TY - JOUR A1 - Welter, T. A1 - Marzok, Ulrich A1 - Deubener, J. A1 - Reinsch, Stefan A1 - Müller, Ralf T1 - Hydrogen diffusivity in sodium aluminosilicate glasses JF - Journal of Non-Crystalline Solids N2 - Hydrogen gas diffusivity of fourteen glasses of the Na2O-Al2O3-SiO2 system are studied along the joins quartzalbite-jadeite-nepheline (Qz-Ab-Jd-Np, fully polymerized) and albite-sodium disilicate (Ab-Ds, depolymerized). Density measurements show that ionic porosity decreases from 54.4% (Qz) to 51.5% (Np) and from 52.4% (Ab) to 50.2% (Ds). Hydrogen diffusivity D follows similar trends but at another scale. D at 523 K decreases from 4×10−12 to 3×10−14m2 s−1 (Qz-Np) and from 4×10−13 to 3×10−15m2 s−1 (Ab-Ds). Charge compensating Na+ acting as a filling agent in fully polymerized network structures leads to up to one order of Magnitude higher diffusivities as depolymerized glass structures of the same SiO2 content where Na+ takes the role of a modifier ion. Temperature dependence of the diffusivity indicates that both the activation energy involved with the moving H2 molecule as well as the accessible volume in the structure contribute to this compositional trend. KW - Aluminosilicate glasses KW - Hydrogen diffusivity KW - Ionic porosity PY - 2019 DO - https://doi.org/10.1016/j.jnoncrysol.2019.119502 VL - 521 SP - 119502 PB - Elsevier B.V. AN - OPUS4-50392 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Marzok, Ulrich A1 - Müller, Ralf A1 - Gaber, Martin A1 - Reinsch, Stefan A1 - Welter, T. A1 - Deubener, J. T1 - Measurement of H2 permeability of glasses with VHE powder method N2 - The development of glassy hydrogen barriers requires the determination of low H2 permeabilities. Previous studies and numerical simulations have shown that the VHE powder method (vacuum hot extraction with mass spectrometric gas detection) is suitable for this purpose. The measured isothermal gas emission is fitted to a classical diffusion model for spherical particles from which the diffusion coefficient of the glass is calculated. The H2 permeability is determined by means of the solubility determined from the same measurement data. This presentation is referring to the optimization of the method regarding sample preparation and measurement data evaluation using suitable experimentally determined particle size distributions is reported. For quartz glass, it is shown that the accuracy of classical measuring methods is achieved with the VHE powder method. Furthermore, other examples of substantially gas-tighter glasses are given. T2 - 91. Glastechnische Tagung CY - Weimar, Germany DA - 29.05.2017 KW - Hydrogen permeation KW - Glass KW - Vacuum hot extraction KW - Powder method KW - Diffusion coefficient PY - 2017 AN - OPUS4-40441 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Marzok, Ulrich A1 - Müller, Ralf A1 - Reetz, R. A1 - Lauven, G. T1 - 3D High-temperature laser profilometry during sintering N2 - Most crucial for components of complex shape or heterogeneous micro structure, precise control of sintering has decisive influence on dimensional accuracy, mechanical integrity and reliability of sintered components. In these cases, only in situ 3D high-temperature shape screening during shrinkage would allow revealing temporary sinter warpage and hereby caused potential defects. Against this background, nokra Optische Prüftechnik und Automation GmbH, HTM Reetz GmbH and BAM developed a testing device for in situ 3D shape screening for ceramic and glass-ceramic tapes up to 1000°C by means of high-temperature laser profilometry. The local repeatability of the sample-sensor distance (sample height profile) is 10 µm at 1000°C. Current work is focused on dropping these restrictions in sample shape and temperature. In a second testing device, currently being in development, samples up to 5 cm x 5 cm x 5 cm can be measured at temperatures up to 1500°C.The presentation illustrates the current state of this work and possible applications of the method. T2 - 92. DKG Jahrestagung CY - Berlin, Germany DA - 19. 03. 2017 KW - Laser profilometry KW - 3D High-temperatue shape screening KW - Sintering PY - 2017 AN - OPUS4-40449 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Marzok, Ulrich A1 - Müller, Ralf A1 - Reetz, R. A1 - Trunkhardt, M. T1 - High-temperature laser profilometry N2 - Advanced methods for 3D green density characterization like computed tomography and 3D FE sinter modeling can be utilized for increasing the reliability of sintered components. The experimental in situ observation of sin-tering, however, is currently restricted to silhouette methods, i.e. heating microscopy. For complex shaped sam-ples, in situ shape screening during shrinkage would allow better validation of 3D sinter simulation models. Further, by revealing temporary sinter warpage, 3D high-temperature shape screening would allow to locate potential defects of complex sintered components. Against this background, BAM developed a testing device for in situ 3D high-temperature shape screening for ceramic and glass-ceramic tapes up to 1000°C [1-3]. Current work is focused on dropping this restriction in sample shape and temperature. The poster illustrates the current state of this work and possible applications of the method e.g. in detecting sinter warpage of metallized glass-ceramic LTCC tapes. T2 - 90. Glastechnische Tagung (Deutsche Glastechnische Gesellschaft e.V.) CY - Goslar, Germany DA - 06.06.2016 KW - Laser profilometry KW - 3D High-temperature shape screening KW - Sintering PY - 2016 AN - OPUS4-36510 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Marzok, Ulrich A1 - Müller, Ralf A1 - Reetz, R. A1 - Trunkhardt, M. T1 - High-temperature laser profilometry N2 - Advanced methods for 3D green density characterization like computed tomography and 3D FE sinter modeling can be utilized for increasing the reliability of sintered components. The experimental in situ observation of sintering, however, is currently restricted to silhouette methods, i.e. heating microscopy. For complex shaped samples, in situ shape screening during shrinkage would allow much better validation of 3D sinter simulation models. Further, by revealing temporary sinter warpage, 3D high-temperature shape screening would allow to locate potential defects of complex sintered components. Against this background, BAM developed a testing device for in situ 3D high-temperature shape screening for ceramic and glass-ceramic tapes up to 1000°C. Current work is focused on dropping this restriction in sample shape and temperature. The poster illustrates the current state of this work and possible applications of the method e.g. in detecting sinter warpage of metallized glass-ceramic LTCC tapes. T2 - ICC6, 6th International Congress on Ceramics CY - Dresden, Germany DA - 21.08.2016 KW - Laser profilometry KW - 3D High-temperature shape screening KW - Sintering PY - 2016 AN - OPUS4-37708 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -