TY - JOUR A1 - Rhode, Michael A1 - Richter, Tim A1 - Mente, Tobias A1 - Mayr, P. A1 - Nitsche, A. T1 - Thickness and microstructure effect on hydrogen diffusion in creep‑resistant 9% Cr P92 steel and P91 weld metal JF - Welding in the World N2 - Martensitic 9% Cr steels like P91 and P92 show susceptibility to delayed hydrogen assisted cracking depending on their microstructure. In that connection, effective hydrogen diffusion coefficients are used to assess the possible time-delay. Limited data on room temperature diffusion coefficients reported in literature vary widely by several orders of magnitude (mostly attributed to variation in microstructure). Especially P91 weld metal diffusion coefficients are rare so far. For that reason, electrochemical permeation experiments had been conducted using P92 base metal and P91 weld metal (in as-welded and heat-treated condition) with different thicknesses. From the results obtained, diffusion coefficients were calculated using to different methods, time-lag, and inflection point. Results show that, despite microstructural effects, the sample thickness must be considered as it influences the calculated diffusion coefficients. Finally, the comparison of calculated and measured hydrogen concentrations (determined by carrier gas hot extraction) enables the identification of realistic diffusion coefficients. KW - Creep-resistant steel KW - Diffusion KW - Hydrogen assisted cracking KW - Welding KW - Electrochemical permeation PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-540645 DO - https://doi.org/10.1007/s40194-021-01218-9 SN - 0043-2288 SP - 1 EP - 16 PB - Springer Nature Switzerland AG AN - OPUS4-54064 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rhode, Michael A1 - Richter, Tim A1 - Mayr, P. A1 - Nitsche, A. A1 - Mente, Tobias A1 - Böllinghaus, Thomas T1 - Hydrogen diffusion in creep-resistant 9% Cr P91 multi-layer weld metal JF - Welding in the World N2 - Welded components of P91 9% Cr steel demand for careful welding fabrication with necessary post weld heat treatment (PWHT). Before the PWHT, a hydrogen removal heat treatment is necessary for avoidance of hydrogen assisted cracking (HAC). In this context, the microstructure and temperature-dependent hydrogen diffusion is important, and reliable diffusion coefficients of P91 weld metal are rare. For that reason, the diffusion behavior of P91 multi-layer weld metal was investigated for as-welded (AW) and PWHT condition by electrochemical permeation experiments at room temperature and carrier gas hot extraction (CGHE) from 100 to 400 °C. Hydrogen diffusion coefficients were calculated, and the corresponding hydrogen concentration was measured. It was ascertained that both heat treatment conditions show significant differences. At room temperature the AW condition showed significant hydrogen trapping expressed by to seven times lower diffusion coefficients. A preferred diffusion direction was found in perpendicular direction expressed by high permeability. The CGHE experiments revealed lower diffusion coefficients for the AW condition up to 400 °C. In this context, a hydrogen concentration of approximately 21 ml/100 g was still trapped at 100 °C. For that reason, a certain HAC susceptibility of as-welded P91 weld metal cannot be excluded, and hydrogen removal should be done before PWHT. KW - Creep resisting materials KW - Diffusion KW - Hydrogen KW - Weld metal KW - Post weld heat treatment KW - Microstructure PY - 2020 DO - https://doi.org/10.1007/s40194-019-00828-8 SN - 0043-2288 VL - 64 IS - 2 SP - 267 EP - 281 PB - Springer AN - OPUS4-50471 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mayr, P. A1 - Rhode, Michael A1 - Richter, Tim A1 - Nitsche, A. T1 - Hydrogen diffusion in creep-resistant 9%-Cr steel welds N2 - 9 %-Cr steels like P91 and P92 are widely used in power plants due to the excellent creep-resistance. Components of this steel are typically welded and demand for careful welding fabrication, whereas a so-called post weld heat treatment (PWHT), must be conducted to increase the toughness and decrease the hardness of the martensitic as-welded (AW) microstructure. Before the PWHT, a hydrogen removal (or dehydrogenation) heat treatment is necessary as hardened AW martensitic microstructure is generally prone to delayed hydrogen assisted cracking (HAC). The microstructure and temperature dependent hydrogen diffusion is an important issue as it determines how long a potential crack-critical hydrogen concentration could remain in the microstructure. In this context, reliable hydrogen diffusion coefficients of P91 and P92 weld metal are rare. T2 - IIW Intermediate Meeting, Commission IX-C "Creep and heat resistant welds" CY - Miami, FL, USA DA - 12.03.2019 KW - Hydrogen KW - Diffusion KW - Weld metal KW - Creep-resistant steel PY - 2019 AN - OPUS4-48450 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Eh Hovsepian, P. A1 - Ehiasarian, A. P. A1 - Purandare, Y. P. A1 - Mayr, P. A1 - Abstoss, K. G. A1 - Mosquera Feijoo, Maria A1 - Schulz, Wencke A1 - Kranzmann, Axel A1 - Lasanta, M. I. A1 - Trujillo, J. P. T1 - Novel HIPIMS deposited nanostructured CrN/NbN coatings for environmental protection of steam turbine components JF - Journal of Alloys and Compounds N2 - To increase efficiency, modern steam plants are pushing their operational regime from super-critical (600 °C/300 bar) to ultra-super-critical (740/760 °C/350 bar) stretching existing turbine materials to their limits. The focus is on new generation functional materials and technologies which complement the inherent properties of existing materials. Current work proposes a novel High Power Impulse Magnetron Sputtering (HIPIMS) Deposition technology, for the first time, for deposition of a ceramic based CrN/NbN coating with a nanoscale multilayer structure (bi-layer thickness Δ = 1.9 nm) with superior adhesion (LC2 = 80 N) to protect low Chromium P92 steel widely used in steam power plants. Thermodynamic calculations predict the equilibrium phases and aggressive gaseous compounds generated by the interaction of steam with the coating. CrN/NbN coated P92 steel samples oxidised at 600 °C in a high pressure (50 bar) 100% steam atmosphere for up to 1000 h reveal the coating's superior oxidation resistance and protective mechanisms, especially against the detrimental effect of Hydrogen. High temperature (650 °C) Tensile Strength, Low Cycle Fatigue and Creep tests confirm that, unlike other state-of-the-art PVD technologies, HIPIMS is not detrimental to the mechanical properties of the substrate material. Water droplet erosion tests confirm no measurable weight loss after 2.4 X 10⁶ impacts. KW - Hipims KW - CrN/NbN KW - Nanoscale multilayers KW - Steam oxidation resistance KW - Water droplet erosion resistance PY - 2018 DO - https://doi.org/10.1016/j.jallcom.2018.02.312 SN - 0925-8388 SN - 1873-4669 VL - 746 SP - 583 EP - 593 PB - Elsevier AN - OPUS4-44800 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -