TY - CONF A1 - Stargardt, Patrick A1 - Bresch, Sophie A1 - Mieller, Björn A1 - Rabe, Torsten T1 - Analysis of reaction layers and cooling simulations of co-fired thermoelectric multilayers N2 - Ceramic multilayer technology is an attractive approach for the cost-effective fabrication of thermoelectric generators. Therefore, efforts are being made to co-sinter two promising thermoelectric oxides, namely calcium cobaltite and calcium manganate. In this study, calcium cobaltite, calcium manganate and release tapes were pressure assisted sintered. A major challenge here is the cracking of calcium manganate during cooling. A relationship between the properties of the release tape used in pressure-assisted sintering and the cracking behavior was observed experimentally. To understand the origin of failure, formed reaction layers in the multilayer were analyzed by EDX and grazing incident XRD. Based on this analysis, bulk samples were prepared, and thermal expansion and Young's modulus and were determined thereon, if they were not known from the literature. The biaxial strength of the thermoelectric oxides was determined by the ball on three ball method. The thermal stresses during cooling of different multilayer designs were estimated by finite element simulations. The stresses caused by the reaction layers turned out to be negligible. The FEM study indicated further, and a validation experiment proved, that the thickness of the release tape has the main effect on thermal stresses during cooling in single material. For best performance, the design of a thermoelectric multilayer generator needs to consider thermoelectric performance and thermal stresses during cooling. T2 - Virtual Conference on Thermoelectrics CY - Online meeting DA - 20.07.2021 KW - Ceramic multilayer KW - Cooling simulations KW - Thermal stress KW - Thermoelectric PY - 2021 AN - OPUS4-52994 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Stargardt, Patrick T1 - Modeling of the cooling behavior of thermoelectric multilayers N2 - Multilayered designs are an attractive approach towards cost-effective manufacturing of thermoelectric generators. Therefore, efforts are being made to co-fire two promising thermoelectric oxides, namely calcium cobaltite and calcium manganate. In this study, ceramic tapes, multilayer technology, and pressure-assisted sintering (PAS) were used. A major challenge for the PAS of low-sintered calcium manganate was cracking during cooling. A relationship between the properties of the release tape used during PAS and the cracking behavior was experimentally observed. To understand the origin of failure, reaction layers in the multilayer were analyzed and thermal stresses during cooling were estimated by finite element (FE) simulations. Thermal expansion, elastic properties, and biaxial strength of the thermoelectric oxides and selected reaction layers were determined on separately prepared bulk samples. The analysis showed that the reaction layers were not the cause for cracking of calcium manganate. Using the FE model, thermal stresses in different manganate multilayer designs with varying properties of the release tape were studied. The FEM study indicated, and a validation experiment proved that the thickness of the release tape has the main effect on thermal stresses during cooling in separately sintered calcium manganate. T2 - Keramik 2021 / Ceramics 2021 CY - Online Meeting DA - 19.04.2021 KW - Fem KW - Thermoelectric KW - Pressure assisted sintering PY - 2021 AN - OPUS4-52489 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Chen, Cong A1 - Giovannelli, F. A1 - Delorme, F. T1 - Thermoelectric properties of Fe2-xTi1+xO5 solid solutions: Influence of microcracking and Nb substitution N2 - The synthesis route and thermoelectric characterization of n-type Fe2-xTi1+xO5 (0 ≤ x ≤ 0.5) and Fe1.75(Ti1-yNby)1.25O5 (0 ≤ y ≤ 0.05) are presented. Their electrical conductivity obeys the small polaron model and their Seebeck coefficient is weakly dependent on temperature. The carrier concentration is increased with increasing Ti content in Fe2-xTi1+xO5, thus improving the electrical conductivity and decreasing the absolute values of the Seebeck coefficient. The composition with x = 0.5 shows reduced electrical conductivity contradicting the change in the carrier concentration, as it contains more microcracks than the other compositions. Fe2-xTi1+xO5 exhibits extremely low thermal conductivity. Fe2-xTi1+xO5 with x = 0.25 exhibits the highest ZT, ~ 0.014 at 1000 K. Therefore, a limited extent microcracks are beneficial to thermoelectric properties; however, when they are too extended they can be detrimental. On the contrary to Fe2TiO5, Nb substitution into Fe1.75Ti1.25O5 does not obviously improve its thermoelectric properties. KW - Thermoelectric KW - Pseudobrookite KW - Fe2TiO5 PY - 2018 U6 - https://doi.org/10.1016/j.ceramint.2018.08.282 SN - 0272-8842 SN - 1873-3956 VL - 44 IS - 17 SP - 21794 EP - 21799 PB - Elsevier CY - Amsterdam AN - OPUS4-46299 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -