TY - CONF A1 - Casali, Lucia A1 - Emmerling, Franziska T1 - Use of the solvent-free mechanochemical method for a sustainable preparation of pharmaceuticals N2 - With the growing interest in environmental issues on the part of governments and institutions, pharmaceutical industries are asked to reduce their environmental footprint. Given the major impact related to the use of solvents, the development of methodologies less solvent demanding is nowadays even more urgent. In light of that, mechanochemistry would be a suitable solvent-free technology since it promotes the activation of the chemical reactions between (generally) solid materials via inputs of mechanical energy. Since such reactions may occur outside the kinetic and thermodynamic rules of conventional solution chemistry, the main limit of mechanochemistry is the poor mechanistic understanding of the solid-state transformations involved, which is still hindering a widespread use of the method, as well a scale-up to the industrial level. However, the development of methods for real-time monitoring of the mechanochemical reactions enables obtaining (in)accessible information on reaction intermediates, new products, or reaction time, thus getting closer to a better understanding of the mechanistic behaviour. With the rules of this chemistry becoming increasingly clear, the new reaction pathways of mechanochemistry wouldn’t represent a limit anymore, but an asset, that may lead to lot of opportunities for the pharmaceutical industry. T2 - Post Doc Day Berlin CY - Berlin, Germany DA - 02.11.2023 KW - Mechanochemistry KW - Sustainability KW - Pharmaceuticals PY - 2023 AN - OPUS4-59010 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Emmerling, Franziska T1 - Understanding mechanochemical reactions: Real-time insights and collaborative research N2 - Mechanochemistry emerges as a potent, environmentally friendly, and straightforward approach for crafting novel multicomponent crystal systems. Various milling parameters, including milling frequency, time, filling degree of the milling jar, ball diameter, vessel size, degree of milling ball filling, and material of jars, are recognized influencers on the mechanisms and rates of product formation. Despite the growing interest in mechanochemistry, there exists a gap in understanding the mechanistic aspects of mechanochemical reactivity and selectivity. To address this, diverse analytical methods and their combinations, such as powder X-ray diffraction, X-ray absorption spectroscopy, NMR, Raman spectroscopy, and thermography, have been developed for real-time, in situ monitoring of mechanochemical transformations. This discussion centers on our recent findings, specifically investigating the formation of (polymorphic) cocrystals and metal-organic frameworks. Through these studies, we aim to unravel the impact of milling parameters and reaction sequences on the formation mechanism and kinetics. Notably, in the mechanochemical chlorination reaction of hydantoin, normalizing kinetic profiles to the volume of the milling ball unequivocally demonstrates the conservation of milling reaction kinetics. In this ball-milling transformation, physical kinetics outweigh chemical factors in determining reaction rates. Attempting to interpret such kinetics solely through chemical terms poses a risk of misinterpretation. Our results highlight that time-resolved in situ investigations of milling reactions provide a novel avenue for fine-tuning and optimizing mechanochemical processes. T2 - PhD Seminar CY - Online meeting DA - 12.10.2023 KW - Mechanochemistry KW - In situ PY - 2023 AN - OPUS4-59022 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Goswami, Juli Nanda A1 - Haque, Najirul A1 - Seikh, Asiful H. A1 - Bhattacharya, Biswajit A1 - Emmerling, Franziska A1 - Bar, Nimai A1 - Ifseisi, Ahmad A. A1 - Biswas, Surajit A1 - Dolai, Malay T1 - Carboxylative cyclization of propargyl alcohols with carbon dioxide for the synthesis of α-alkylidene cyclic carbonates in presence of Co(III) schiff base complex catalyst N2 - A cobalt(III) complex, [Co(L)3](DMF) (1) of Schiff base ligand HL, 2-((E)-(benzylimino)methyl)-4-bromophenol is prepared and single crystal X-ray structural analysis have also been performed. The structures of complex 1 showed hexa-coordinated mononuclear systems that adopt octahedral geometry. The complex has also exhibited the supramolecular networks through non-covalent interactions like H-bonding, C–Hπ stacking. Moreover, the complex 1 is very effective in the catalytic fixation of carbon dioxide in propergyl alcohols to produce α-alkylidene cyclic carbonates. The catalytic production of α-alkylidene cyclic carbonates have been carried out through carboxylative cyclization of propargyl alcohols using CO2 balloon of 1 atm pressure at 80 ◦C. Solvent free condition (green synthesis) made this catalytic protocol eco-friendly towards the environment. Utilizing various substrates of propargyl alcohols moderate to high percentage yield (62–95%) of respective α-alkylidene cyclic carbonates product have been isolated over this catalytic reaction. Besides, the theoretical calculations (DFT) was performed for the prediction of probable mechanism of the catalytic reaction KW - Catalytic fixation of carbon dioxide KW - Carboxylative cyclization of propargyl alcohols KW - Cobalt (III) Schiff base complex KW - X-ray crystal analysis PY - 2024 DO - https://doi.org/10.1016/j.molstruc.2023.136868 SN - 0022-2860 VL - 1296 IS - Part 1 SP - 1 EP - 8 PB - Elsevier B.V. AN - OPUS4-58947 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gugin, Nikita A1 - Schwab, Alexander A1 - Villajos Collado, José Antonio A1 - Emmerling, Franziska T1 - Reactive extrusion of a model BSA@ZIF-8 biocomposite: a scalable, continuous and sustainable approach N2 - Metal-organic framework-based biocomposites (MOF-biocomposites) are promising materials for biosensing, biocatalysis, and delivery of biopharmaceuticals. One of the most studied MOFs for bioapplications is ZIF-8 (zeolitic imidazolate framework 8) due to its high surface area, high thermal and chemical stability, and low cytotoxicity. The conventional synthesis of ZIF-8-biocomposites called biomimetic mineralization includes mixing selected biomolecules 2-methylimidazole, and soluble Zn2+ source in water. Despite the high efficiency of the method, it does not allow for large-scale production and is restricted to hydrophilic biomolecules. Aimed at developing a scalable and versatile approach, we adapted our recently-reported ZIF-8 reactive extrusion for biocomposite production. We selected bovine serum albumin (BSA) as an inexpensive model biomacromolecule for the preparation of biocomposites. The synthesis of BSA@ZIF-8 was performed using a twin-screw extruder ZE 12 HMI (Three-Tec Gmbh) at a mild temperature of 40 °C. Automatic volumetric feeder ZD 12B (Three-Tec GmbH) was used to supply the reagent mixture consisting of 2-methylimidazole, zinc source, and BSA. To initiate the reaction, a catalytic amount of EtOH was added using a peristaltic pump BT-L (Lead Fluid, China). Powder X-Ray diffraction (PXRD), thermogravimetric analysis (TGA), FTIR, and N2 adsorption were used to characterize the extrudates. Highly crystalline and pure BSA@ZIF-8 with different BSA loadings was isolated after washing the extrudate with EtOH and sodium dodecyl sulfate. The EtOH feeding rate was optimized by following the protein encapsulation efficiency at a BSA mass fraction of 10%. A continuous extruder operation under optimized conditions showed good reproducibility and capability of producing biocomposites on the kilograms scale. These results provide highly valuable information for cheap and large-scale production of ZIF-8-based biocomposites. Due to the lack of restrictions on molecule size and solubility, our proof-of-concept study may significantly expand the selection of biomolecules for immobilization in ZIF-8, making the method applicable to various functional applications T2 - Tag der Chemie 2023 CY - Berlin, Germany DA - 05.07.2023 KW - Biocomposite KW - MOFs KW - Reactive extrusion KW - Zeolitic imidazolate framework PY - 2023 AN - OPUS4-58949 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gugin, Nikita A1 - Villajos Collado, José Antonio A1 - Emmerling, Franziska T1 - Chemists have solutions and know how to get rid of them N2 - Metal-organic framework-based biocomposites (MOF-biocomposites) are promising materials for biosensing, biocatalysis, and delivery of biopharmaceuticals. One of the most studied MOFs for bioapplications is ZIF-8 (zeolitic imidazolate framework 8) due to its high surface area, high thermal and chemical stability, and low cytotoxicity. The conventional synthesis of ZIF-8-biocomposites called biomimetic mineralization includes mixing selected biomolecules 2-methylimidazole, and soluble Zn2+ source in water.[3] Despite the high efficiency of the method, it does not allow for large-scale production and is restricted to hydrophilic biomolecules. Aimed at developing a scalable and versatile approach, we adapted our recently-reported ZIF-8 reactive extrusion for biocomposite production. We selected bovine serum albumin (BSA) as an inexpensive model biomacromolecule for the preparation of biocomposites. The synthesis of BSA@ZIF-8 was performed using a twin-screw extruder ZE 12 HMI (Three-Tec Gmbh) at a mild temperature of 40 °C. Automatic volumetric feeder ZD 12B (Three-Tec GmbH) was used to supply the reagent mixture consisting of 2-methylimidazole, zinc source, and BSA. To initiate the reaction, a catalytic amount of EtOH was added using a peristaltic pump BT-L (Lead Fluid, China). Powder X-Ray diffraction (PXRD), thermogravimetric analysis (TGA), FTIR, and N2 adsorption were used to characterize the extrudates. Highly crystalline and pure BSA@ZIF-8 with different BSA loadings was isolated after washing the extrudate with EtOH and sodium dodecyl sulfate. The EtOH feeding rate was optimized by following the protein encapsulation efficiency at a BSA mass fraction of 10%. A continuous extruder operation under optimized conditions showed good reproducibility and capability of producing biocomposites on the kilograms scale. These results provide highly valuable information for cheap and large-scale production of ZIF-8-based biocomposites. Due to the lack of restrictions on molecule size and solubility, our proof-of-concept study may significantly expand the selection of biomolecules for immobilization in ZIF-8, making the method applicable to various functional applications T2 - SALSA Make and Measure conference CY - Berlin, Germany DA - 13.09.2023 KW - In situ Raman KW - Large-scale processing KW - Reactive extrusion KW - Large-scale production KW - Mechanochemistry PY - 2023 AN - OPUS4-58953 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Emmerling, Franziska T1 - Investigating the mechanism and kinetics of the mechanochemical synthesis of multi-component systems N2 - Mechanochemistry is a promising and environmentally friendly approach for synthesizing (novel) multicomponent crystal systems. Various milling parameters, such as milling frequency, milling time, and ball diameter have been shown to influence the mechanisms and rates of product formation. Despite increasing interest in mechanochemistry, there is still limited understanding of the underlying reactivity and selectivity mechanisms. Various analytical techniques have been developed to gain insight into the mechanochemical transformations, including powder X-ray diffraction, X-ray adsorption spectroscopy, NMR, Raman spectroscopy and thermography. Using these techniques, we have studied the formation of (polymorphic) cocrystals, organometallic compounds and salts, and elucidated the influence of milling parameters and reaction sequences on the formation mechanism and kinetics. For example, our study of the mechanochemical chlorination reaction of hydantoin revealed that normalisation of the kinetic profiles to the volume of the grinding ball clearly showed that physical kinetics dominate the reaction rates in a ball-milling transformation. Attempts to interpret such kinetics in purely chemical terms risk misinterpretation of the results. Our results suggest that time-resolved in situ investigation of milling reactions is a promising way to fine-tune and optimise mechanochemical processes. T2 - ISIC 2023 CY - Glasgow, Scotland DA - 05.09.2023 KW - Mechanochemistry KW - Polymorphy KW - In situ PY - 2023 AN - OPUS4-59023 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Emmerling, Franziska T1 - Understanding mechanochemical reactions: Real-time insights and collaborative research N2 - Mechanochemistry emerges as a potent, environmentally friendly, and straightforward approach for crafting novel multicomponent crystal systems. Various milling parameters, including milling frequency, time, filling degree of the milling jar, ball diameter, vessel size, degree of milling ball filling, and material of jars, are recognized influencers on the mechanisms and rates of product formation. Despite the growing interest in mechanochemistry, there exists a gap in understanding the mechanistic aspects of mechanochemical reactivity and selectivity. To address this, diverse analytical methods and their combinations, such as powder X-ray diffraction, X-ray absorption spectroscopy, NMR, Raman spectroscopy, and thermography, have been developed for real-time, in situ monitoring of mechanochemical transformations. This discussion centers on our recent findings, specifically investigating the formation of (polymorphic) cocrystals and metal-organic frameworks. Through these studies, we aim to unravel the impact of milling parameters and reaction sequences on the formation mechanism and kinetics. Notably, in the mechanochemical chlorination reaction of hydantoin, normalizing kinetic profiles to the volume of the milling ball unequivocally demonstrates the conservation of milling reaction kinetics. In this ball-milling transformation, physical kinetics outweigh chemical factors in determining reaction rates. Attempting to interpret such kinetics solely through chemical terms poses a risk of misinterpretation. Our results highlight that time-resolved in situ investigations of milling reactions provide a novel avenue for fine-tuning and optimizing mechanochemical processes. T2 - Brimingham Green chemsistry CY - Birmingham, England DA - 08.09.2023 KW - Mechanochemistry KW - Green Chemistry PY - 2023 AN - OPUS4-59024 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Emmerling, Franziska T1 - Combination of complementary methods For in situ studies N2 - This talk explores the synergistic application of complementary synchrotron methods for in situ investigations, providing a comprehensive approach to enhance analytical capabilities in materials research and characterization. T2 - INSYNX - DEUTSCH-BRASILIANISCHER WORKSHOP ON BREAKING BOUNDARIES OF IN SITU SYNCHROTRON X-RAY METHODS CY - Sao Paulo, Brazil DA - 06.03.2023 KW - In situ KW - Synchrotron PY - 2023 AN - OPUS4-59025 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Emmerling, Franziska T1 - Understanding mechanochemical reactions: Real-time insights and collaborative research N2 - Mechanochemistry has become a compelling method for producing (new) molecule s and mate-rials, but the inner workings of the milling jars remain a fascinating mystery. Advances in this field include tailor-made chemical systems and real-time revelations using techniques such as XRD and Raman spectroscopy. This talk will discuss our recent progress in using X-ray diffraction and sophisticated spectros-copy to observe reactions in various material systems during ball milling and extrusion in real-time. The complexity of mechanochemical reactions spans multiple scales and requires a holistic ap-proach. The categorisation of reactions by investigative methods precedes the exploration of real-time analysis that reveals macroscopic processes using synchrotron techniques. During this exploration, one resounding realisation remains: We are on the threshold of under-standing. The complexity of mechanochemistry requires a collective effort, drawing on the ex-pertise of a diverse community. As we unravel the web of mechanochemical phenomena, we acknowledge the collaborative nature of this ongoing journey. T2 - CMCC Mechanochemistry Discussions CY - Online meeting DA - 21.09.2023 KW - Mechanochemistry KW - In situ PY - 2023 AN - OPUS4-59026 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Emmerling, Franziska T1 - Connecting the nodes: networks and networking N2 - This talk explores the intricate connections between scientists, focusing on the networking dynamics within the realm of metal-organic frameworks (MOFs). The study delves into the collaborative networks formed among scientists, shedding light on the synergistic relationships that contribute to advancements in MOF research. T2 - WINS School 2023 Frameworks and networks CY - Blossin, Germany DA - 02.06.2023 KW - Metal-organic frameworks PY - 2023 AN - OPUS4-59028 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -