TY - CONF A1 - Radnik, Jörg T1 - VAMAS-Enabling international standardisation for increasing the take up of Emerging Materials N2 - VAMAS (Versailles Project on Advanced Materials and Standards) supports world trade in products dependent on advanced materials technologies by providing technical basis for harmonized measurements, testing, specification, reference materials and standards. The major tools for fulfilling this task are interlaboratory comparisons (ILC). The organisation structure of VAMAS is presented. It is discussed, how a new technical activity can initiate. T2 - DIN NA062-08-16 Oberflächenanalytik Frühjahrstreffen CY - Berlin, Germany DA - 11.05.2022 KW - Advanced Materials KW - Standards KW - Interlaboratory Comparisons PY - 2022 AN - OPUS4-54831 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Silveira, D. A1 - Oliveira, C. A1 - Varum, H. A1 - Ioannou, I. A1 - Miccoli, Lorenzo A1 - Tarque, N. A1 - Parisi, F. A1 - Fenu, L. A1 - Solis, M. A1 - Rodriguez-Mariscal, J. D. ED - Varum, H. ED - Parisi, F. ED - Tarque, N. ED - Silveira, D. T1 - Mechanical Characterization of Adobe Bricks T2 - Building Pathology and Rehabilitation, Structural Characterization and Seismic Retrofitting of Adobe Constructions, Experimental and Numerical Developments N2 - The mechanical characterization of adobe bricks is an important first step in the study of the behaviour of adobe masonry. For this reason, in the last decades, different authors have conducted research on the mechanical behaviour of adobes from various regions of the world. Despite the importance of mechanical characterization, there are still only a few standards and normative documents with clear indications for the mechanical testing of earthen materials and, in general, These indications are not thorough and vary among different countries. Consequently, authors tend to adopt different types of test specimens and procedures in their experimental work, thus obtaining results that are not directly comparable. The fact that the materials and procedures traditionally used are also not standardized,varying greatly from region to region, also contributes to the difficulty of comparing results from different studies. This chapter presents a review of the indications provided by codes, standards and other technical recommendations for the mechanical testing of adobe bricks, as well as a detailed review of procedures adopted, and results obtained by different authors regarding the mechanical characterization of traditional adobe bricks. This chapter focuses, in particular, on the behaviour of adobe bricks when subjected to simple compression. It provides an overview of the existing knowledge and identifies needs for future research and development. KW - Adobe KW - Adobe masonry KW - Mechanical behaviour KW - Test procedures KW - Standards PY - 2021 SN - 978-3-030-74736-7 DO - https://doi.org/10.1007/978-3-030-74737-4 SN - 2194-9832 VL - 20 SP - 35 EP - 54 PB - Springer Nature Switzerland AG AN - OPUS4-54170 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Oliveira, C. A1 - Silveira, D. A1 - Varum, H. A1 - Parisi, F. A1 - Miccoli, Lorenzo A1 - Solis, M. A1 - Rodriguez-Mariscal, J. D. A1 - Tarque, N. ED - Varum, H. ED - Parisi, F. ED - Tarque, N. ED - Silveira, D. T1 - Mechanical Characterization of Adobe Masonry T2 - Building Pathology and Rehabilitation, Structural Characterization and Seismic Retrofitting of Adobe Constructions, Experimental and Numerical Developments N2 - The characterization of the mechanical properties and behaviour of adobe masonry is fundamental for the understanding of the structural behaviour of adobe constructions. Thus, in the last decades, experimental studies focused on this topic have been carried out by different authors. Many of the existing experimental works, however, were carried out aiming to support broader studies focused on the seismic behaviour of adobe constructions and are not very detailed. Moreover, authors tend to adopt different procedures in their experimental work, since there are few indications in existing standards for testing adobe masonry. The wide variety in materials used, both for the adobes and mortars, further complicates this work, making it difficult to compare results obtained in different studies. This chapter provides an overview of the indications given by standards and other technical recommendations for the mechanical testing of adobe masonry. It presents a review of existing research on the mechanical behaviour of adobe masonry, addressing studies that focus on: (i) compression behaviour, (ii) shear behaviour, (iii) joint shear behaviour. It provides a global analysis of the existing knowledge, suggesting improvements for normative documents and identifying future Research needs. KW - Adobe masonry KW - Mechanical behaviour KW - Experimental tests KW - Standards PY - 2021 SN - 978-3-030-74736-7 DO - https://doi.org/10.1007/978-3-030-74737-4_4 SN - 2194-9832 VL - 20 SP - 55 EP - 92 PB - Springer Nature Switzerland AG AN - OPUS4-54171 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Patzer, G. A1 - Ebrecht, J. A1 - Woydt, Mathias T1 - New interpretation approaches for seizure load tests on the translatory oscillation tribometer (SRV) N2 - When looking in detail at analyses of the tribological load-carrying capacity of high-performance lubricants, it becomes apparent that the stop of the machine of an exclusive evaluation of the development of the coefficient of friction cannot provide any sufficient criteria for determining the occurrence of adhesive failure. This is due on the one hand to the increasing complexity of lubricant formulae and sophisticated additive packages, and on the other hand to the increasing frictional power capacity of modern drive and control concepts in the design of tribometers. For this reason, it is urgently needed to examine the adhesive processes and their detection in more detail with the help of appropriate tribological values and criteria. The evolution of the friction can be coupled with the stroke, contact resistant and/or noise emission. Besides from new criteria for adhesive failure, which were compiled by the work group for the relevant ISO, DIN and ASTM standards, this contribution discusses the inclusion of additional parameters. Among other things, it provides guidance on what evidence the continuous recording of the original coefficient of friction and position signals, the electrical contact resistance, temperature, noise emission, frictional power input of the machine and further derived parameters help to identify adhesive failures or events. T2 - Workshop on Tribological Testing of Components Using the SRV Test Machine CY - Bellevue, WA, USA DA - 30.06.2016 KW - Tribology KW - Friction KW - Translatory oscillation tribometer KW - Standards PY - 2016 AN - OPUS4-36735 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kage, Daniel A1 - Fischer, Linn A1 - Hoffmann, Katrin A1 - Thiele, T. A1 - Schedler, U. A1 - Resch-Genger, Ute T1 - Close spectroscopic look at dye-stained polymer microbeads JF - The Journal of Physical Chemistry C N2 - Dye-stained micrometer-sized polymer beads are important tools in the life sciences with applications in biomedical, biochemical, and clinical research. Here, bead-based assays are increasingly used, for example, in DNA sequencing and the detection of autoimmune diseases or pathogenic microorganisms. Moreover, stained beads are employed as calibration tools for fluorescence microscopy and flow cytometry methods with increasing complexity. To address the requirements concerning the relevant fluorescence features, the spectroscopic properties of representative polymer beads with diameters ranging from about 1 to 10 μm stained with varying concentrations of rhodamine 6G were systematically assessed. The observed dependence of the spectral properties, fluorescence decay kinetics, and fluorescence quantum yields on bead size and dye loading concentration is attributed to different fluorescence characteristics of fluorophores located in the particle core and near-surface dye molecules. Supported by the fluorescence anisotropy measurements, the origin of the observed alteration of fluorescence features is ascribed to a combination of excitation energy transfer and polarity-related effects that are especially pronounced at the interface of the bead and the surrounding medium. The results of our studies underline the need to carefully control and optimize all Parameters that can affect the fluorescence properties of the dye-stained beads. KW - Fluorophore KW - Polymer particles KW - Photophysics KW - Life sciences KW - Standards PY - 2018 DO - https://doi.org/10.1021/acs.jpcc.8b02546 SN - 1932-7447 VL - 122 IS - 24 SP - 12782 EP - 12791 PB - ACS Publications CY - Washington, DC AN - OPUS4-45453 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Woydt, Mathias T1 - 2015 SRV global circular comparison results bulletin N2 - Tribological profile of hydraulic oils by using SRV. The determination of a set of critical, tribological by using different SRV-based test methods. The SRV-based concept of tribological profile generates the wear volumes on two triboelements (specimen), the extreme pressure properties and friction under different contact pressures. Thus, the benchmark and validation of hydraulic oils bear on a wider range of tribological properties. The RR2016 extends with six hydraulic oils to other base oil types including biodegradable fluids, which were all tested according to ASTM D7043 in order to consolidate the correlation between SRV and V104C. T2 - Working Group Meeting about SRV in China 2016 CY - Beijing, China DA - 05.04.2016 KW - SRV KW - Standards KW - China PY - 2016 AN - OPUS4-35744 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Woydt, Mathias T1 - 2016 SRV global circular comparison results bulletin N2 - Actions from the meeting in April 2016: 1. Four SAC test methods are in place and were revised: SH/T 0721 (Grease, coefficient of friction and wear), SH/T 0784 (Grease, pass load/O.K. load), SH/T 0847 (Oil, coefficient of friction and wear) and SH/T 0882 released by 11-2014 (Oil, pass load/O.K. load). 2. New test method to evaluate anti-fretting properties of greases based was approved by SAC TC280 and will be released. 3. SAC TC280 accepted the project “Simulation of synchronizer by using SRV”. Draft text to be submitted by 03-2017. Discussions on a parallel ASTM test method. 4. A procedure for “Wear Volume” is under development for SAC TC280. T2 - Working Group Meeting about SRV in China 2016 CY - Beijing, China DA - 05.04.2016 KW - SRV KW - Standards KW - China PY - 2016 AN - OPUS4-35745 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Woydt, Mathias T1 - Recent work of the global SRV working group and the development trend of SRV standards N2 - „Cliff“-testing by using SRV The identification in engine or gear tests of the induction time or off-set point („cliff“), after which wear and friction increased. “Cliff” testing as auxiliary method supports the interpretation of engine tests, as it enhances the values of expensive engine tests, because it enables correlations between friction & wear, either from engine or in SRV tests, with additive depletion, oxidation, viscometrics and dispersancy/detergency. Oil samples taken in discrete intervals and “Cliff” tested monitors the evolution of tribological and functional properties versus engine running time. “Cliff” testing by using SRV is a purposeful tool in order to secure and accelerate metallurgical developments and the development of lubricant formulations. T2 - Working Group Meeting about SRV in China 2016 CY - Beijing, China DA - 05.04.2016 KW - SRV KW - Standards KW - China PY - 2016 AN - OPUS4-35747 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Shard, A. G. A1 - Hodoroaba, Vasile-Dan A1 - Unger, Wolfgang ED - Hodoroaba, Vasile-Dan ED - Unger, Wolfgang ED - Shard, A. G. T1 - Introduction T2 - Characterization of nanoparticles - Measurement processes for nanoparticles N2 - The purpose of this book is to provide a comprehensive collection of analytical methods that are commonly used to measure nanoparticles, providing information on one, or more, property of importance. The chapters provide up-to-date information and guidance on the use of these techniques, detailing the manner in which they may be reliably employed. Within this chapter, we detail the rationale and context of the whole book, which is driven by the observation of a low level of reproducibility in nanoparticle research. The aim of the book is to encourage awareness of both the strengths and weaknesses of the various methods used to measure nanoparticles and raise awareness of the range of methods that are available. The editors of the book have, for many years, been engaged in European projects and standardization activities concerned with nanoparticle analysis and have identified authors who are experts in the various methods included within the book. This has produced a book that can be used as a definitive guide to current best practice in nanoparticle measurement. KW - Nanoparticles KW - Size distribution KW - Shape KW - Chemistry KW - Coating KW - Concentration KW - Standards KW - Charge KW - Characterisation PY - 2020 SN - 978-0-12-814182-3 DO - https://doi.org/10.1016/B978-0-12-814182-3.00001-8 SP - 1 EP - 6 PB - Elsevier CY - Amsterdam AN - OPUS4-50166 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Clifford, C. A1 - Stintz, M. A1 - Hodoroaba, Vasile-Dan A1 - Unger, Wolfgang A1 - Fujimoto, T. ED - Hodoroaba, Vasile-Dan ED - Unger, Wolfgang ED - Shard, A. G. T1 - International standards in nanotechnologies T2 - Characterization of nanoparticles - Measurement processes for nanoparticles N2 - This chapter provides an overview of what standards are, why they are important, and how they are developed. There is a focus on the work of standards committees relevant to nanotechnology measurement and characterization with tables detailing the standards that are currently available for a large number of different techniques, materials, and applications at the nanoscale. KW - Standards KW - Nanotechnology KW - Reproducibility KW - ISO KW - CEN KW - VAMAS PY - 2020 SN - 978-0-12-814182-3 DO - https://doi.org/10.1016/B978-0-12-814182-3.00026-2 SP - 511 EP - 525 PB - Elsevier CY - Amsterdam AN - OPUS4-50165 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -