TY - VIDEO A1 - Pauw, Brian Richard T1 - "Ultima Ratio": Multi-scale, high-resolution 3D-FFT scattering pattern simulations N2 - This talk highlights a proof-of-concept that demonstrates the ability to calculate high-resolution Fourier transforms. These can be combined with multi-scale modeling to simulate scattering over a wide range, from small-angle scattering to XRD and PDF. The preprint documenting this is available on the ArXiv here: https://doi.org/10.48550/arXiv.2303.13435 The Jupyter notebook, VASP calculation details and MOUSE measured scattering patterns are available from this Zenodo repository: https://dx.doi.org/10.5281/zenodo.7764045 KW - Video KW - Simulation KW - High-resolution KW - Fourier Transform KW - 3D FFT KW - Nanomaterial KW - Metal organic framework KW - MOF KW - SAXS KW - XRD KW - PDF KW - X-ray diffraction KW - Pair distribution function KW - Small-angle X-ray scattering PY - 2023 UR - https://www.youtube.com/watch?v=lEApkOqR5e8 PB - YouTube, LLC CY - San Bruno, CA, USA AN - OPUS4-57212 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Pauw, Brian Richard A1 - Smales, Glen Jacob T1 - Electric Safety Interlock N2 - This interlock is designed to prevent electrical shock from high voltage (>60V) equipment. While the general safety interlock can be generically applied, this particular example employs an external vacuum-activated switch. It is for safeguarding human operations inside a vacuum sample chamber while the chamber doors are open. The circuit is closed (output is active) when a sufficient level of vacuum is reached, i.e. when all accessible openings are necessarily closed. The initial application is to interrupt power to a 220V, 250W heating cartridge (itself mounted inside a small sample holder with potentially exposed contacts) when the sample chamber is open. The external circuit can be modified to use different interlock mechanisms as needed. Note that the external interlock circuit is only a single circuit (with two signal lines) and thus is not protected against external shorts. To accomodate a range of safety interlocks, the 4-pin M12 connector is wired as follows: Pin 1 (Brown): +24V for power supply, max current 0.6A Pin 2 (White): Safety interlock system signal 1 (0 or 24V) Pin 3 (Blue) : Safety interlock system signal 2 (0 or 24V) Pin 4 (Black): 0V for power supply The safety is interlocked (output active) when both signal pins are set high (24V), with sufficient current to activate the two relays. Pin 1 and 4 can be used to power safety hardware (such as light curtains or proximity detectors) with 24VDC up to a current of 0.6A. A larger power supply can be installed when higher currents are needed, while staying within the current limits imposed by the wiring cross-section. KW - Electric Safety Interlock KW - MOUSE KW - 60-230V PY - 2023 DO - https://doi.org/10.6084/m9.figshare.22265920.v1 PB - Digital Science CY - Cambridge, MA, USA AN - OPUS4-57138 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Fritzsche, S. A1 - Weimann, Christiane A1 - Pauw, Brian Richard A1 - Sturm, Heinz T1 - 2PP-TestArtifact N2 - This repository contains a test artifact (TA), also called test structure, designed for two-photon polymerization (also known as Direct Laser Writing (DLW) or Two/Multi-photon lithography (2PA/MPA)). Test artifacts can be used to compare structures, to check options used by the slicer, check the state of the 2PP machine itself or to get a construction guidelines for a certain combination of power, velocity and settings. The associated paper can be found here: https://dx.doi.org/10.1088/1361-6501/acc47a General ideas behind the test artifact: 1. optimized for 2PP-DLW 2. should be fast and easy to analyse with optical microscopy or 3. scanning electron microscopy without tilt. 3. short time to fabricate 4. include a reasonable amount of different features 5. bulk and small structures on the substrate KW - Reference structure KW - Calibration structure KW - Test structure KW - Laser writing KW - Two-photon polymerization KW - 3D printing KW - Additive manufacturing KW - Microprinting KW - Multi-photon light structuring PY - 2023 DO - https://doi.org/10.6084/m9.figshare.22285204.v2 PB - Digital Science CY - Cambridge, MA, USA AN - OPUS4-57165 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pauw, Brian Richard A1 - Smales, Glen Jacob A1 - Breßler, Ingo A1 - Hahn, Marc Benjamin T1 - McSAS3: live demo of a Monte Carlo data analyis package for scattering studies N2 - McSAS3 is a refactored software package for fitting large batches of (X-ray or Neutron) scattering data. It uses a Monte-Carlo acceptance-rejection algorithm to optimize model parameters - ideal for analysis of size-disperse scatterers. The refactored code can exploit multiprocessing, traceably stores (multiple) results in the output file, and allows for re-histogramming of previous optimizations. Besides analysis of large batches, it can also be integrated in automated data processing pipelines. The live demonstration will show how to use the software, what its limitations are, and what outcomes can look like for batches of results. T2 - SAS Analysis Course 2023 CY - Didcot, UK DA - 05.06.2023 KW - Scattering KW - Software KW - Analysis KW - Demonstration KW - McSAS3 KW - MOUSE KW - Monte Carlo KW - Automated analysis PY - 2023 AN - OPUS4-57630 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Pauw, Brian Richard A1 - Laskina, Sofya A1 - Naik, Aakash Ashok A1 - Smales, Glen Jacob A1 - George, Janine A1 - Breßler, Ingo A1 - Benner, Philipp T1 - "Ultima Ratio": Simulating wide-range X-ray scattering and diffraction T2 - ArXiv N2 - We demonstrate a strategy for simulating wide-range X-ray scattering patterns, which spans the small- and wide scattering angles as well as the scattering angles typically used for Pair Distribution Function (PDF) analysis. Such simulated patterns can be used to test holistic analysis models, and, since the diffraction intensity is on the same scale as the scattering intensity, may offer a novel pathway for determining the degree of crystallinity. The "Ultima Ratio" strategy is demonstrated on a 64-nm Metal Organic Framework (MOF) particle, calculated from Q < 0.01 1/nm up to Q < 150 1/nm, with a resolution of 0.16 Angstrom. The computations exploit a modified 3D Fast Fourier Transform (3D-FFT), whose modifications enable the transformations of matrices at least up to 8000^3 voxels in size. Multiple of these modified 3D-FFTs are combined to improve the low-Q behaviour. The resulting curve is compared to a wide-range scattering pattern measured on a polydisperse MOF powder. While computationally intensive, the approach is expected to be useful for simulating scattering from a wide range of realistic, complex structures, from (poly-)crystalline particles to hierarchical, multicomponent structures such as viruses and catalysts. KW - X-ray KW - Simulation KW - 3D Fourier Transform KW - High resolution KW - XRD KW - SAXS KW - PDF KW - Total scattering KW - X-ray scattering KW - Metal organic framework KW - Electron density map KW - FFT PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-572067 DO - https://doi.org/10.48550/arXiv.2303.13435 VL - Cornell University SP - 1 EP - 12 PB - Ithaca, NY AN - OPUS4-57206 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pauw, Brian Richard A1 - Smales, Glen Jacob A1 - Anker, A. S. A1 - Annadurai, V. A1 - Balazs, D. M. A1 - Bienert, Ralf A1 - Bouwman, W. G. A1 - Breßler, Ingo A1 - Breternitz, J. A1 - Brok, E. S. A1 - Bryant, G. A1 - Clulow, A. J. A1 - Crater, E. R. A1 - De Geuser, F. A1 - Del Giudice, A. A1 - Deumer, J. A1 - Disch, S. A1 - Dutt, S. A1 - Frank, K. A1 - Fratini, E. A1 - Garcia, P. R. A. F. A1 - Gilbert, E. P. A1 - Hahn, Marc Benjamin A1 - Hallett, J. A1 - Hohenschutz, M. A1 - Hollamby, M. A1 - Huband, S. A1 - Ilavsky, J. A1 - Jochum, J. K. A1 - Juelsholt, M. A1 - Mansel, B. W. A1 - Penttilä, P. A1 - Pittkowski, R. K. A1 - Portale, G. A1 - Pozzo, L. D. A1 - Rochels, L. A1 - Rosalie, Julian M. A1 - Saloga, Patrick E. J. A1 - Seibt, S. A1 - Smith, A. J. A1 - Smith, G. N. A1 - Spiering, G. A. A1 - Stawski, Tomasz M. A1 - Taché, O. A1 - Thünemann, Andreas A1 - Toth, K. A1 - Whitten, A. E. A1 - Wuttke, J. T1 - The human factor: results of a small-angle scattering data analysis round robin JF - Journal of Applied Crystallography N2 - A round-robin study has been carried out to estimate the impact of the human element in small-angle scattering data analysis. Four corrected datasets were provided to participants ready for analysis. All datasets were measured on samples containing spherical scatterers, with two datasets in dilute dispersions and two from powders. Most of the 46 participants correctly identified the number of populations in the dilute dispersions, with half of the population mean entries within 1.5% and half of the population width entries within 40%. Due to the added complexity of the structure factor, far fewer people submitted answers on the powder datasets. For those that did, half of the entries for the means and widths were within 44 and 86%, respectively. This round-robin experiment highlights several causes for the discrepancies, for which solutions are proposed. KW - Round Robin KW - Data analysis KW - Small-angle scattering KW - Nanomaterials KW - Interlaboratory comparability KW - Nanostructure quantification KW - Methodology KW - MOUSE PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-587091 DO - https://doi.org/10.1107/S1600576723008324 VL - 56 IS - 6 SP - 1618 EP - 1629 PB - International Union of Crystallography (IUCr) AN - OPUS4-58709 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Pauw, Brian Richard A1 - Smales, Glen Jacob A1 - Anker, A. S. A1 - Balazs, D. M. A1 - Beyer, F. L. A1 - Bienert, Ralf A1 - Bouwman, W. G. A1 - Breßler, Ingo A1 - Breternitz, J. A1 - Brok, E. S. A1 - Bryant, G. A1 - Clulow, A. J. A1 - Crater, E. R. A1 - De Geuser, F. A1 - Giudice, A. D. A1 - Deumer, J. A1 - Disch, S. A1 - Dutt, S. A1 - Frank, K. A1 - Fratini, E. A1 - Gilbert, E. P. A1 - Hahn, Marc Benjamin A1 - Hallett, J. A1 - Hohenschutz, Max A1 - Hollamby, M. J. A1 - Huband, S. A1 - Ilavsky, J. A1 - Jochum, J. K. A1 - Juelsholt, M. A1 - Mansel, B. W. A1 - Penttilä, P. A1 - Pittkowski, R. K. A1 - Portale, G. A1 - Pozzo, L. D. A1 - Ricardo de Abreu Furtado Garcia, P. A1 - Rochels, L. A1 - Rosalie, Julian M. A1 - Saloga, P. E. J. A1 - Seibt, S. A1 - Smith, A. J. A1 - Smith, G. N. A1 - Annadurai, V. A1 - Spiering, G. A. A1 - Stawski, Tomasz A1 - Taché, O. A1 - Thünemann, Andreas A1 - Toth, K. A1 - Whitten, A. E. A1 - Wuttke, J. T1 - The human factor: results of a small-angle scattering data analysis Round Robin T2 - arXiv.org N2 - A Round Robin study has been carried out to estimate the impact of the human element in small-angle scattering data analysis. Four corrected datasets were provided to participants ready for analysis. All datasets were measured on samples containing spherical scatterers, with two datasets in dilute dispersions, and two from powders. Most of the 46 participants correctly identified the number of populations in the dilute dispersions, with half of the population mean entries within 1.5 % and half of the population width entries within 40 %, respectively. Due to the added complexity of the structure factor, much fewer people submitted answers on the powder datasets. For those that did, half of the entries for the means and widths were within 44 % and 86 % respectively. This Round Robin experiment highlights several causes for the discrepancies, for which solutions are proposed. KW - Round Robin KW - Sall-angle scattering KW - Nanostructure quantification KW - Nanostructure KW - SAXS KW - MOUSE KW - X-ray scattering KW - Size distribution KW - Nanoparticles PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-571342 DO - https://doi.org/10.48550/arXiv.2303.03772 SP - 1 EP - 23 PB - Cornell University CY - New York AN - OPUS4-57134 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fritzsche, Sven A1 - Pauw, Brian Richard A1 - Weimann, Christiane A1 - Sturm, Heinz T1 - First of its kind: a test artifact for direct laser writing JF - Measurement Science and Technology N2 - With femtosecond-laser direct writing (fs-LDW) maturing in all aspects as a manufacturing technology, a toolset for quality assurance must be developed. In this work we introduce a first of its kind test artifact. Test artifacts are standardized 3D models with specific geometric features to evaluate the performance of writing parameters. Test artifacts are already common in other 3D additive manufacturing technologies e.g. selective laser melting. The test artifact introduced in this work was developed in particular to accommodate the high geometrical resolution of fs-LDW structures and the limited possibilities to examine the resulting structure. Geometric accuracy, surface adhesion as well as confocal Raman spectroscopy results were considered when evaluating the design of the test artifact. We will explain the individual features and design considerations of our fs-LDW test artifact. The difference between two slicers, Cura and 3DPoli, and the implications on measured feature sizes and the general shape is quantified. The measured geometries are used to derive a general design guide for a specific combination of photoresists, laser power and scanning speed and to analyze the geometric accuracy of a structure produced using these guidelines. The shown test artifact is publicly available as STL file on GitHub (https://github.com/BAMresearch/2PP-TestArtifact) and in the supplement. KW - Laser direct writing KW - Multi photon lithography KW - Reference material KW - Raman spectroscopy KW - Confocal raman imaging KW - Slicers KW - Open data on zenodo PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-580951 DO - https://doi.org/10.1088/1361-6501/acc47a VL - 34 IS - 7 SP - 1 EP - 14 PB - IOP Science AN - OPUS4-58095 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -