TY - GEN A1 - Pauw, Brian Richard A1 - Smales, Glen Jacob T1 - Small-angle scattering data analysis round robin dataset - Original for participants N2 - These are four datasets that were made available to the participants of the Small-angle Scattering data analysis round robin. The intent was to find out how comparable results from different researchers are, who analyse exactly the same processed, corrected dataset. In this repository, there are: 1) a PDF document with more details for the study, 2) the datasets for people to try and fit, 3) an Excel spreadsheet to document the results. Datasets 1 and 2 were modified from: Deumer, Jerome, & Gollwitzer, Christian. (2022). npSize_SAXS_data_PTB (Version 5) [Data set]. Zenodo. https://doi.org/10.5281/zenodo.5886834 Datasets 3 and 4 were collected in-house on the MOUSE instrument. KW - Round robin KW - SAXS KW - Small angle scattering KW - SANS KW - X-ray KW - Neutron KW - Human factor KW - Data analysis KW - Data fitting KW - Human influence PY - 2023 DO - https://doi.org/10.5281/zenodo.7506365 PB - Zenodo CY - Geneva AN - OPUS4-56799 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pauw, Brian Richard A1 - Smales, Glen Jacob A1 - Anker, A. S. A1 - Annadurai, V. A1 - Balazs, D. M. A1 - Bienert, Ralf A1 - Bouwman, W. G. A1 - Breßler, Ingo A1 - Breternitz, J. A1 - Brok, E. S. A1 - Bryant, G. A1 - Clulow, A. J. A1 - Crater, E. R. A1 - De Geuser, F. A1 - Del Giudice, A. A1 - Deumer, J. A1 - Disch, S. A1 - Dutt, S. A1 - Frank, K. A1 - Fratini, E. A1 - Garcia, P. R. A. F. A1 - Gilbert, E. P. A1 - Hahn, Marc Benjamin A1 - Hallett, J. A1 - Hohenschutz, M. A1 - Hollamby, M. A1 - Huband, S. A1 - Ilavsky, J. A1 - Jochum, J. K. A1 - Juelsholt, M. A1 - Mansel, B. W. A1 - Penttilä, P. A1 - Pittkowski, R. K. A1 - Portale, G. A1 - Pozzo, L. D. A1 - Rochels, L. A1 - Rosalie, Julian M. A1 - Saloga, Patrick E. J. A1 - Seibt, S. A1 - Smith, A. J. A1 - Smith, G. N. A1 - Spiering, G. A. A1 - Stawski, Tomasz M. A1 - Taché, O. A1 - Thünemann, Andreas A1 - Toth, K. A1 - Whitten, A. E. A1 - Wuttke, J. T1 - The human factor - Results of a small-angle scattering data analysis round robin N2 - A round-robin study has been carried out to estimate the impact of the human element in small-angle scattering data analysis. Four corrected datasets were provided to participants ready for analysis. All datasets were measured on samples containing spherical scatterers, with two datasets in dilute dispersions and two from powders. Most of the 46 participants correctly identified the number of populations in the dilute dispersions, with half of the population mean entries within 1.5% and half of the population width entries within 40%. Due to the added complexity of the structure factor, far fewer people submitted answers on the powder datasets. For those that did, half of the entries for the means and widths were within 44 and 86%, respectively. This round-robin experiment highlights several causes for the discrepancies, for which solutions are proposed. KW - Round Robin KW - Data analysis KW - Small-angle scattering KW - Nanomaterials KW - Interlaboratory comparability KW - Nanostructure quantification KW - Methodology KW - MOUSE PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-587091 DO - https://doi.org/10.1107/S1600576723008324 SN - 1600-5767 VL - 56 IS - 6 SP - 1618 EP - 1629 PB - Wiley-Blackwell CY - Oxford AN - OPUS4-58709 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - INPR A1 - Pauw, Brian Richard A1 - Smales, Glen Jacob A1 - Anker, A. S. A1 - Balazs, D. M. A1 - Beyer, F. L. A1 - Bienert, Ralf A1 - Bouwman, W. G. A1 - Breßler, Ingo A1 - Breternitz, J. A1 - Brok, E. S. A1 - Bryant, G. A1 - Clulow, A. J. A1 - Crater, E. R. A1 - De Geuser, F. A1 - Giudice, A. D. A1 - Deumer, J. A1 - Disch, S. A1 - Dutt, S. A1 - Frank, K. A1 - Fratini, E. A1 - Gilbert, E. P. A1 - Hahn, Marc Benjamin A1 - Hallett, J. A1 - Hohenschutz, Max A1 - Hollamby, M. J. A1 - Huband, S. A1 - Ilavsky, J. A1 - Jochum, J. K. A1 - Juelsholt, M. A1 - Mansel, B. W. A1 - Penttilä, P. A1 - Pittkowski, R. K. A1 - Portale, G. A1 - Pozzo, L. D. A1 - Ricardo de Abreu Furtado Garcia, P. A1 - Rochels, L. A1 - Rosalie, Julian M. A1 - Saloga, P. E. J. A1 - Seibt, S. A1 - Smith, A. J. A1 - Smith, G. N. A1 - Annadurai, V. A1 - Spiering, G. A. A1 - Stawski, Tomasz A1 - Taché, O. A1 - Thünemann, Andreas A1 - Toth, K. A1 - Whitten, A. E. A1 - Wuttke, J. T1 - The human factor - Results of a small-angle scattering data analysis round robin N2 - A Round Robin study has been carried out to estimate the impact of the human element in small-angle scattering data analysis. Four corrected datasets were provided to participants ready for analysis. All datasets were measured on samples containing spherical scatterers, with two datasets in dilute dispersions, and two from powders. Most of the 46 participants correctly identified the number of populations in the dilute dispersions, with half of the population mean entries within 1.5 % and half of the population width entries within 40 %, respectively. Due to the added complexity of the structure factor, much fewer people submitted answers on the powder datasets. For those that did, half of the entries for the means and widths were within 44 % and 86 % respectively. This Round Robin experiment highlights several causes for the discrepancies, for which solutions are proposed. KW - Round robin KW - Sall-angle scattering KW - Nanostructure quantification KW - Nanostructure KW - SAXS KW - MOUSE KW - X-ray scattering KW - Size distribution KW - Nanoparticles PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-571342 DO - https://doi.org/10.48550/arXiv.2303.03772 SP - 1 EP - 23 PB - Cornell University CY - Ithaca, NY AN - OPUS4-57134 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Pauw, Brian Richard A1 - Smales, Glen Jacob A1 - Moeez, A. A1 - Hörmann, Anja A1 - Breßler, Ingo T1 - Example configurations and test cases for the Python HDF5Translator framework. N2 - This is a set of use examples for the HDF5Translator framework. This framework lets you translate measurement files into a different (e.g. NeXus-compatible) structure, with some optional checks and conversions on the way. For an in-depth look at what it does, there is a blog post here. The use examples provided herein are each accompanied by the measurement data necessary to test and replicate the conversion. The README.md files in each example show the steps necessary to do the conversion for each. We encourage those who have used or adapted one or more of these exampes to create their own conversion, to get in touch with us so we may add your example to the set. KW - Measurement data conversion KW - Data conversion KW - HDF5 KW - NeXus KW - NXsas KW - Framework KW - Python PY - 2024 DO - https://doi.org/10.5281/zenodo.10925971 PB - Zenodo CY - Geneva AN - OPUS4-59796 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Pauw, Brian Richard A1 - Smales, Glen Jacob A1 - Rosalie, Julian T1 - Small-angle scattering data analysis round robin - Anonymized results, figures and Jupyter notebook N2 - The intent of this round robin was to find out how comparable results from different researchers are, who analyse exactly the same processed, corrected dataset. This zip file contains the anonymized results and the jupyter notebook used to do the data processing, analysis and visualisation. Additionally, TEM images of the samples are included. KW - Round robin KW - Small-angle scattering KW - Data analysis PY - 2023 DO - https://doi.org/10.5281/zenodo.7509710 PB - Zenodo CY - Geneva AN - OPUS4-56803 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - INPR A1 - Pauw, Brian Richard A1 - Smith, A. J. A1 - Snow, T. A1 - Shebanova, O. A1 - Sutter, J. P. A1 - Ilavsky, J. A1 - Hermida-Merino, D. A1 - Smales, Glen Jacob A1 - Terrill, N. J. A1 - Thünemann, Andreas A1 - Bras, W. T1 - Extending SAXS instrument ranges through addition of a portable, inexpensive USAXS module N2 - Ultra-SAXS can enhance the capabilities of existing SAXS/WAXS beamlines and laboratory instruments. A compact Ultra-SAXS module has been developed, which extends the measurable q-range with 0:0015 < q 1/nm) < 0:2, allowing structural dimensions between 30 < D(nm) < 4000 to be probed in addition to the range covered by a high-end SAXS/WAXS instrument. By shifting the module components in and out on their respective motor stages, SAXS/WAXS measurements can be easily and rapidly interleaved with USAXS measurements. KW - Small-angle scattering PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-504867 DO - https://doi.org/10.48550/arXiv.1904.00080 SN - 2331-8422 SP - 1 EP - 25 PB - Cornell University CY - Ithaca, NY AN - OPUS4-50486 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pauw, Brian Richard A1 - Smith, A. J. A1 - Snow, T. A1 - Shebanova, O. A1 - Sutter, J. P. A1 - Ilavsky, J. A1 - Hermida-Merino, D. A1 - Smales, Glen Jacob A1 - Terrill, N. J. A1 - Thünemann, Andreas A1 - Bras, W. T1 - Extending synchrotron SAXS instrument ranges through addition of a portable, inexpensive USAXS module with vertical rotation axes N2 - Ultra-SAXS can enhance the capabilities of existing synchrotron SAXS/WAXS beamlines. A compact ultra-SAXS module has been developed, which extends the measurable q-range with 0.0015 ≤ q (nm−1) ≤ 0.2, allowing structural dimensions in the range 30 ≤ D (nm) ≤ 4000 to be probed in addition to the range covered by a high-end SAXS/WAXS instrument. By shifting the module components in and out on their respective motor stages, SAXS/WAXS measurements can be easily and rapidly interleaved with USAXS measurements. The use of vertical crystal rotation axes (horizontal diffraction) greatly simplifies the construction, at minimal cost to efficiency. In this paper, the design considerations, realization and synchrotron findings are presented. Measurements of silica spheres, an alumina membrane, and a porous carbon catalyst are provided as application examples. KW - X-ray scattering KW - Microstructure KW - Instrumentation KW - SAXS KW - USAXS KW - Nanostructure KW - Combined techniques PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-524919 DO - https://doi.org/10.1107/S1600577521003313 SN - 1600-5775 VL - 28 IS - 3 SP - 824 EP - 833 PB - Wiley CY - Oxford AN - OPUS4-52491 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pauw, Brian Richard A1 - Smith, A. J. A1 - Snow, T. A1 - Terril, N. J. A1 - Thünemann, Andreas T1 - The modular small-angle X-ray scattering data correction sequence N2 - Data correction is probably the least favourite activity amongst users experimenting with small-angle X-ray scattering: if it is not done sufficiently well, this may become evident only during the data analysis stage, necessitating the repetition of the data corrections from scratch. A recommended comprehensive sequence of elementary data correction steps is presented here to alleviate the difficulties associated with data correction, both in the laboratory and at the synchrotron. When applied in the proposed order to the raw signals, the resulting absolute scattering cross section will provide a high degree of accuracy for a very wide range of samples, with its values accompanied by uncertainty estimates. The method can be applied without modification to any pinhole-collimated instruments with photon-counting direct-detection area detectors. KW - Small-angle X-ray scattering KW - SAXS KW - Accuracy KW - Methodology KW - Data correction PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-432114 DO - https://doi.org/10.1107/S1600576717015096 SN - 1600-5767 VL - 50 IS - 6 SP - 1800 EP - 1811 PB - International Union of Crystallography AN - OPUS4-43211 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Pauw, Brian Richard A1 - Szymoniak, Paulina T1 - Dataset and Jupyter worksheet interpreting the (results from) small- and wide-angle scattering data from a series of boehmite/epoxy nanocomposites. Accompanies the publication "Competition of nanoparticle-induced mobilization and immobilization effects on segmental dynamics of an epoxy-based nanocomposite" N2 - Dataset and Jupyter worksheet interpreting the (results from) small- and wide-angle scattering data from a series of boehmite/epoxy nanocomposites. Accompanies the publication "Competition of nanoparticle-induced mobilization and immobilization effects on segmental dynamics of an epoxy-based nanocomposite", by Paulina Szymoniak, Brian R. Pauw, Xintong Qu, and Andreas Schönhals. Datasets are in three-column ascii (processed and azimuthally averaged data) from a Xenocs NanoInXider SW instrument. Monte-Carlo analyses were performed using McSAS 1.3.1, other analyses are in the Python 3.7 worksheet. Graphics and result tables are output by the worksheet. KW - Small angle scattering KW - X-ray scattering KW - Nanocomposite KW - Polymer nanocomposite KW - Boehmite KW - Analysis KW - SAXS/WAXS PY - 2020 DO - https://doi.org/10.5281/zenodo.4321087 PB - Zenodo CY - Geneva AN - OPUS4-51829 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ryan, T. M. A1 - Xun, Y. A1 - Cowieson, N. P. A1 - Mata, J. P. A1 - Jackson, A. A1 - Pauw, Brian Richard A1 - Smith, A. J. A1 - Kirby, N. A1 - McGillivray, D. T1 - Combined pressure and temperature denaturation of ribonuclease A produces alternate dentatured states N2 - Protein folding, unfolding and misfolding have become critically important to a range of health and industry applications. Increasing high temperature and high pressure are used to control and speed up reactions. A number of studies have indicated that these parameters can have a large effecton protein structure and function. Here we describe the additive effects of these parameters on the small angle scattering behaviour of ribonuclease A. We find that alternate unfolded structures can be obtained with combined high pressure and temperature treatment of the protein. KW - Protein unfolding KW - Small angle scattering KW - Ribonuclease A KW - High pressure PY - 2016 DO - https://doi.org/10.1016/j.bbrc.2016.03.135 SN - 0006-291X IS - 473 SP - 834 EP - 839 PB - Academic Press Inc Elsevier Science CY - San Diego, USA AN - OPUS4-36052 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -