TY - CONF A1 - Lugovtsova, Yevgeniya A1 - Brackrock, Daniel A1 - Prager, Jens T1 - Entwicklung von Verfahren zur wiederkehrenden Prüfung und zur Zustandsüberwachung von Composite-Druckbehältern N2 - Composite-Druckbehälter werden für Speicherung und Transport von Gasen unter hohem Druck verwendet. Durch die gewichtssparende Struktur, die aus einem dünnwandigem Metallgefäß und Faserverbundwerkstoff-Ummantelung besteht, sind solche Behälter insbesondere für die Automobilindustrie interessant, z.B. als Wasserstoffspeicher. Die Druckprüfung ist ein konventioneller Test, um die Integrität von Metalldruckbehältern zu bewerten. Im Falle des Composite-Druckbehälters könne eine solche Prüfung jedoch den Faserverbundwerkstoff überbeanspruchen und somit die verbleibende Lebensdauer der getesteten Komponente verringern. Infolgedessen, es ist notwendig, die Verfahren zur zerstörungsfreie Prüfung und möglicherweise zur Zustandsüberwachung von Composite-Druckbehältern zu entwickeln. Unser Vorgehen verwendet geführte Ultraschallwellen und hat das Potenzial, kritische Schäden wie Risse im Metall, Faserbrüche und Matrixrisse in Faserverbundwerkstoff zu detektieren. In diesem Beitrag wurde die Finite Elemente Methode benutzt, um die multimodale, geführte Wellenausbreitung in einer Metall-Faserverbundwerkstoffstruktur zu analysieren. Dadurch wurden die geeigneten Wellenmoden identifiziert und deren Wechselwirkung mit verschiedenen Fehlertypen analysiert. Diese Kenntnisse sollen für die Entwicklung von Verfahren zur wiederkehrenden Prüfung und zur Zustandsüberwachung von Composite-Druckbehältern angewendet werden. T2 - Seminar des FA Ultraschall CY - Berlin, Germany DA - 06.11.2017 KW - Composite-Druckbehälter KW - Geführte Ultraschallwellen KW - Structural health monitoring KW - Finite element modelling KW - Wasserstoffspeicher PY - 2017 AN - OPUS4-42751 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Lugovtsova, Yevgeniya A1 - Prager, Jens T1 - Structural health monitoring of composite pressure vessels using guided ultrasonic waves N2 - Composite pressure vessels are important components for storing gases under high pressure. Beside others, a common type of pressure vessel is made of a metal liner overwrapped with a fibre reinforced plastic material. Conventional hydrostatic tests, used to assess the integrity of pressure vessels, may overstress the material, and thus, may reduce the remaining life-time of the tested component. Therefore, a truly nondestructive structural health monitoring (SHM) system would not only allow to ensure a safer usage and extended life-time, but also to exclude the necessity of the periodic inspection and testing of pressure vessels. We propose to use guided ultrasonic waves which have a potential to detect the main damage types such as cracking in the metal liner, fibre breaks and composite Matrix delamination. For designing such a SHM system, the multimodal ultrasonic wave propagation and the defect-mode interaction must be fully understood. In this contribution, we present simulation results obtained by means of finite element modelling. Based on the findings, suggestions about appropriate wave modes, their interaction with different flaw types as well as the necessary excitation and suitable sensor configuration are made. Finally, we suggest a first approach of a reliable SHM system for composite pressure vessels. T2 - First World Congress on Condition Monitoring (WCCM) CY - London, UK DA - 13.06.2017 KW - Composite materials KW - Simulations KW - Ultrasonic testing PY - 2017 SP - 1 EP - 12 AN - OPUS4-40678 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Lugovtsova, Yevgeniya A1 - Prager, Jens T1 - Structural health monitoring of composite pressure vessels using guided ultrasonic waves N2 - Composite pressure vessels are important components for storing gases under high pressure. Beside others, a common type of pressure vessel is made of a metal liner overwrapped with a fibre reinforced plastic material. Conventional hydrostatic tests, used to assess the integrity of pressure vessels, may overstress the material, and thus, may reduce the remaining life-time of the tested component. Therefore, a truly nondestructive structural health monitoring (SHM) system would not only allow to ensure a safer usage and extended life-time, but also to exclude the necessity of the periodic inspection and testing of pressure vessels. We propose to use guided ultrasonic waves which have a potential to detect the main damage types such as cracking in the metal liner, fibre breaks and composite Matrix delamination. For designing such a SHM system, the multimodal ultrasonic wave propagation and the defect-mode interaction must be fully understood. In this contribution, we present simulation results obtained by means of finite element modelling. Based on the findings, suggestions about appropriate wave modes, their interaction with different flaw types as well as the necessary excitation and suitable sensor configuration are made. Finally, we suggest a first approach of a reliable SHM system for composite pressure vessels. T2 - First World Congress on Condition Monitoring (WCCM) CY - London, UK DA - 13.06.2017 KW - Composite materials KW - Simulations KW - Ultrasonic testing PY - 2017 AN - OPUS4-40679 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Lugovtsova, Yevgeniya A1 - Bulling, Jannis A1 - Prager, Jens T1 - Efficient Modelling of Guided Ultrasonic Waves using the Scaled Boundary Finite Element Method with Application to Composite Pressure Vessels N2 - The Scaled Boundary Finite Element Method (SBFEM) is a semi-analytical method that showed promising results in modelling of guided ultrasonic waves. Efficiency and a low computational cost of the method are achieved by the discretisation of the boundary of a computational domain only, whereas for the domain itself the analytical solution is used. By means of the SBFEM different types of defects, e.g. fatigue cracks, pores, delamination, corrosion, integrated into a structure consisting of anisotropic and isotropic materials can be modelled. In this contribution, the SBFEM is used to analyse the propagation of guided waves in a structure consisting of an isotropic metal bonded to anisotropic carbon fibre reinforced material. The method allowed to identify appropriate wave types (modes) and to analyse their interaction with different defects. Obtained results will be used to develop a structural health monitoring system for composite pressure vessels used in automotive industry. T2 - InnoTesting 2018 CY - Wildau, Germany DA - 22.02.2018 KW - Structural Health Monitoring KW - Defect-mode Interaction KW - Hydrogen storage KW - Natural gas PY - 2018 AN - OPUS4-44289 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Lugovtsova, Yevgeniya A1 - Prager, Jens T1 - Analysis of Guided Wave Propagation in an Aluminium-CFRP Plate N2 - Guided waves cover comparably long distances and thus allow for online structural health monitoring of safety relevant components, e.g. lightweight composite overwrapped pressure vessels (COPV) as used for the transportation of pressurised gases. Reliable non-destructive assessment of COPVs’ condition is not available yet due to their complex composite structure comprising a thin metal liner and a fibre reinforced plastics (FRP) overwrap. The conventional overload hydrostatic pressure testing used for the metal vessels is not suitable for the composite vessels, because it may damage the FRP overwrap reducing the service life of the COPV. Therefore, ISO and CEN defined a maximum service life of composite pressure vessels as of 15 to 20 years. To extend the COPVs’ service life and to ensure a safer usage a structural health monitoring system based on guided ultrasonic waves is to be developed. In this contribution first results of guided waves propagation in a flat composite plate consisting of an aluminium layer firmly bonded to a carbon fibre reinforced plastic laminate are presented. Based on experimental results material properties of FRP are reconstructed by means of the Scaled Boundary Finite Element Method (SBFEM). T2 - ECNDT 2018 CY - Gothenburg, Sweden DA - 11.06.2018 KW - Structural Health Monitoring KW - Pressure tanks KW - Hydrogen storage KW - Natural gas KW - Composites PY - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-452084 SP - 1 EP - 6 AN - OPUS4-45208 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Lugovtsova, Yevgeniya A1 - Prager, Jens T1 - Analysis of Guided Wave Propagation in an Aluminium-CFRP Plate N2 - Guided waves cover comparably long distances and thus allow for online structural health monitoring of safety relevant components, e.g. lightweight composite overwrapped pressure vessels (COPV) as used for the transportation of pressurised gases. Reliable non-destructive assessment of COPVs’ condition is not available yet due to their complex composite structure comprising a thin metal liner and a fibre reinforced plastics (FRP) overwrap. The conventional overload hydrostatic pressure testing used for the metal vessels is not suitable for the composite vessels, because it may damage the FRP overwrap reducing the service life of the COPV. Therefore, ISO and CEN defined a maximum service life of composite pressure vessels as of 15 to 20 years. To extend the COPVs’ service life and to ensure a safer usage a structural health monitoring system based on guided ultrasonic waves is to be developed. In this contribution first results of guided waves propagation in a flat composite plate consisting of an aluminium layer firmly bonded to a carbon fibre reinforced plastic laminate are presented. Based on experimental results material properties of FRP are reconstructed by means of the Scaled Boundary Finite Element Method (SBFEM). T2 - ECNDT 2018 CY - Gothenburg, Sweden DA - 11.06.2018 KW - Structural Health Monitoring KW - Pressure tanks KW - Hydrogen storage KW - Natural gas KW - Composites PY - 2018 AN - OPUS4-45210 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Lugovtsova, Yevgeniya A1 - Bulling, Jannis A1 - Prager, Jens A1 - Boller, C. T1 - Efficient modelling of guided ultrasonic waves using the Scaled Boundary FEM towards SHM of composite pressure vessels N2 - The Scaled Boundary Finite Element Method (SBFEM) is a semi-analytical method that shows promising results in modelling of guided ultrasonic waves. Efficiency and low computational cost of the method are achieved by a discretisation of the boundary of a computational domain only, whereas for the domain itself the analytical solution is used. By means of the SBFEM different types of defects, e.g. cracks, pores, delamination, corrosion, integrated into a structure consisting of anisotropic and isotropic materials can be modelled. In this contribution, the SBFEM is used to analyse the propagation of guided waves in a structure consisting of an isotropic metal bonded to anisotropic carbon fibre reinforced material. The method allows appropriate wave types (modes) to be identified and to analyse their interaction with different defects. Results obtained are used to develop a structural health monitoring system for composite pressure vessels used in automotive and aerospace industries. T2 - 9th European Workshop on Structural Health Monitoring (EWSHM) CY - Manchester, UK DA - 10.07.2018 KW - Structural Health Monitoring KW - Pressure tanks KW - Hydrogen storage KW - Finite Element Modelling KW - Composites PY - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-454859 SP - 1 EP - 7 AN - OPUS4-45485 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Lugovtsova, Yevgeniya A1 - Bulling, Jannis A1 - Krome, Fabian A1 - Prager, Jens T1 - Effiziente Modellierung von geführten Wellen mit der Scaled Boundary Finite Elemente Methode und deren Anwendung für Composite-Druckbehälter N2 - Die Scaled Boundary Finite Elemente Methode (SBFEM) ist eine semi-analytische Methode, die speziell für Modellierung von geführten Wellen weiterentwickelt und optimiert wurde. Da nur den Rand der Rechendomäne diskretisiert wird, hat die SBFEM einen geringen Rechenaufwand. In diesem Beitrag wird die SBFEM benutzt, um die Ausbreitung geführter Wellen in einer Metall-Faserverbund-Werkstoffstruktur zu analysieren. Mittels der SBFEM ist es möglich, verschiede Fehlertypen, z.B. Ermüdungsrisse, Poren, Delaminationen, Korrosion, in das numerische Modell zu integrieren und damit Defekt-Mode-Wechselwirkung zu analysieren. Die Ergebnisse wurden für die Entwicklung einer Methode zur Zustandsüberwachung von Composite-Druckbehältern verwendet. T2 - DGZfP-Jahrestagung 2018 CY - Leipzig, Germany DA - 07.05.2018 KW - Wasserstoffspeicher KW - Automobilindustrie KW - Kohlenstofffaserverstärkter Kunststoff KW - Hybrid Materialien PY - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-449797 SP - 1 EP - 4 AN - OPUS4-44979 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Lugovtsova, Yevgeniya A1 - Bulling, Jannis A1 - Krome, Fabian A1 - Prager, Jens T1 - Effiziente Modellierung von geführten Wellen mit der Scaled Boundary Finite Elemente Methode und deren Anwendung für Composite-Druckbehälter N2 - Die Scaled Boundary Finite Elemente Methode (SBFEM) ist eine semi-analytische Methode, die speziell für Modellierung von geführten Wellen weiterentwickelt und optimiert wurde. Da nur den Rand der Rechendomäne diskretisiert wird, hat die SBFEM einen geringen Rechenaufwand. In diesem Beitrag wird die SBFEM benutzt, um die Ausbreitung geführter Wellen in einer Metall-Faserverbund-Werkstoffstruktur zu analysieren. Mittels der SBFEM ist es möglich, verschiede Fehlertypen, z.B. Ermüdungsrisse, Poren, Delaminationen, Korrosion, in das numerische Modell zu integrieren und damit Defekt-Mode-Wechselwirkung zu analysieren. Die Ergebnisse wurden für die Entwicklung einer Methode zur Zustandsüberwachung von Composite-Druckbehältern verwendet. T2 - DGZfP-Jahrestagung 2018 CY - Leipzig, Germany DA - 07.05.2018 KW - Wasserstoffspeicher KW - Automobilindustrie KW - Kohlenstofffaserverstärkter Kunststoff KW - Hybrid Materialien PY - 2018 AN - OPUS4-44980 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Lugovtsova, Yevgeniya A1 - Bulling, Jannis A1 - Prager, Jens T1 - Analyse geführter Wellenausbreitung in einem MehrschichtVerbund: Simulation mit SBFEM N2 - Die Scaled Boundary Finite Elemente Methode (SBFEM) ist eine semi-analytische Methode, die vielversprechende Ergebnisse bei der Modellierung geführter Ultraschallwellen zeigt. Effizienz und niedriger Rechenaufwand der Methode werden durch Diskretisierung des Randes der Rechendomäne erreicht, während für die Domäne selbst die analytische Lösung verwendet wird. Mittels der SBFEM können verschiedene Arten von Fehlern können modelliert werden, z. Risse, Poren, Delamination, Korrosion, die in eine Struktur aus anisotropen und isotropen Materialien integriert sind. In diesem Beitrag wird das SBFEM verwendet, um die Ausbreitung von geführten Wellen in einer Struktur zu analysieren, die aus einem isotropen Metall besteht, das an anisotropes Kohlefaserverstärktes Material gebunden ist. Das Verfahren ermöglicht die Identifizierung geeigneter Wellentypen (Modi) und die Analyse ihrer Interaktion mit verschiedenen Defekten. Die erzielten Ergebnisse werden zur Entwicklung eines Zustandsüberwachungssystems für Composite-Druckbehälter verwendet, die in der Automobil- und Luftfahrtindustrie benutzt werden. T2 - Doktorandenseminar – Ultraschallmesstechnik CY - Gohrish, Germany DA - 28.10.2018 KW - Composite-Druckbehälter KW - Geführte Ultraschallwellen KW - SBFEM KW - Faserverbundwerkstoff KW - Wasserstoffspeicher PY - 2018 AN - OPUS4-46417 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -