015: Dynamic Earth - from Alfred Wegener to today and beyond CY - Berlin, FU Berlin DA - 04.10.2015 PY - 2015 AN - OPUS4-34504 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rübner, Katrin A1 - Prinz, Carsten A1 - Zimathies, Annett A1 - Adolphs, Jürgen A1 - Hempel, Simone A1 - Schnell, Alexander T1 - Studies on the Pore Structure of Lightweight Recycling Granules N2 - Lightweight granules are mineral, spherical and porous particles with bulk density less than 2000 kg m . New types of lightweight granules are made from masonry -3 rubble as an alternative to the commonly used expanded clay and shale. They are produced in a multistage manufacturing process by thermal or hydrothermal treatment. Studies of the microstructure of the new lightweight granules are very important to optimise the engineering properties with regard to different applications from lightweight concrete to planting substrates and wastewater treatment. Here, the results of porosity and pore structure measurements are presented. Characteristic samples with different bulk densities of both thermally and hydrothermally hardened granules have been analysed by means of various methods. T2 - 27. Deutsche Zeolith-Tagung CY - Oldenburg, Germany DA - 25.02.2015 PY - 2015 AN - OPUS4-32835 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maack, Stefan A1 - Kneib, G. T1 - Elastic wave propagation of ultrasound in bituminous road surfaces – simulations and measurements N2 - Maintenance costs of road infrastructure are increasing steadily. Adverse environmental impacts on infrastructure get more and more important as well. Therefore, it is important to determine how limited financial resources can be directed with an optimum pay-out. The present study takes first steps towards the usage of low-frequency ultrasound as a tool to evaluate the road condition. T2 - International Symposium Non-Destructive Testing in Civil Engineering 2015 CY - Berlin, Germany DA - 15.09.2015 KW - Wave propagation KW - Ultrasonic KW - NDT KW - Simulation PY - 2015 AN - OPUS4-38837 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wu, Cheng-Chieh A1 - Weisbrich, S. A1 - Neitzel, F. T1 - Inverse finite element adjustment of material parameters from integrated analysis of displacement field measurement N2 - The integration of finite element method (FEM) into the least-squares adjustment presented in is further extended for a joint evaluation of an elastostatic model and displacement field measurement. For linear solids which obey the Hooke's law, the material parameters determination from measurements is being examined. T2 - 32nd Danubia-Adria Symposium on advances in experimental mechanics CY - Starý Smokovec, Slovakia DA - 22.09.2016 KW - Integrated analysis KW - Inverse problem KW - Finite element method KW - Least-squares adjustment KW - Model and measurement based analysis PY - 2015 AN - OPUS4-35648 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Stroh, Julia A1 - Nguyen, Thi Yen A1 - Emmerling, Franziska T1 - High resolution in situ monitoring of the initial cement hydration influenced by organic admixtures N2 - Numerous admixtures are used in the building practice to customize the properties of the cement paste during application. The influences of admixtures on the course of cement hydration and formation of hydrate phases have to be considered. Polycarboxylate ether (PCE) based polymeric superplasticizers (SPs) are known to retard the setting of the cement paste. The extent of the retardation differs depending on the molecular structure of the SP. Additionally, the presence of a stabilizing agent (SA) in the cement paste has a retarding side effect on the setting. The initial cement hydration processes and the detailed mechanisms of the retardation influenced by PCEs, as well as their interactions with particular SAs, are insufficiently understood. Up to now, only the results of phenomenological studies were taken into account to describe this retardation process. A detailed structure analysis monitoring the change of the phase composition during the hydration was never applied. Both SP and SA affect the adsorption of the sulphate ions on the clinker particles, causing changes in the formation of ettringite during the initial hydration, and are therefore a crucial part of the setting process itself. Here, the initial hydration of cement influenced by the interaction of SP and SA was monitored in situ by synchrotron X-ray diffraction. The high time resolution of the measurements allowed a continuous detection of the hydrates formed. The hydration was followed from the starting point of water addition and for couple of hours afterwards. The hydration of the levitated cement pellets containing starch as SA was initialized by adding aqueous solutions of different commercial SPs. Changes in the ettringite formation were detected in comparison to the reference hydration of pure cement. T2 - Early Age Concrete: From the Research Lab to the Construction Site CY - Tomsk, Russia DA - 02.06.2015 KW - Portland cement KW - Initial hydration KW - Superplasticizer KW - Stabilizer KW - Synchrotron XRD PY - 2015 AN - OPUS4-35470 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rütters, H. A1 - May, Franz A1 - Bettge, Dirk A1 - Fischer, S. A1 - Ganzer, L. A1 - Jäger, P. A1 - Kather, A. A1 - Lempp, C. A1 - Lubenau, U. T1 - Combining CO2 Streams from Different Emitters – A Challenge For Transport And Storage Infrastructure N2 - The European Directive 2009/31/EC on the geological storage of CO2 envisages an open access of CO2 streams from different emitters to a nation- or even EUwide CO2 pipeline network if CO2 stream compositions meet “reasonable minimum composition thresholds”. As of today it is not known how such “composition thresholds” may be defined and which impurity levels may be viable in practical application. To set up recommendations for criteria and respective threshold values for CO2 stream compositions, the project “CLUSTER” will investigate how a dynamic interplay – both in terms of mass fluxes and compositions – of CO2 streams from regionally clustered CO2 sources sharing a transport and storage infrastructure will impact corrosion, e.g., of pipelines and plant components, and geochemical alteration of cap rocks and reservoir rocks. In addition, the behaviour of such a highly dynamic CCS system will be considered for an overall optimization of system design including CO2 stream mixing schemes and facilities or interim CO2 storage. T2 - TCCS-8 – The 8th Trondheim Conference on CO2 Capture, Transport and Storage CY - Trondheim, Norway DA - 16.06.2015 KW - Carbon capture KW - Carbon dioxide KW - Corrosion KW - CCS PY - 2015 AN - OPUS4-47018 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Agudo Jácome, Leonardo A1 - Mosquera Feijoo, Maria A1 - Nolze, Gert A1 - Rizzo, F. T1 - Nano-sized precipitates in an Fe-13Cr alloy formed under oxidizing water vapor atmosphere N2 - Oxidation of a Fe-13Cr alloy under water vapor at 600 °C produced a zone of nano-sized precipitation underneath the outside scale formed by iron oxides and Fe‒Cr spinel. The majority of the spinel layer shows a mixed orientation relationship to the ferritic matrix {100}α || {100}sp & <011>α || <001>sp. However, also the discovered precipitated particles are characterized by the same crystallographic orientation relationship to the respective ferritic parent grain. The habit of the precipitates is best described by a lath morphology with their main axis parallel to <100> of ferrite. Energy dispersive X-ray spectroscopy (EDX) and electron backscatter diffraction (EBSD) in an scanning electron microscope (SEM) have been applied to characterize the oxide layer in the micrometer scale. The clearly smaller precipitates were subsequently investigated by transmission electron microscopy (TEM). Specimens have been prepared by focused ion-beam (FIB) milling at an area previously characterized by EBSD. They cover the ferritic base material, but mainly the precipitation zone and the Fe‒Cr spinel layer. Energy filtered selected area diffraction (SAD) in the conventional (C)TEM and high-angle annular darkfield (HAADF) imaging in the scanning (S)TEM mode were employed in the characterization of the specimens. T2 - International Conference on Solid-Solid Phase Transformations in Inorganic Materials (PTM) 2015 CY - Whistler, British Columbia, Canada DA - 28.06.2015 KW - Precipitation KW - Oxidation KW - Microscopy KW - Topotactic transformation KW - Spinel PY - 2015 AN - OPUS4-42169 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Fabry, Çağtay A1 - Pittner, Andreas A1 - Rethmeier, Michael T1 - Sensorgestütztes MSG-Engspaltschweißen mit modifizierter Prozessführung (IGF-Nr. 17.923N / DVS-Nr. 03.111) N2 - Präsentation von Versuchsaufbau und Ergebnissen zu IGF-Projekt 17.923N. Darstellung einer Methodik zur automatisierten Regressionsmodellierung eines Lichtbogensensors zur Höhenführung mittels künstlicher neuronaler Netze durch Einbindung optischer Sensorik als Referenzmesswert. T2 - Sitzung DVS AG V 2.4 „Schweißen mit abschmelzender Elektrode MIG/MAG” CY - Berlin, Germany DA - 16.04.2018 KW - MSG-Engspaltschweißen KW - Automatisierung KW - Lichtbogensensorik KW - Künstliche neuronale Netze KW - Digitalisierung PY - 2015 AN - OPUS4-44543 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Marzok, Ulrich A1 - Müller, Ralf A1 - Reinsch, Stefan A1 - Gaber, Martin A1 - Welter, T. A1 - Deubener, J. T1 - Bestimmung der H2-Permeabilität von Gläsern mit der VHE-Methode N2 - Die Entwicklung von Wasserstoffbarrieren aus Glas erfordert die genaue Messung geringster H2-Permeabililtäten. Bisherige Untersuchungen haben gezeigt, dass die VHE-Pulvermethode diesbezüglich eine besonders hohe Empfindlichkeit bietet. Hierbei wird die isotherme Gasabgabe aus sphärischen Partikeln im Rahmen klassischer Diffusionsmodelle gefittet und daraus der Diffusionskoeffizient bestimmt. Für die Untersuchung von Gläsern mit möglichst geringer H2-Permeabilität ist jedoch eine Validierung der Genauigkeit der Methode notwendig. Vor diesem Hintergrund erfolgte die numerische Modellierung der H2-Abgabe mit Hilfe des Programms COMSOL Multiphysics®. Im Poster wird der Einfluss der Korngrößenverteilung der Glaspulverpartikel, der Partikelform sowie der Effekt einer nichthomogenen H2-Startverteilung auf die mittels Pulvermethode ermittelten Diffusionskoeffizienten diskutiert. T2 - 90. Glastechnische Tagung (Deutsche Glastechnische Gesellschaft e.V.) CY - Goslar, Germany DA - 06.06.2016 KW - Wasserstoffpermeation KW - Glas KW - Vakuumheißextraktion KW - Pulvermethode KW - Simulation PY - 2016 AN - OPUS4-36528 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Marzok, Ulrich A1 - Müller, Ralf A1 - Reetz, R. A1 - Trunkhardt, M. T1 - High-temperature laser profilometry N2 - Advanced methods for 3D green density characterization like computed tomography and 3D FE sinter modeling can be utilized for increasing the reliability of sintered components. The experimental in situ observation of sin-tering, however, is currently restricted to silhouette methods, i.e. heating microscopy. For complex shaped sam-ples, in situ shape screening during shrinkage would allow better validation of 3D sinter simulation models. Further, by revealing temporary sinter warpage, 3D high-temperature shape screening would allow to locate potential defects of complex sintered components. Against this background, BAM developed a testing device for in situ 3D high-temperature shape screening for ceramic and glass-ceramic tapes up to 1000°C [1-3]. Current work is focused on dropping this restriction in sample shape and temperature. The poster illustrates the current state of this work and possible applications of the method e.g. in detecting sinter warpage of metallized glass-ceramic LTCC tapes. T2 - 90. Glastechnische Tagung (Deutsche Glastechnische Gesellschaft e.V.) CY - Goslar, Germany DA - 06.06.2016 KW - Laser profilometry KW - 3D High-temperature shape screening KW - Sintering PY - 2016 AN - OPUS4-36510 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -