TY - CONF A1 - Marquardt, Julien A1 - Frisch, M. A1 - Kiske, S. A1 - Bernicke, M. A1 - Raza, H. A1 - Pinna, N. A1 - Kraehnert, R. A1 - Emmerling, Franziska T1 - Investigating the morphology of nanostructured mixed metal oxides (Ir/TiOx) and its impact on the electrocatalytic OER-activity N2 - The electrocatalytic conversion of water into molecular hydrogen and oxygen under the utilization of excess renewable energies, such as wind power, photovoltaics and hydroelectric power is one possible pathway to establish a sustainable hydrogen economy. The obtained hydrogen is either stored and used in a fuel cell or consumed on-site in industrial applications. Water electrolysis systems (WES) are based on two half cell reactions, such as oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) which both proceed simultaneously. The OER suffers from slow reaction kinetics and thus limits the overall performance. The most promising compounds in acidic electrolysis are IrO2 and RuO2. Due to their rare abundance and extremely high price a wide use of acidic WES was prevented. Lowering the catalysts noble metal content by mixing iridium with titanium reduces the production costs. Thin films are produced by dip coating a solution of metal oxide precursors alongside with a polymer template dissolved in ethanol. The obtained samples are subsequently calcined to the remove the template and adjust crystallinity. Finally, an additional iridium deposition step was performed on the outer surface plane area. Understanding the influence of structural and morphological aspects on the OER-activity is beneficial to further optimize WES. The current presentation will thus give detailed insights to structural aspects obtained by Raman spectroscopy, small- and wide-angle X-ray scattering which are then combined with electrochemical parameters to deduce structure-activity relationships. T2 - Joint Polish-German Crystallographic Meeting 2020 CY - Wrocław, Poland DA - 24.02.2020 KW - nanostructured KW - electrocatalysis PY - 2020 AN - OPUS4-50664 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Baláž, M. A1 - Tešinský, M. A1 - Marquardt, Julien A1 - Škrobian, M. A1 - Daneu, N. A1 - Rajňák, M. A1 - Baláž, P. T1 - Synthesis of copper nanoparticles from refractory sulfides using a semi-industrial mechanochemical approach N2 - The large-scale mechanochemical reduction of binary sulfides chalcocite (Cu2S) and covellite (CuS) by elemental iron was investigated in this work. The reduction of Cu2S was almost complete after 360 min of milling, whereas in the case of CuS, a significant amount of non-reacted elemental iron could still be identified after 480 min. Upon application of more effective laboratory-scale planetary ball milling, it was possible to reach almost complete reduction of CuS. Longer milling leads to the formation of ternary sulfides and oxidation product, namely cuprospinel CuFe2O4. The rate constant calculated from the magnetometry measurements using a diffusion model for Cu2S and CuS reduction by iron in a large-scale mill is 0.056 min−0.5 and 0.037 min−0.5, respectively, whereas for the CuS reduction in a laboratory-scale mill, it is 0.1477 min−1. The nanocrystalline character of the samples was confirmed by TEM and XRD, as the produced Cu exhibited sizes up to 16 nm in all cases. The process can be easily scaled up and thus copper can be obtained much easier from refractory minerals than in traditional metallurgical approaches. KW - Mechanochemistry KW - Copper sulfides KW - Copper nanoparticles KW - Magnetometry KW - Oxidation PY - 2020 DO - https://doi.org/10.1016/j.apt.2019.11.032 VL - 31 IS - 2 SP - 782 EP - 791 PB - Elsevier B.V. AN - OPUS4-50665 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Heilmann, Maria A1 - Bienert, Ralf A1 - Prinz, Carsten A1 - Emmerling, Franziska T1 - Synthesis of bimetallic nickel nanoparticles as catalysts for the Sabatier reaction N2 - Nanoparticles (NP) have become important materials for a variety of chemical technologies. The enhanced surface-area-to-volume ratio of NPs, making them excellent for use as catalyst, in analytical assays, and for antimicrobial applications. Nickel NPs have exhibited immense potential as important catalyst for the Sabatier reaction, i.e. converting waste to energy via transformation of CO2 into CH4, and could replace the rare earth elements such as Ru, PT, or Rh. In this work we describe the solvothermal synthesis of monometallic and bimetallic nickel nanoparticles. Monodisperse monometallic Ni NPs were synthesized using Oleylamin as solvent and reducing agent. The nanoparticles were investigated using small angle scattering (SAXS), scanning transmission electron microscopy (STEM) and energy dispersive X-ray spectroscopy (EDX), showing that the NPs are stable while the surface is not entirely covered. However, Ni has a high propensity to undergo oxidation, and becoming deactivated by coke formation. Hence, we further explore the preparation of bimetallic NPs, where a second metal is added to stabilize the Ni. Bimetallic Cu-Ni NPs were synthesized by simultaneous solvothermal reduction. These bimetallic NPs exhibit excellent catalytic properties are promising candidates to be used as catalysts for efficient energy storage. T2 - 31. Tag der Chemie 2019 CY - Berlin, Germany DA - 11.07.2019 KW - Nanoparticles KW - Catalysis KW - Synthesis PY - 2019 AN - OPUS4-50171 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Heilmann, Maria A1 - Bienert, Ralf A1 - Prinz, Carsten A1 - Emmerling, Franziska T1 - Synthesis of bimetallic nickel nanoparticles for catalysis N2 - We present the synthesis of monodisperse monometallic Ni nanoparticles (NPs) and bimetallic NiCu respectively NiCo NPs. The NPs were investigated using SAXS, STEM, EDX, and XANES, showing that the NPs are size tunable and stable while the surface is not entirely covered. Nickel NPs have exhibited immense potential as important catalyst for the Sabatier reaction, i.e. converting waste to energy via transformation of CO2 into CH4. T2 - 11th Joint BER II and BESSY II User Meeting CY - Berlin, Germany DA - 04.12.2019 KW - Nanoparticles KW - Catalysis KW - Synthesis PY - 2019 AN - OPUS4-50172 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Heilmann, Maria A1 - Bienert, Ralf A1 - Prinz, Carsten A1 - Emmerling, Franziska T1 - Synthesis of bimetallic nickel nanoparticles as catalysts for the Sabatier reaction N2 - Nanoparticles (NPs) have become important materials for a variety of chemical technologies. The enhanced surface-area-to-volume ratio of NPs, making them excellent for use as catalyst, in analytical assays, and for antimicrobial applications. Nickel NPs have exhibited immense potential as important catalyst for the Sabatier reaction, i.e. converting waste to energy via transformation of CO2 into CH4, and could replace the rare earth elements such as Ru, PT, or Rh. In this work we describe the solvothermal synthesis of monometallic and bimetallic nickel nanoparticles. Monodisperse monometallic Ni NPs were synthesized using Oleylamin as solvent and reducing agent. The nanoparticles were investigated using small angle scattering (SAXS), scanning transmission electron microscopy (STEM) and energy dispersive X-ray spectroscopy (EDX), showing that the NPs are stable while the surface is not entirely covered. However, Ni has a high propensity to undergo oxidation, and becoming deactivated by coke formation. Hence, we further explore the preparation of bimetallic NPs, where a second metal is added to stabilize the Ni. Bimetallic Cu-Ni NPs were synthesized by simultaneous solvothermal reduction. These bimetallic NPs exhibit excellent catalytic properties are promising candidates to be used as catalysts for efficient energy storage. T2 - Adlershofer Forschungsforum 2019 CY - Berlin, Germany DA - 11.11.2019 KW - Nanoparticles KW - Catalysis KW - Synthesis PY - 2019 AN - OPUS4-50173 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Haferkamp, Sebastian A1 - Emmerling, Franziska A1 - Akhmetova, Irina A1 - Kulla, Hannes A1 - Rademann, K. T1 - Insights into the mechanochemical Knoevenagel condensation N2 - Mechanochemistry paves the way to simple, fast, and green syntheses, but there is a lack in understanding of the underlying mechanisms. Here, we present a universal strategy for simultaneous real-time in situ analysis, combining X-ray diffraction, Raman spectroscopy, and thermography. T2 - Bessy User Meeting 2019 CY - Berlin, Germany DA - 05.12.2019 KW - Mechanochemistry PY - 2019 AN - OPUS4-50122 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Emmerling, Franziska T1 - Ein Blick in die Welt der Mechanochemie N2 - Perhaps due in no small part to its historical mystique, mechanochemistry has been shrowded in relative obscurity for quite some time. The successes of mechanochemistry in organic synthesis have often been curtailed by a fundamentally limited mechanistic understanding. Lately, however, the community has made great strides towards understanding the fundamentals, as well as large steps forward regarding industrially significant scale-up via twin-screw extrusion. A variety of recent work has traded in some of mechanochemistry’s mystique for simple, straight-forward chemical guidelines. T2 - Seminar Anorganische Chemie Universität Kiel CY - Kiel, Germany DA - 22.10.19 KW - Mechanochemistry KW - XRD PY - 2019 AN - OPUS4-50134 LA - mul AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Emmerling, Franziska T1 - Shaken or levitated? A time resolved perspective on unconventional crystallization N2 - This Outlook provides a brief overview of the recent achievements and opportunities created by acoustic levitation and mechanochemistry, including access to materials, molecular targets, and synthetic strategies that are difficult to access by conventional means. T2 - Vortragsreihe Analytik Merck CY - Darmstadt, Germany DA - 18.11.19 KW - Levitation KW - Acoustic levitation KW - X-ray and electron diffraction PY - 2019 AN - OPUS4-50135 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Emmerling, Franziska T1 - May the force be with you - in situ investigation of mechanochemical reactions N2 - The past decade has seen a reawakening of solid-state to chemical synthesis, driven by the search for new, cleaner synthetic methodologies. Mechanochemistry has advanced to a widely applicable technique. T2 - SALSA's "Make and Measure 2019 CY - Berlin, Germany DA - 25.10.2019 KW - Mechanochemistry KW - Metal–organic frameworks PY - 2019 AN - OPUS4-50138 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lee, C. A1 - Inutan, E. D. A1 - Chen, J. L. A1 - Mukeku, M. M. A1 - Weidner, Steffen A1 - Trimpin, S. A1 - Ni, C.-K. T1 - Toward understanding the ionization mechanism of matrix‐assisted ionization using mass spectrometry experiment and theory N2 - Matrix‐assisted ionization (MAI) mass spectrometry does not require voltages, a laser beam, or added heat to initiate ionization, but it is strongly dependent on the choice of matrix and the vacuum conditions. High charge state distributions of nonvolatile analyte ions produced by MAI suggest that the ionization mechanism may be similar to that of electrospray ionization (ESI), but different from matrix‐assisted laser desorption/ionization (MALDI). While significant information is available for MAI using mass spectrometers operating at atmospheric and intermediate pressure, little is known about the mechanism at high vacuum. Eleven MAI matrices were studied on a high‐vacuum time‐of‐flight (TOF) mass spectrometer using a 266 nm pulsed laser beam under otherwise typical MALDI conditions. Detailed comparisons with the commonly used MALDI matrices and theoretical prediction were made for 3‐nitrobenzonitrile (3‐NBN), which is the only MAI matrix that works well in high vacuum when irradiated with a laser. Screening of MAI matrices with good absorption at 266 nm but with various degrees of volatility and laser energies suggests that volatility and absorption at the laser wavelength may be necessary, but not sufficient, criteria to explain the formation of multiply charged analyte ions. 3‐NBN produces intact, highly charged ions of nonvolatile analytes in high‐vacuum TOF with the use of a laser, demonstrating that ESI‐like ions can be produced in high vacuum. Theoretical calculations and mass spectra suggest that thermally induced proton transfer, which is the major ionization mechanism in MALDI, is not important with the 3‐NBN matrix at 266 nm laser wavelength. 3‐NBN:analyte crystal morphology is, however, important in ion generation in high vacuum. The 3‐NBN MAI matrix produces intact, highly charged ions of nonvolatile compounds in high‐vacuum TOF mass spectrometers with the aid of ablation and/or heating by laser irradiation, and shows a different ionization mechanism from that of typical MALDI matrices. KW - Ionization KW - MALDI-TOF MS KW - Mechanism PY - 2021 DO - https://doi.org/10.1002/rcm.8382 VL - 35 IS - 51 SP - e8382 PB - John Wiley & Sons AN - OPUS4-49209 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Emmerling, Franziska T1 - Mechanochemistrry - a time resolved perspective on unconventional crystallization N2 - Green chemsistry apporoach for the synthesis of metal organic frameworks. T2 - IFW BAM Workshop CY - Berlin, Germany DA - 25.11.2019 KW - Mechanochemistry KW - XRD KW - Metal-organic-frameworks PY - 2019 AN - OPUS4-50110 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Linberg, Kevin A1 - Ali, Naveed A1 - Etter, M. A1 - Michalchuk, Adam A1 - Rademann, K. A1 - Emmerling, Franziska T1 - A Comparative Study of Ionic Cocrystals N2 - The mechanochemical formation of the ionic cocrystals of glucose (Glc) and sodium salts is presented. Products are formed by co-milling Glc with three sodium salts (NaCl, NaBr, NaI). The reaction pathways of the three ionic cocrystals were investigated using our tandem approach comprising a combination of in situ synchrotron powder X-ray diffraction and Raman spectroscopy. T2 - HZB User Meeting 2019 CY - Berlin, Germany DA - 04.12.2019 KW - In situ KW - Co-crystal KW - Mechanochemistry KW - Glucose PY - 2019 AN - OPUS4-50047 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Diehn, S. A1 - Zimmermann, B. A1 - Tafintseva, V. A1 - Seifert, S. A1 - Bagcioglu, M. A1 - Ohlson, M. A1 - Weidner, Steffen A1 - Fjellheim, S. A1 - Kohler, A. A1 - Kneipp, Janina T1 - Combining Chemical Information From Grass Pollen in Multimodal Characterization N2 - The analysis of pollen chemical composition is important to many fields, including agriculture, plant physiology, ecology, allergology, and climate studies. Here, the potential of a combination of different spectroscopic and spectrometric methods regarding the characterization of small biochemical differences between pollen samples was evaluated using multivariate statistical approaches. Pollen samples, collected from three populations of the grass Poa alpina, were analyzed using Fourier-transform infrared (FTIR) spectroscopy, Raman spectroscopy, surface enhanced Raman scattering (SERS), and matrix assisted laser desorption/ionization mass spectrometry (MALDI-TOF MS). The variation in the sample set can be described in a hierarchical framework comprising three populations of the same grass species and four different growth conditions of the parent plants for each of the populations. Therefore, the data set can work here as a model system to evaluate the classification and characterization ability of the different spectroscopic and spectrometric methods. ANOVA Simultaneous Component Analysis (ASCA) was applied to achieve a separation of different sources of variance in the complex sample set. Since the chosen methods and sample preparations probe different parts and/or molecular constituents of the pollen grains, complementary information about the chemical composition of the pollen can be obtained. By using consensus principal component analysis (CPCA), data from the different methods are linked together. This enables an investigation of the underlying global information, since complementary chemical data are combined. The molecular information from four spectroscopies was combined with phenotypical information gathered from the parent plants, thereby helping to potentially link pollen chemistry to other biotic and abiotic parameters. KW - Pollen KW - MALDI-TOF MS KW - FTIR KW - Raman KW - Multivariate analyses PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-504822 DO - https://doi.org/10.3389/fpls.2019.01788 VL - 10 SP - 1788 AN - OPUS4-50482 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sobina, E. A1 - Zimathies, Annett A1 - Prinz, Carsten A1 - Emmerling, Franziska A1 - de Santis Neves, R. A1 - Wang, H. A1 - Mizuno, K. A1 - Devoille, L. A1 - Steel, E. A1 - Ceyhan, A. A1 - Sadak, E. ED - Sobina, E. T1 - Final report of CCQM-K153 Measurement of Specific Adsorption A [mol/kg] of N-2 and Kr on nonporous SiO2 at LN temperature (to enable a traceable determination of the Specific Surface Area (BET) following ISO 9277) N2 - CCQM key comparison K-153 Measurement of Specific Adsorption A [mol/kg] of N-2 and Kr on nonporous SiO2 at LN temperature (to enable a traceable determination of the Specific Surface Area (BET) following ISO 9277) has been performed by the Surface Analysis Working Group (SAWG) of the Consultative Committee for Amount of Substance (CCQM). The objective of this key comparison is to compare the equivalency of the National Metrology Institutes (NMIs) and Designated Institutes (DIs) for the measurement of specific adsorption, BET specific surface area) of nonporous substances (sorbents, ceramics, catalytic agents, etc) used in advanced technology. In this key comparison, a commercial nonporous silicon dioxide was supplied as a sample. Eight NMIs participated in this key comparison, but only five NMI's have reported in time. All participants used a gas adsorption method, here nitrogen and (or) krypton adsorption at 77.3 K, for analysis according to the international standards ISO 15901-2 and 9277. In this key comparison, the degrees of equivalence uncertainties for specific adsorption nitrogen and krypton, BET specific surface area were established. KW - Nonporous SiO2 KW - Specific Adsorption of N-2 and Kr KW - BET specific surface area PY - 2019 DO - https://doi.org/10.1088/0026-1394/56/1A/08013 VL - 56 IS - 1A SP - 08013 PB - IOP publishing Ltd CY - Bristol, UK AN - OPUS4-50358 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kulla, Hannes A1 - Becker, C. A1 - Michalchuk, Adam A1 - Linberg, Kevin A1 - Paulus, B. A1 - Emmerling, Franziska T1 - Tuning the Apparent Stability of Polymorphic Cocrystals through Mechanochemistry N2 - Mechanochemistry has become a valuable method for the synthesis of new materials and molecules, with a particular strength for screening and preparing multicomponent crystals. In this work, two novel cocrystals of pyrazinamide (PZA) with pimelic acid (PA) were prepared mechanochemically. Their formation was monitored in real time by in situ synchrotron powder X-ray diffraction. Control over the polymorphic form was obtained through the selective choice of liquid additive via liquid assisted grinding. Slurry experiments and dispersion-corrected density functional theory calculations suggest that Form I is the thermodynamically stable form under ambient conditions. Upon aging, Form II converts to Form I. The stability of Form II upon aging was found to depend strongly on the milling duration, intensity, and material of the milling vessels. Longer or higher energy milling drastically increased the lifetime of the Form II product. For the first time, this work also demonstrates that the choice of milling jar can have a decisive effect on the aging stability of a bulk polymorphic powder. In contrast to material prepared in steel milling vessels, the preparation of Form II in Perspex (PMMA) vessels increased its lifetime 3-fold. These findings offer a new dimension to garnering control over mechanochemical cocrystallization and demonstrate the critical importance of the careful and timely ex situ screening of ball mill grinding reactions. This will be of importance for potential industrial applications of mechanochemical cocrystallization where understanding polymorph longevity is crucial for the development of a robust preparative protocol. KW - Physical and chemical processes KW - Organic compounds KW - Liquids KW - Materials KW - Stability PY - 2019 DO - https://doi.org/10.1021/acs.cgd.9b01158 VL - 19 IS - 12 SP - 7271 EP - 7279 PB - ACS Publications AN - OPUS4-50281 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rautenberg, Max A1 - Gernhard, M. A1 - Roth, C. A1 - Emmerling, Franziska T1 - Metal phosphonates as proton conductors and ORR catalysts N2 - Metal phosphonates are promising materials for applications in fuel cells, due to their high proton conductivity and higher chemical and thermal stability compared to the industry standard (e.g. Nafion®). Additionally, metal phosphonates are precursors to porous carbon materials with evenly distributed centers for ORR catalysis. As a fast and sustainable synthesis, mechanochemistry is the synthesis method of choice. Thorough characterization is carried out by XRD, MAS-NMR, XAS, BET, and DVS. T2 - 2nd European Workshop on Metal Phosphonates CY - Berlin, Germany DA - 24.09.2019 KW - Phosphonates KW - Proton cunductor KW - Oxygen reduction reaction KW - Catalysis KW - Mechanochemistry PY - 2019 AN - OPUS4-50257 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Heilmann, Maria A1 - Kulla, Hannes A1 - Prinz, Carsten A1 - Bienert, Ralf A1 - Reinholz, Uwe A1 - de Oliveira Guilherme Buzanich, Ana A1 - Emmerling, Franziska T1 - Advances in Nickel Nanoparticle Synthesis via Oleylamine Route N2 - Nickel nanoparticles are an active research area due to their multiple applications as catalysts in different processes. A variety of preparation techniques have been reported for the synthesis of these nanoparticles, including solvothermal, microwave-assisted, and emulsion techniques. The well-studied solvothermal oleylamine synthesis route comes with the drawback of needing standard air-free techniques and often space-consuming glassware. Here, we present a facile and straightforward synthesis method for size-controlled highly monodisperse nickel nanoparticles avoiding the use of, e.g., Schlenk techniques and space-consuming labware. The nanoparticles produced by this novel synthetic route were investigated using small-angle X-ray scattering, transmission electron microscopy, X-ray diffraction, and X-ray spectroscopy. The nanoparticles were in a size range of 4–16 nm, show high sphericity, no oxidation, and no agglomeration after synthesis. KW - Nanoparticle synthesis KW - Nickel nanoparticles KW - SAXS KW - TEM KW - XAS PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-507531 DO - https://doi.org/10.3390/nano10040713 VL - 10 IS - 4 SP - 713 PB - MDPI AN - OPUS4-50753 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gao, S. A1 - Hou, J. A1 - Deng, Z. A1 - Wang, T. A1 - Beyer, Sebastian A1 - de Oliveira Guilherme Buzanich, Ana A1 - Richardson, J. J. A1 - Rawal, A. A1 - Seidel, R. A1 - Zulkifli, M. Y. A1 - Li, W. A1 - Bennett, T. D. A1 - Cheetham, A. K. A1 - Liang, K. T1 - Improving the Acidic Stability of Zeolitic Imidazolate Frameworks by Biofunctional Molecules N2 - Zeolitic imidazolate frameworks (ZIFs) have been widely investigated for their use in separation, gas adsorption, catalysis, and biotechnology. Their practical applications, however, can be hampered by their structural instability in humid acidic conditions. Here, guided by density functional theory calculations, we demonstrate that the acidic stability of two polymorphic ZIFs (i.e., ZIF-8 and ZIF-L) can be enhanced by the incorporation of functional groups on polypeptides or DNA. A range of complementary synchrotron investigations into the local chemical structure and bonding environment suggest that the enhanced acidic stability arises from the newly established coordinative interactions between the Zn centers and the inserted carboxylate (for polypeptides) or phosphate (for DNA) groups, both of which have lower pKas than the imidazolate ligand. With functional biomolecular homologs (i.e., enzymes), we demonstrate a symbiotic stability reinforcement effect, i.e., the encapsulated biomolecules stabilize the ZIF matrix while the ZIF exoskeleton protects the enzyme from denaturation. KW - Zeolitic Imidazolate Frameworks KW - Biofunctional Molecules KW - X-ray Absorption Spectroscopy PY - 2019 DO - https://doi.org/10.1016/j.chempr.2019.03.025 VL - 5 IS - 6 SP - 1597 EP - 1608 PB - Elsevier Inc. AN - OPUS4-48702 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Linberg, Kevin A1 - Ali, Naveed Zafar A1 - Etter, M. A1 - Michalchuk, Adam A1 - Rademann, K. A1 - Emmerling, Franziska T1 - A Comparative Study of the Ionic Cocrystals NaX (α-d-Glucose)2 (X = Cl, Br, I) N2 - The mechanochemical formation of the ionic cocrystals of glucose (Glc) and sodium salts Glc2NaCl·H2O (1) and Glc2NaX (X = Br (2), I (3)) is presented. Products are formed by co-milling Glc with three sodium salts (NaCl, NaBr, NaI). The ionic cocrystals were obtained under both neat grinding and liquid-assisted grinding conditions, the later found to accelerate the reaction kinetics. The crystal structures of the ionic cocrystals (2) and (3) were solved from powder X-ray diffraction data. The structure solution contrasts with the structure of Glc2NaCl·H2O (1) where the electron density at three halide crystallographic sites is modeled as of being the intermediate between water molecule and a chloride ion. The reaction pathways of the three ionic cocrystals were investigated in real time using our tandem approach comprising a combination of in situ synchrotron powder X-ray diffraction and Raman spectroscopy. The results indicate the rapid formation of each cocrystal directly from their respective starting materials without any intermediate moiety formation. The products were further characterized by DTA-TG and elemental analysis. KW - In situ KW - Co-crystal KW - Mechanochemistry KW - Glucose PY - 2019 DO - https://doi.org/10.1021/acs.cgd.8b01929 VL - 19 IS - 8 SP - 4293 EP - 4299 PB - ACS Publications AN - OPUS4-48781 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ali, Naveed Zafar A1 - Campbell, B. J. A1 - Jansen, M. T1 - Topotactic, pressure-driven, diffusion-less phasetransition of layered CsCoO2to a stuffedcristobalite-type configuration N2 - CsCoO2, featuring a two-dimensional layered architecture of edge- and vertex-linked CoO4tetrahedra, is subjected to a temperature-driven reversible second-order phase transformation at 100 K, which corresponds to a structuralrelaxation with concurrent tilting and breathing modes of edge-sharing CoO4tetrahedra. In the present investigation, it was found that pressure induces a phase transition, which encompasses a dramatic change in the connectivity ofthe tetrahedra. At 923 K and 2 GPa, beta-CsCoO2 undergoes a first-order phasetransition to a new quenchable high-pressure polymorph,alpha-CsCoO2. It is built up of a three-dimensional cristobalite-type network of vertex-sharing CoO4 tetrahedra. According to a Rietveld refinement of high-resolution powderdiffraction data, the new high-pressure polymorph gamma-CsCoO2 crystallizes in the tetragonal space groupI41/amd:2 (Z= 4) with the lattice constants a= 5.8711 (1) and c= 8.3214 (2) A, corresponding to a shrinkage in volume by 5.7% compared with the ambient-temperature and atmospheric pressure-CsCoO2polymorph.The pressure-induced transition (beta>gamma) is reversible;-CsCoO2 stays metastable under ambient conditions, but transforms back to the-CsCoO2structure upon heating to 573 K. The transformation pathway revealed isremarkable in that it is topotactic, as is demonstrated through a clean displacive transformation track between the two phases that employs the symmetry oftheir common subgroupPb21a(alternative setting of space group No. 29 that matches the conventional-phase cell). KW - Structures under extreme conditions KW - Topotactic phase transitions KW - Transformation pathways KW - Oxocobaltates KW - Cristobalite frameworks PY - 2019 DO - https://doi.org/10.1107/S2052520619008436 SN - 2052-5206 VL - 75 IS - 4 SP - 704 EP - 710 PB - International Union of Crystallography AN - OPUS4-48782 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -