TY - CONF A1 - Rhode, Michael A1 - Nietzke, Jonathan A1 - Czeskleba, Denis A1 - Kannengießer, Thomas T1 - Bewertungsmethode zur Interaktion von Metallurgie und Reaktionskräften beim PWHT warmfester Stähle N2 - Die Präsentation fasst die Entwicklung einer Ersatzprüfmethode für sogenannte Stress-Relief-Cracks (SRC) bei dickwandigen und kriechfesten geschweißten Stahlkomponenten zusammen. Über die Kombination von gezielter mechanischer Beanspruchung unter hoher Temperaturbeanspruchung werden die Effekte des Post Weld Heat Treatments auf SRC realistisch erstmal auf Laborskala nachgebildet. T2 - Sitzung des DIN-Gemeinschaftsarbeitsausschusses NA 092 00 05 GA, NAS/NMP: Zerstörende Prüfung von Schweißverbindungen CY - Online meeting DA - 10.03.2022 KW - PWHT KW - Warmfeste Stähle KW - UP Schweißen KW - Metallurgie KW - Stress relief cracking PY - 2022 AN - OPUS4-54448 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Giese, Marcel A1 - Czeskleba, Denis A1 - Nietzke, Jonathan A1 - Rhode, Michael A1 - Kannengießer, Thomas T1 - Investigation of the influence of PWHT heating rate and global stress conditions on the stress relief cracking mechanism of CrMoV steel SAW joints N2 - This presentation summarizes the latest research results of the influence of the post weld heat treatment (PWHT) rate and the global mechanical stress conditions on the stress relief cracking (SRC) susceptibility of low-alloyed and creep-resistant CrMoV steel submerged arc weld joints. It was found that a certain effect of very low heating rates could be confirmed. In addition, the interlinking of SRC susceptibility increasing effects during the PWHT and the ex-post indentification in metallographic cross-section via microstructure characterization is very complex. T2 - IIW Intermediate meeting of Commission II-A CY - Garching, Germany DA - 06.03.2023 KW - Creep-resistant steel KW - Submerged arc welding KW - Stress relief cracking KW - Heating rate KW - Microstructure characterization PY - 2023 AN - OPUS4-57116 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kromm, Arne A1 - Lausch, Thomas A1 - Schröpfer, Dirk A1 - Rhode, Michael A1 - Kannengießer, Thomas T1 - Influence of welding stresses on relief cracking during heat treatment of a creep-resistant 13CrMoV steel: Part I - Effect of heat control on welding stresses and stress relief cracking N2 - The avoidance of failures during the fabrication or operation of petrochemical reactors made of creep-resistant, low-alloy steels as 13CrMoV9-10 requires still research despite over 60 years of international investigations in the field of stress relief cracking. The quality of modern base materials and filler metals leads to the fact that previously known crack causes, such as impurities of S or P, recede into the background. Rather, the causes are increasingly to be found in the fabrication process. Investigations on the influence of heat control on the stresses in welded components and thus on the stress relief cracking sensitivity under realistic manufacturing conditions are not yet available. This work is subdivided in two parts. Part 1 of this study focused on the effect of heat control during submerged arc welding on the stresses. For this purpose, a testing facility was applied, which allows to observe the forces and moments accumulating during welding or heat treatment in a component-like specimen under shrinkage restraint. The stress acting in the specimen increases with higher preheat/interpass temperatures and higher heat input. During the heat treatment, the stresses are relieved. Nevertheless, cracks are formed already during heating. The total crack length correlates with the heat input. KW - Welding KW - Creep-resistant steel KW - Post weld heat treatment KW - Stress relief cracking PY - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-506271 SN - 1878-6669 VL - 64 IS - 5 SP - 807 EP - 817 PB - Springer CY - Berlin AN - OPUS4-50627 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kromm, Arne A1 - Lausch, Thomas A1 - Schröpfer, Dirk A1 - Rhode, Michael A1 - Kannengießer, Thomas T1 - Influence of welding stresses on relief cracking during heat treatment of a creep-resistant 13CrMoV steel: Part II - Mechanisms of stress relief cracking during post weld heat treatment N2 - Welding of 13CrMoV9-10 vanadium steel requires care due to an increased susceptibility to stress relief cracking during post weld heat treatment. Previous research into the crack formation in creep-resistant steels has focused on thermal and metallurgical factors; however, little knowledge has been gathered regarding the crack formation during post weld heat treatment considering real-life restraint conditions. This work is subdivided in two parts. Part I showed that an increasing heat input during submerged arc welding under restraint led to an increasing stress level in the joint prior to the post weld heat treatment. The magnitude of stress relief cracking observed in the heat-affected zone after the post weld heat treatment is affected by the heat input. In Part II of this work, the cracks and the associated microstructure which occurred under restraint were studied. The application of a Special acoustic emission analysis indicated that the cracks formed in a temperature range between 300 and 500 °C during the post weld heat treatment. The toughness in the heat-affected zone of the restrained welds was affected by the welding heat input. Microstructural analyses of all specimens revealed accelerated aging due to precipitation of carbides during post weld heat treatment under restraint. KW - Welding KW - Creep-resistant steel KW - Post weld heat treatment KW - Stress relief cracking PY - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-506283 SN - 1878-6669 VL - 64 SP - 819 EP - 829 PB - Springer CY - Berlin AN - OPUS4-50628 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kromm, Arne A1 - Lausch, T. A1 - Schröpfer, Dirk A1 - Rhode, Michael A1 - Kannengießer, Thomas T1 - Influence of welding stresses on relaxation cracking during heat treatment of a creep-resistant 13CrMoV steel N2 - Over the past years economic and environmental considerations have led to a markedly increased demand for efficiency and flexibility in petrochemical plants. The operational temperatures and pressures required today can only be achieved by using new creep-resistant grades of steel. The modified 13CrMoV9-10 vanadium steel shows a good resistance against creep and compressed hydrogen and has been in use for the construction of petrochemical reactors since the mid-1990s. Nevertheless, processing of this type of steel requires extreme care during the welding procedure. This is due to its low toughness and high strength in the welded state when not post weld heat treated combined with increased susceptibility to cracking during stress relaxation. Previous research into crack formation in creep-resistant steels has largely focused on thermal and metallurgical factors; however, little knowledge has been gathered regarding the influence of the welding procedure on crack formation during post weld heat treatment considering real-life manufacturing conditions. The influence of heat control on the mechanical properties has been investigated by simulating the welding and subsequent post weld heat treatment operations during the construction of petrochemical reactors using a special 3-D testing facility on the laboratory scale. This work is subdivided in two parts. In part I of this study the stresses resulting from preheating, welding, dehydrogenation heat treatment and the final post weld heat treatment were analyzed during experiments under varied heat control. In all experiments stress relief cracks formed during post weld heat treatment could be observed. The total crack lengths correlated with the welding induced stresses. Part II of this work is dedicated to the characterization of the cracks and the microstructure. The application of a special acoustic emission analysis indicated that the cracks formed in a temperature range between 300 °C and 500 °C during the post weld heat treatment. In comparison to small scale specimens welded without additional shrinkage restraint, the toughness of the restrained welds was significantly decreased. SEM and TEM analyses of all samples revealed accelerated aging due to early precipitation of special carbides during post weld heat treatment under component relevant restraint. T2 - IIW Annual Assembly CY - Bratislava, Slovakia DA - 08.07.2019 KW - Welding KW - Creep-resistant steel KW - Post weld heat treatment KW - Stress relief cracking PY - 2019 AN - OPUS4-48580 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schröpfer, Dirk A1 - Kromm, Arne A1 - Lausch, Thomas A1 - Rhode, Michael A1 - Kannengießer, Thomas T1 - Influence of welding stresses on relaxation cracking during heat treatment of a creep-resistant 13CrMoV steel, Part III N2 - Efficiency and flexibility are currently a major concern in the design of modern power plants and chemical processing facilities. The high requirements for economic profitability and in particular climate change neutrality are driving this development. Consequently, plant equipment and chemical reactor components are designed for higher operating pressure and temperature. Creep-resistant CrMo steels had been used as constructional materials for decades but came to operational limitations, for example the resistance against so-called high-temperature hydrogen attack in petrochemical reactors. For that purpose, 20 years ago V-modified CrMo steels had been developed for use in the petrochemical industry due to their very good creep-strength and hydrogen pressure resistance at elevated temperatures enabling long service life of the respective components. For example, the 13CrMoV9-10 steel is applicable for process temperatures of up to 482 °C and hydrogen pressures of up to 34.5 MPa. Due to the large dimensions and wall thickness of the reactors (wall thickness up to 475 mm) and the special alloy concept, reliable weld manufacturing of the components is extremely challenging. First, low toughness and high strength of the weld joint in the as-welded condition are critical regarding weld cracking. High welding residual stresses are the result of the highly restrained shrinkage of the component welds. For this purpose, the entire component must be subjected to Post-Weld Heat Treatment (PWHT) after completion of the welding operation. The aim is to increase the toughness of the weld joints as well as to reduce the welding induced residual stresses. Before and during PWHT, extreme caution is required to prevent cracking. Unfortunately, V-modified CrMo steels possess an increased susceptibility to cracking during stress relaxation the so-called stress relief cracking (SRC). Available literature studies have largely focused on thermal and metallurgical factors. However, little attention has been paid on the influence of the welding procedure on crack formation during PWHT considering actual manufacturing conditions. For that reason, we investigated in our previous studies (part I and II), the influence of heat control on the mechanical properties by simulating actual manufacturing conditions prevailing during the construction of petrochemical reactors using a special 3D- acting testing facility. The focus of part I was put on the influence of the welding heat control on mechanical stresses and the effect on cracking during PWHT. Part II was mainly dedicated to the metallurgical causes of SRC during PWHT and the interaction with the occurring mechanical stresses. It could be shown that not only high welding-induced stresses due to increased weld heat input cause higher susceptibility for SRC formation. It was further intensified by an altered precipitation behaviour in presence of mechanical stresses that are caused by the component related restraint. The present part III shows how residual stresses, which are present in such welded components and significantly influence the crack formation, can be transferred to the laboratory scale. As a result, the effect on the residual stresses on the SRC behaviour can be evaluated on simplified small-scale specimens instead of expensive mock-ups. For this purpose, experiments with test set-ups at different scales and under different rigidity conditions were designed and carried out. T2 - IIW Annual Assembly, Meeting of Commission II-A CY - Online meeting DA - 20.07.2020 KW - Welding KW - Creep-resistant steel KW - Residual stresses KW - Post weld heat treatment KW - Stress relief cracking PY - 2020 AN - OPUS4-51587 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schröpfer, Dirk A1 - Lausch, Thomas A1 - Kromm, Arne A1 - Rhode, Michael A1 - Kannegiesser, Thomas T1 - Influence of welding stresses on relaxation cracking during heat treatment of a creep-resistant 13CrMoV steel - Part I N2 - Over the past years economic and environmental considerations have led to a markedly increased demand for efficiency and flexibility in petrochemical plants. The operational temperatures and pressures required today can only be achieved by using new creep-resistant grades of steel. The modified 13CrMoV9-10 vanadium steel shows a good resistance against creep and compressed hydrogen and has been in use for the construction of petrochemical reactors since the mid-1990s. Nevertheless, processing of this type of steel requires extreme care during the welding procedure. This is due to its low toughness and high strength in the welded state when not post weld heat treated combined with increased susceptibility to cracking during stress relaxation. Previous research into crack formation in creep-resistant steels has largely focused on thermal and metallurgical factors; however, little knowledge has been gathered regarding the influence of the welding procedure on crack formation during post weld heat treatment considering real-life manufacturing conditions. The influence of heat control on the mechanical properties has been investigated by simulating the welding and subsequent post weld heat treatment operations during the construction of petrochemical reactors using a special 3-D testing facility on the laboratory scale. This work is subdivided in two parts. In part I of this study the stresses resulting from preheating, welding, dehydrogenation heat treatment and the final post weld heat treatment were analyzed during experiments under varied heat control. In all experiments stress relief cracks formed during post weld heat treatment could be observed. The total crack lengths correlated with the welding induced stresses. Part II of this work is dedicated to the characterization of the cracks and the microstructure. The application of a special acoustic emission analysis indicated that the cracks formed in a temperature range between 300 °C and 500 °C during the post weld heat treatment. In comparison to small scale specimens welded without additional shrinkage restraint, the toughness of the restrained welds was significantly decreased. SEM and TEM analyses of all samples revealed accelerated aging due to early precipitation of special carbides during post weld heat treatment under component relevant restraint. T2 - IIW Annual Assembly CY - Bratislava, Slovakia DA - 08.07.2019 KW - Creep-resistant steel KW - Post weld heat treatment KW - Stress relief cracking KW - Welding PY - 2019 AN - OPUS4-50277 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schröpfer, Dirk A1 - Kromm, Arne A1 - Lausch, Thomas A1 - Rhode, Michael A1 - Wimpory, R. C. A1 - Kannengießer, Thomas T1 - Influence of welding stresses on relief cracking during heat treatment of a creep-resistant 13CrMoV steel: Part III - Assessment of residual stresses from small-scale to real component welds N2 - For higher operational temperatures and pressures required in petrochemical plants, the modified 13CrMoV9-10 steel was developed providing high resistance against creep and compressed hydrogen. Extreme care during the welding procedure is necessary for this steel, attributed to low toughness, high strength in as-welded state, and increased susceptibility to stress relief cracking (SRC) during post-weld heat treatment (PWHT). Previous research of SRC in creep-resistant steels discussed mainly thermal and metallurgical factors. Few previous findings addressed the influences of welding procedure on crack formation during PWHT considering real-life manufacturing conditions. These investigations focus on effects of welding heat control on stresses during welding and subsequent PWHT operations close to realistic restraint and heat dissipation conditions using a special 3D testing facility, which was presented in parts I and II of this contribution. Part III addresses investigations on residual stress evolution affecting crack formation and discusses the transferability of results from large-scale testing to laboratory-scale. Experiments with test set-ups at different scales under diverse rigidity conditions and an assessment of the residual stresses of the weld-specimens using X-ray (surface near) and neutron diffraction analysis (bulk) were performed. This study aims to provide a way of investigating the SRC behaviour considering component-specific residual stresses via small-scale testing concepts instead of expensive weld mock-ups. KW - Welding KW - Creep-resistant steel KW - Residual stresses KW - Post-weld heat treatment KW - Stress relief cracking PY - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-524403 SN - 1878-6669 VL - 65 SP - 1671 EP - 1685 PB - Springer CY - Berlin AN - OPUS4-52440 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kromm, Arne A1 - Rhode, Michael A1 - Schröpfer, Dirk A1 - Steger, J. A1 - Lausch, T. A1 - Kannengießer, Thomas T1 - Residual stress Formation in component related stress relief cracking Tests of a welded creep resistant steel N2 - Submerged arc welded (SAW) components of creep-resistant low-alloyed Cr-Mo-V steels are used for thick-walled heavy petrochemical reactors (wall-thickness up to 475 mm) as well as employed in construction of modern high-efficient fossil fired power plants. These large components are accompanied by significant restraints during welding fabrication, especially at positions of different thicknesses like welding of nozzles. As a result, residual stresses occur, playing a dominant role concerning so-called stress relief cracking (SRC) typically during post weld heat treatment (PWHT). Besides specific metallurgical factors (like secondary hardening due to reprecipitation), high tensile residual stresses are a considerable influence factor on SRC. For the assessment of SRC susceptibility of certain materials mostly mechanical tests are applied which are isolated from the welding process. Conclusions regarding the influence of mechanical factors are rare so far. The present research follows an approach to reproduce loads, which occur during welding of real thick-walled components scaled to laboratory conditions by using Tests designed on different measures. A large-scale slit specimen giving a high restraint in 3 dimensions by high stiffness was compared to a medium-scale multi-pass welding U-Profile specimen showing a high degree of restraint in longitudinal direction and a small-scale TIG-remelted specimen. The small-scale specimens were additionally subjected to mechanical bending to induce loads that are found during fabrication on the real-scale in heavy components. Results show for all three cases comparable high tensile residual stresses up to yield strength with high gradients in the weld metal and the heat affected zone. Those high tensile stresses can be significant for cracking during further PWHT. T2 - European Conference on Residual Stresses - ECRS10 CY - Leuven, Belgium DA - 11.09.2018 KW - Welding KW - Residual stress KW - Creep resistant steel KW - Post weld heat treatment KW - Stress relief cracking KW - 13CrMoV9-10 PY - 2018 AN - OPUS4-45983 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Lausch, Thomas A1 - Kromm, Arne A1 - Schroepfer, Dirk A1 - Kannengießer, Thomas A1 - Schaupp, Thomas T1 - Influence of welding stresses on relaxation cracking during heat treatment of a creep-resistant 13CrMoV steel N2 - Over the past years economic and environmental considerations have led to a markedly increased demand for efficiency and flexibility in petrochemical plants. The operational temperatures and pressures required today can only be achieved by using new creep-resistant grades of steel. The modified 13CrMoV9-10 vanadium steel shows a good resistance against creep and compressed hydrogen and has been in use for the construction of petrochemical reactors since the mid-1990s. Nevertheless, processing of this type of steel requires extreme care during the welding procedure. This is due to its low toughness and high strength in the welded state when not post weld heat treated combined with increased susceptibility to cracking during stress relaxation. Previous research into crack formation in creep-resistant steels has largely focused on thermal and metallurgical factors; however, little knowledge has been gathered regarding the influence of the welding procedure on crack formation during post weld heat treatment considering real-life manufacturing conditions. In this work, the influence of heat control on the mechanical properties has been investigated by simulating the real-life manufacturing conditions prevailing during the construction of petrochemical reactors using a special 3-D testing facility. The stresses resulting from preheating, welding, dehydrogenation heat treatment and the final post weld heat treatment were measured during experiments under varied heat control. In all experiments stress relief cracks formed during post weld heat treatment could be observed. The total crack lengths correlated with the stresses due to welding. The application of a special acoustic emission analysis indicated that the cracks formed during post weld heat treatment in a temperature range between 300 °C and 500 °C. In comparison to small scale samples welded without additional shrinkage restraint, the toughness of the restrained welds was significantly decreased. SEM and TEM analyses of all samples revealed accelerated aging due to early precipitation of special carbides during post weld heat treatment under component relevant restraint. T2 - IIW Intermediate Meeting: Commission II-A CY - Miami, FL, USA DA - 12.03.2019 KW - Welding KW - Creep-resistant steel KW - Post weld heat treatment KW - Stress relief cracking PY - 2019 AN - OPUS4-47610 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -