TY - GEN A1 - Schäferling, Michael T1 - Luminescent Imaging with Optical Chemical Sensors N2 - The intention of this compilation of articles was to introduce brand-new developments in the field of chemical imaging which have not been discussed in previous review articles. These include the design of new sensor nanomaterials based on photon uponversion crystals which convert near-infrared excitation light into sensor signals in the visible wavelength range highlighted by Christ and Schäferling. Sun, Ungerböck and Mayr describe the state of the art in oxygen imaging in microreactors and microfluidic devices. Miniaturized sensors for the imaging of oxygen, pH and temperature in microchips, microfluidic platforms and microbioreactors are reviewed by Pfeiffer and Nagl. Furthermore, Dmitriev and Papkovsky present a critical assessment of the applicability of probes for intracellular oxygen sensing. I hope these articles provide an interesting insight into advanced luminescent sensor materials and the applications of optical micro- and nanosensors in fluorescence imaging today and will be inspiring for the reader. Finally, I would like to thank all authors and referees for spending their time to enable this collection of articles. KW - Optical sensors KW - Fluorescence Imaging KW - Chemical sensors PY - 2015 UR - http://iopscience.iop.org/article/10.1088/2050-6120/3/4/040202/meta;jsessionid=B183C2EDCA3AC5AE7CFFDDF235128E5C.c2.iopscience.cld.iop.org DO - https://doi.org/10.1088/2050-6120/3/4/040202 VL - 2015/3 IS - 4 SP - 040202 EP - 040202 PB - IOP Publishing CY - Bristol, UK AN - OPUS4-37444 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Isleyen, A. A1 - Vogl, Jochen A1 - Skrundric, N. A1 - Jotanovic, A. A1 - Näykki, T. A1 - Horvat, M. A1 - Zoń, A. A1 - Bulska, E. A1 - Ochsenkuhn- Petropoulou, M. A1 - Can, S. Z. A1 - Bilsel, M. A1 - Hafner, K. A1 - Perkola, N. A1 - Ari, B. A1 - Tunç, M. A1 - Binici, B. T1 - Matrix reference materials for environmental analysis N2 - This project aims to develop capacity to produce certified reference materials (CRMs) for environmental analysis by transferring know-how between the partners and combining their skills to focus on environmental CRM production. The production process includes good manufacturing practices for processing materials, method development, the validation and application of homogeneity, stability and characterisation tests, the calculation of individual uncertainties (between-unit inhomogeneity, long term stability, characterisation) and combination of uncertainties to determine overall uncertainty of the matrix reference materials. An inter laboratory comparison registered as a EURAMET project is set as the ultimate project outcome, confirming the partners’ capabilities in applying newly acquired skills. T2 - 9th International Conference on Instrumental Methods of Analysis: Modern Trends and Applications CY - Kalamata, Greece DA - 20.09.2015 KW - Priority substances KW - Toxic metals KW - PFOS KW - PFA PY - 2015 AN - OPUS4-45252 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Isleyen, A. A1 - Vogl, Jochen A1 - Scrundric, N. A1 - Jotanovic, A. A1 - Näykki, T. A1 - Horvat, M. A1 - Zon, A. A1 - Bulska, E. A1 - Ochsenkühn-Petropoulou, M. A1 - Can, S.Z. A1 - Bilsel, M. A1 - Hafner, K. A1 - Perkola, N. A1 - Ari, B. A1 - Tunc, M. A1 - Binici, B. T1 - Matrix reference materials for environmental analysis N2 - Reliable analysis of chemical indicators in water, sediment and soil samples for the purpose of environmental pollution assessment poses one of the greatest analytical challenges, having in mind the complexity of sample matrix and low concentrations of pollutants. Organics (pesticides, PAHs, PCBs, etc.) and heavy metals (Hg, Cd, Ni, Pb and As) represent target parameters. Laboratories performing sampling and tests in this field regulated by respective EU directives [1], need strong support in terms of providing them with appropriate matrix CRMs enabling the process of quality control. NMIs and DIs with proven metrological capabilities for the production and certification of such materials are necessary for the provision of quality data. This project is aiming to develop capacity to produce CRMs for environmental analysis by transferring the theoretical and practical know-how between the partners and combining their skills to focus on environmental CRM production in accordance with ISO Guide 34 [2]. Production process includes good manufacturing practices for processing materials, method development and validation for homogeneity, stability and characterisation tests, characterisation of selected analytes together with additional information about matrix constituents, the calculation of individual uncertainties (between units inhomogeneity, long term stability, characterisation) and combination of uncertainties to determine overall uncertainty of the matrix reference materials. Inter laboratory comparison registered as EURAMET project is set as the ultimate project outcome, confirming the partners’ capabilities in applying newly acquired skills. T2 - 9th International Conference on Instrumental Methods of Analysis: Modern Trends and Applications CY - Kalamata, Greece DA - 20.09.2015 KW - PFOS KW - Environment KW - CRM KW - Soil KW - Heavy metal KW - PFOA PY - 2015 UR - http://www.ima2015.teikal.gr/images/IMA-2015_book_of_abstracts.pdf AN - OPUS4-38799 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Lehmann, Andreas A1 - Schneider, Rudolf T1 - Matrixeinflüsse bei der Bestimmung von Arzneimittelrückständen mittels LC-MS/MS in Oberflächenwasserproben bei Konzentrationen im ppt-Bereich N2 - Zur Bestimmung von Arzneimittelrückständen in Oberflächengewässern wird häufig die LC-MS/MS als Methode der Wahl eingesetzt. Obwohl sich dieses Nachweisverfahren durch eine hohe Empfindlichkeit und Selektivität auszeichnet, gibt es vor allem bei geringen Substanzkonzentrationen häufig störende Einflüsse durch Matrixeffekte. Diese Matrixeffekte können unterschiedliche Ursachen haben. Einige Matrixeffekte werden am Beispiel des Wirkstoffs Carbamazepin erläutert. Carbamazepin wird durch Kläranlagen nur partiell aus dem Abwasser entfernt und ist im Spurenbereich auch noch im Trinkwasser nachzuweisen. Wenn für die LC-MS/MS wasserbasierte Anteile in der mobilen Phase genutzt werden, befinden sich trotz Verwendung einer Labor-Reinstwasseranlage in der mobilen Phase noch kleinste Konzentrationen von Carbamazepin, welche einen Blindwert im unteren ppt-Bereich verursachen. Weitere Matrixeffekte treten durch die unterschiedliche Qualität der Oberflächenwasserproben auf. Koelutionen von weiteren Inhaltstoffen zeitgleich mit dem Zielanalyten führen zu einer Diskriminierung des Meßsignals. Verbindungen, die den gleichen Massenübergang bei nahezu identischer Retentionszeit zeigen, erfordern eine reproduzierbare chromatographische Vortrennung oder die Wahl einer alternativen HPLC-Säule. T2 - ANAKON 2015 CY - Graz, Austria DA - 23.03.2015 KW - Arzneimittelrückstände in Oberflächenwasserproben KW - HPLC-MS/MS KW - Massenspektrometrie KW - Carbamazepin PY - 2015 AN - OPUS4-35793 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - RPRT A1 - Bartholmai, Matthias A1 - Neumann, Patrick P. T1 - Multifunktionaler Sensor zur Überwachung von Untergrundspeichern durch flächendeckendes ortsaufgelöstes Monitoring von Gasen, Temperatur und Gefügebewegungen im Boden N2 - Untergrundspeicher für Roh- und Abfallstoffe gewinnen zunehmend an Bedeutung. Verwendet werden sie vor allem für Stoffe wie Erdgas, Wasserstoff, Erdöl und neuerdings auch für Kohlen-stoffdioxid (CO2). Diese Stoffe werden meist unter Druck in Kavernen- oder Porenspeichern einge-lagert. Die Speicher dienen einerseits zum Ausgleich von Ungleichgewichten zwischen Ange-bot/Förderung und Nachfrage/Verbrauch und zur Erhöhung der Versorgungssicherheit. Anderer-seits bestehen Konzepte Abfallstoffe oder Gefahrstoffe für die Umwelt (aktuell CO2-Speicherung) dort für lange Zeiträume einzulagern. Mit den Einlagerungsstoffen verbunden ist ein signifikantes Gefahrenpotential für Mensch und Umwelt, falls es trotz aller Sicherheitsmaßnahmen zu einem unkontrollierten Austritt dieser Stoffe kommen sollte. Daher kommt dem Monitoring derartiger Untergrundspeicher und den darüber befindlichen Bodenstrukturen eine extrem hohe Bedeutung zu. Ein hochaktuelles Beispiel, das die Überwachung entsprechender Bodenflächen fordert, ist die unterirdische CO2-Speicherung im Rahmen der CO2-Abscheidung und -Speicherung (Carbon Dioxide Capture and Storage, CCS). CCS gilt als wichtige Brückentechnologie der Energiewirtschaft und wird weltweit vorangetrieben, während die Sicherheit von Bevölkerung und Biosphäre noch kont-rovers diskutiert wird. Auch die EU setzt auf CCS und gibt in der EU-Richtlinie 2009/31 als Ziel-setzung bis 2015 vor, 15 Pilotanlagen zu bauen und in Betrieb zu nehmen. Als Bedingung für die Genehmigung der CO2-Speicherung ist explizit die Überwachung der Speicheranlagen durch Monito-ring vorgeschrieben, wobei die technisch besten Lösungen zum Einsatz kommen sollen. Das zu entwickelnde Messsystem adressiert neben den o.g. Anwendungsfeldern weitere, bei denen insbesondere die Emission von Gasen ein Risiko für Mensch und Umwelt darstellt oder wirt-schaftlichen Schaden verursachen kann. Hierzu zählen die Überwachung von Abfalldeponien, Ge-fahrgutlagerstätten, kontaminierten Altlastengebieten, Moor-, Torf-, Kohleflözen (präventive Branderkennung) und geodynamisch aktiven Regionen. Auch moderne Fördertechnologien, wie das Hot-Dry-Rock-Verfahren (HDR) zur Energiegewinnung durch Einpressen von überkritischem CO2 in den Erdkörper, das die Beweglichkeit eines Gases mit der Dichte einer Flüssigkeit kombiniert und Wärmeaustausch im Erdinneren bewirkt, bergen das Risiko unkontrollierter Gasemissionen und bedürfen der umfassenden Überwachung. KW - Verteilte Sensorik KW - Gassensor KW - CCS KW - Gasspeicher PY - 2015 DO - https://doi.org/10.2314/GBV:867138327 SP - 1 EP - 13 AN - OPUS4-43195 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Paul, Andrea A1 - Heilmann, M. T. A1 - Schmid, Thomas A1 - Maiwald, Michael T1 - Multivariate classification of Raman spectra from synthetic polymers – an approach for the improved detection of microplastics N2 - The increasing pollution of terrestrial and aquatic ecosystems with plastic debris, which leads to the accumulation of microscopic plastic particles of still unknown fate, is an upcoming problem of our time. In order to monitor the degree of contamination and to understand the underlying processes of degradation and internalization of plastic debris, analytical methods are urgently needed, which help to identify and quantify microplastics. Currently, expensive collected and purified materials enriched on filters are investigated by (micro) infrared spectroscopy (FTIR). Few studies using micro-Raman spectroscopy have been published as well. In contrast to FTIR, Raman spectroscopy can handle wet samples, but it suffers from interference of fluorescent materials. Both micro-FTIR- and micro-Raman, always include time consuming scanning and mapping procedures followed by the manual inspection and measurement of selected particles. T2 - 11. Kolloquium Arbeitskreis Prozessanalytik CY - Wien, Austria DA - 30.11.2015 KW - Prozessanalytik KW - Microplastics KW - Mikroplastik KW - Raman-Spektroskopie KW - Polymers KW - Multivariate classification PY - 2015 SP - 80 EP - 81 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-38847 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maiwald, Michael A1 - Schmid, Thomas T1 - Möglichkeiten zur Sonderprobenanalytik - Gemeinsame Aktivitäten mit dem Salsa-Applikationslabor der Humboldt Universität zu Berlin N2 - Troubleshooting Samples Analytics: Impurities in products: unexpected & unwanted occurrence, unknown identity, analytical method unclear, often various analytical methods, necessary, short response time important (< 1 d), benefits: allocation of its source within hours safes cost • Investigations planned, coordinated and documented by TSA team • Variety of analytical methods available T2 - 3. Analytic-City-Forum Berlin Adlershof CY - Berlin, Germany DA - 08.10.2015 KW - Troubleshooting Samples Analytics KW - TSA KW - Sonderprobenanalytik KW - Salsa KW - Applikationslabor PY - 2015 AN - OPUS4-36139 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fiedler Bremer, C. A1 - Scholz, R. A1 - Myslicki, S. A1 - Starke, P. A1 - Boller, C. A1 - Walther, F. A1 - Krause, Martin T1 - NDT-based characteriazation of timber and vulcanized fiber for civil infrastructure N2 - The paper addresses beech wood as well as vulcanized fiber and discusses the results obtained when using acoustic emission and thermography as non-destructive testing techniques along tensile and load increase fatigue tests to characterize the wooden material’s behavior under increasing fatigue loads to get enhanced information regarding the fatigue behavior of both materials. Reference is mainly made to the materials’ anisotropic and microstructural behavior and what implications this has with respect to the materials’ strength. The influence of moisture is discussed, as well as parameters that may deserve monitoring in the sense of structural health monitoring to be applied in timber structures in general. T2 - NDT-CE 2015 - International symposium non-destructive testing in civil engineering CY - Berlin, Germany DA - 15.09.2015 KW - Ermüdung KW - Belastungsversuch KW - Thermographie KW - ZfP KW - Timber PY - 2015 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-346377 UR - https://www.ndt.net/?id=18419 SN - 1435-4934 VL - 20 IS - 11 SP - 1 EP - 11 PB - NDT.net CY - Kirchwald AN - OPUS4-34637 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Aldrabee, A. A1 - Wriekat, A. A1 - Abu Saleem, K. A1 - Radtke, Martin T1 - Non-destructive SR-XRF analysis of ancient Mamluk-Ayyubid glazed pottery fragments from Karak Castle, Jordan N2 - Sixteen Ayyubid-Mamluk glazed pottery sherds were analyzed in order to identify and characterize the elemental composition to determine their provenance. The tested sherds were collected from the historical site of Karak Castle, southern Jordan. Chemical analysis for the sixteen samples has been carried out using Synchrotron Radiation X-ray Fluorescence Spectrometry (SR-XRF) Technique. Furthermore, the semiquantitative analysis of the elements Fe – Cu – Zn – Br – Rb – Sr – Y – Zr – Nb – Mo – Pd – Ag – Cd and Pb has been performed for the samples based on Principal Component Analysis (PCA) and hierarchical Cluster Analysis with Bray-Curtis in order to define grouping of different glazed pottery by obtaining information on their similarity and clustering. The results of chemical analysis provided persuasive evidence that the Karak Castle pottery sherds have at least three different sources of provenance. KW - BAMline KW - Karak Castle KW - Synchrotron KW - XRF PY - 2015 VL - 8 IS - 3 SP - 157 EP - 163 AN - OPUS4-43489 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Galindo Guerreros, Julio Cesar A1 - Mackens, S. A1 - Niederleithinger, Ernst A1 - Fechner, T. ED - Manzanal, D. ED - Sfriso, A. O. T1 - Numerical simulations of crosshole and downhole seismic measurements as quality control tool for jet grout columns N2 - Sealing and strengthening of the subsoil by injection is a major issue in the field of geotechnical engineering. This involves also jet grouting, which allows creating columns of grouted soil by eroding and mixing the in-situ soil with a thin cement suspension. A general difficulty of this method is to predict the column diameter and its material strength. Here, we present two-dimensional finite-difference numerical simulation results of a promising non-destructive quality assurance testing tool to evaluate the diameter of jet grout columns. This approach incorporates crosshole and downhole seismic measurements. Preliminary tests showed that this tool is applicable under real site conditions. T2 - 15th Pan-American Conference on Soil Mechanics and Geotechnical Engineering CY - Buenos Aires, Argentina DA - 15.11.2015 KW - Jet grout KW - Diameter KW - Seismic KW - Crosshole KW - Downhole KW - FD KW - Quality control tool PY - 2015 SN - 978-1-61499-603-3 SN - 978-1-61499-602-6 DO - https://doi.org/10.3233/978-1-61499-603-3-985 SP - Part 1, 985 EP - 992 PB - IOS Press AN - OPUS4-37706 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pascual, L. A1 - Baroja, I. A1 - Aznar, E. A1 - Sancenón, F. A1 - Marcos, M. Dolores A1 - Murguía, J.R. A1 - Amorós, P. A1 - Rurack, Knut A1 - Martínez-Mánez, Ramon T1 - Oligonucleotide-capped mesoporous silica nanoparticles as DNA-responsive dye delivery systems for genomic DNA detection N2 - New hybrid oligonucleotide-capped mesoporous silica nanoparticles able to detect genomic DNA were designed. KW - Gesteuerte Materialien KW - Mycoplasma KW - Mesoporöse Träger KW - Sonden KW - DNA PY - 2015 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-321357 UR - http://pubs.rsc.org/en/content/articlepdf/2015/cc/c4cc08306g DO - https://doi.org/10.1039/C4CC08306G SN - 0022-4936 SN - 0009-241x SN - 1359-7345 SN - 1364-548x VL - 51 IS - 8 SP - 1414 EP - 1416 PB - Royal Society of Chemistry CY - Cambridge AN - OPUS4-32135 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Guthausen, G. A1 - Zientek, Nicolai A1 - Maiwald, Michael A1 - Dalitz, F. T1 - Online measurements in a bypass: challenges and possibilities N2 - The design of sample flow cells, commonly used in online analytics and especially for medium resolution NMR spectroscopy (MR-NMR) in low magnetic fields, was experimentally and theoretically investigated by 1H-NMR and numerical simulations. The flow pattern was characterised to gain information about the residence time distribution and mixing effects. Both 1H-NMR imaging and spectroscopy were used to determine the characteristics of flow cells and their significance for on-line measurements such as reaction monitoring or hyphenated separation spectroscopy. The volume flow rates investigated were in the range from 0.1 to 10 ml/min, typically applied in the above mentioned applications. When compared to those commonly used in high-field NMR, the special characteristics of flow cells for MR-NMR were revealed by various NMR experiments and compared with CFD simulations. The influence of the design of the inlet and outlet on the flow pattern was investigated as well as the effect of the length of the cell. For practical use, a numerical estimation of the inflow length was given. In addition, it was shown how experiments on the polarisation build-up revealed insight into the flow characteristics in MR-NMR. T2 - Quantitative NMR Methods for Reaction and Process Monitoring (NMRPM) Symposium CY - Kaiserslautern, Germany DA - 15.01.2015 KW - Online NMR spectroscopy KW - Process analytical technology KW - Flow profiles KW - Online monitoring KW - Reaction monitoring PY - 2015 AN - OPUS4-36147 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Meyer, Klas A1 - Ruiken, J.-P. A1 - Illner, M. A1 - Müller, D. A1 - Esche, E. A1 - Paul, Andrea A1 - Wozny, G. A1 - Maiwald, Michael T1 - Online spectroscopy in microemulsions – A process analytical approach for hydroformylation miniplant I – Experimental setup and NMR reaction monitoring N2 - Hydroformylation represents an important homogeneous catalyzed process, which is widely used within chemical industry. Usually applied with simple alkenes like Propene and Butene aldehydes obtained from alkenes >C6 are relevant intermediates in production of plasticizers, surfactants and polymers. Today the active catalyst species is often based on valuable Rhodium complexes in aqueous solution. This implies the problem of limited water solubility of the reactands, which is acceptable for short chain lengths, but states a problem in case of higher alkenes. Along with that efficient separation and recycling of the catalyst becomes more complicated. There are different approaches tackling this problem, e.g., by using of salt formation in the BASF process or downstream distillation within the Shell process T2 - 11. Kolloquium Arbeitskreis Prozessanalytik CY - Wien, Austria DA - 30.11.2015 KW - Prozessanalytik KW - Process analytical technology KW - Emuslions KW - Hydroformylation KW - Online NMR spectroscopy KW - Reaction monitoring PY - 2015 SP - 51 EP - 51 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-38845 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Paul, Andrea A1 - Ruiken, J.-P. A1 - Meyer, Klas A1 - Westad, Frank A1 - Illner, M. A1 - Müller, D. A1 - Wozny, G. A1 - Maiwald, Michael T1 - Online spectroscopy in microemulsions – A process analytical approach for hydroformylation miniplant II - Calibration and prediction by Raman spectra N2 - The Collaborative Research Center InPROMPT aims to establish a novel process concept for the hydroformylation of long-chained olefins, using a rhodium complex as catalyst in the presence of syngas. Recently, the hydroformylation in micro-emulsions, which allows for the efficient recycling of the expensive rhodium catalyst, was found to be feasible. However, the temperature and concentration sensitive multi-phase system demands a continuous observation of the reaction to achieve an operational and economically feasible plant operation. For that purpose, we tested the potential of both NMR and Raman spectroscopy for process control assistance. The lab-scale experiments were supported by sampling for off-line GC-analysis as reference analytics. The results of the NMR experiments will be part of another contribution. T2 - 11. Kolloquium Arbeitskreis Prozessanalytik CY - Wien, Austria DA - 30.11.2015 KW - Prozessanalytik KW - Process analytical technology KW - Prozess-Spektroskopie KW - Emulsions KW - Hydroformylation KW - Reaction monitoring KW - Raman spectroscopy PY - 2015 SP - 66 EP - 67 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-38846 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Siebler, Daniel A1 - Rohwetter, Philipp A1 - Brusenbach, R. A1 - Plath, R. T1 - Optical-only detection of partial discharge with fluorescent polymer optical fiber sensors N2 - This paper reflects recent progress in the field of fluorescent polymer optical fiber sensors (F-POF) for partial discharge (PD) detection in high voltage (HV) cable accessories using optical-only PD detection by coincidence single photon counting. In experiments with artificial PD sources these sensors show the ability to detect optical emissions from picocoulomb-level PDs in a real-scale model of a translucent high voltage cable accessory. False positives (caused by detector noise) are efficiently suppressedwhile maintaining sufficient sensitivity,even when the sensor is located in an unfavorable position. T2 - EUROSENSORS 2015 CY - Freiburg, Germany DA - 06.09.2015 KW - Partial discharge KW - Silicone rubber KW - High voltage cable accessories KW - Polymer optical fiber POF KW - Fluorescence KW - Coincidence PY - 2015 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-337881 DO - https://doi.org/10.1016/j.proeng.2015.08.711 SN - 1877-7058 VL - 120 SP - 845 EP - 848 PB - Elsevier Ltd. CY - Amsterdam AN - OPUS4-33788 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lukowiak, M.C. A1 - Wettmarshausen, Sascha A1 - Hidde, Gundula A1 - Landsberger, Petra A1 - Boenke, Viola A1 - Rodenacker, K. A1 - Braun, Ulrike A1 - Friedrich, Jörg Florian A1 - Gorbushina, Anna A1 - Haag, R. T1 - Polyglycerol coated polypropylene surfaces for protein and bacteria resistance N2 - Polyglycerol (PG) coated polypropylene (PP) films were synthesized in a two-step approach that involved plasma bromination and subsequently grafting hyperbranched polyglycerols with very few amino functionalities. The influence of different molecular weights and density of reactive linkers were investigated for the grafted PGs. Longer bromination times and higher amounts of linkers on the surface afforded long-term stability. The protein adsorption and bacteria attachment of the PP-PG films were studied. Their extremely low amine content proved to be beneficial for preventing bacteria attachment. PY - 2015 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-325406 DO - https://doi.org/10.1039/c4py01375a SN - 1759-9954 SN - 1759-9962 VL - 6 IS - 8 SP - 1350 EP - 1359 AN - OPUS4-32540 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maiwald, Michael A1 - Meyer, Klas A1 - Zientek, Nicolai A1 - Paul, Andrea T1 - qNMR forever – reference material metrology at high pressures and high purities N2 - Due to recent advances in technical developments of NMR instruments such as acquisition electronics and probe design, detection limits of components in liquid mixtures were improved into the lower ppm range (approx. 5–10 ppm amount of substance). This showed that modern NMR equipment is also suitable for the observation of hydrocarbon samples in the expanded fluid phase or gas phase. Since Quantitative NMR spectroscopy (qNMR) is a direct ratio method of analysis without the need of calibration it was used to determine impurities in appropriate liquid and liquefied hydrocarbon isomers up to C6, which are used for preparation of primary gas standards, e.g., natural gas or exhaust gas standards. At the same time it is possible to yield structural information with a minimum of sample preparation. Thus, cross contaminations between different isomers of the observed hydrocarbons and their (NMR-active) impurities can be identified and quantified. In general, most quantitative organic chemical measurements rely on the availability of highly purified compounds to act as calibration standards. The traceability and providence of these standards is an essential component of any measurement uncertainty budget and provides the final link of the result to the units of measurement, ideally the SI. The more recent increase in the use of qNMR for the direct assessment of chemical purity however can potentially improve the traceability and reduce the uncertainty of the measured chemical purity at a reduced cost and with less material. For example the method has beneficially been used by National Measurement institutes for recent CCQM comparisons including the CCQM–K55 series of purity studies. Traditional ‘indirect’ methods of purity analysis require that all impurities are identified and quantified, leading to a minimum of 4 individual analytical methods (organic impurities, water, solvents, inorganic residue). These multiple technique approaches measure an array of different chemical impurities normally present in purified organic chemical compounds. As many analytical methodologies have compound-specific response factors, the accuracy and traceability of the purity assessment is dependent on the availability of reference materials of the impurities being available. qNMR provides the most universally applicable form of direct purity determination without need for reference materials of impurities or the calculation of response factors but only exhibiting suitable NMR properties. The development of CRMs addressing qNMR specific measurement issues will give analysts compounds ideally suited for the analytical method and also provide full characterisation of qNMR related parameters to enable more realistic uncertainty budgets. These materials will give users the tools to exploit qNMR more easily and enable them to speed up analytical method development and reduce the time and financial burden of multiple analytical testing. T2 - 3rd Practical Application of NMR in Industry Conference (PANIC) 2015 CY - La Jolla, CA, USA DA - 09.02.2015 KW - qNMR KW - Quantitative NMR-Spektroskopie KW - Reference Material KW - Metrology PY - 2015 AN - OPUS4-36144 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maiwald, Michael T1 - qNMR-Referenzmaterialien und "Indirect Hard Modeling" (IHM) als Integrationsmethode N2 - Resolving overlapping peaks of multiple components. Relative primary analytical method - Fundamental relationship of qNMR. T2 - 4. Sitzung der Next-NMR-Arbeitsgruppe CY - Karlsruhe, Germany DA - 08.12.2015 KW - qNMR KW - Quantitative NMR-Spektroskopie KW - Indirect Hard Modeling (IHM) KW - Referenzmaterialien PY - 2015 AN - OPUS4-36138 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hornemann, A. A1 - Eichert, D. A1 - Flemig, Sabine A1 - Ulm, G. A1 - Beckhoff, B. T1 - Qualifying label components for effective biosensing using advanced high-throughput SEIRA methodology N2 - The need for technological progress in bio-diagnostic assays of high complexity requires both fundamental research and constructing efforts on nano-scaled assay recognition elements that can provide unique selectivity and design-enhanced sensitivity features. Nanoparticle induced sensitivity enhancement and its application related to multiplexed capability Surface-Enhanced InfraRed Absorption (SEIRA) assay formats are well suitable for these purposes. The potential of diverse fluorophore–antibody conjugates, being chemisorbed onto low-cost gold nanoparticulate SEIRA substrates, has been explored with respect to their spectral discriminability. These novel biolabels deliver molecular SEIRA fingerprints that have been successfully analyzed by both uni- and multivariate analyzing tools, to discriminate their multiplexing capabilities. We show that this robust spectral encoding via SEIRA fingerprints opens up new opportunities for a fast, reliable and multiplexed high-end screening in biodiagnostics. KW - SEIRA methodology KW - bio-diagnostic KW - nanotechnology PY - 2015 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-351389 DO - https://doi.org/10.1039/C4CP05944A SN - 1463-9076 SN - 1463-9084 VL - 17 IS - 14 SP - 9471 EP - 9479 PB - The Royal Soc. of Chemistry CY - Cambridge AN - OPUS4-35138 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Galindo Guerreros, Julio Cesar A1 - Niederleithinger, Ernst A1 - Mackens, S. A1 - Fechner, T. T1 - Quality assurance of jet grout columns with borehole seismic measurements N2 - Sealing and strengthening of the subsoil by injection is a major issue in the field of geotechnical engineering. One commonly applied method is jet grouting, which allows creating columns of grouted soil by eroding and mixing the in-situ soil with a thin cement suspension. A general difficulty linked with this method is to predict the resulting column diameter and its material strength. In this paper we illustrate the application of a newly developed non-destructive quality assurance testing tool used to determine the diameter of jet grout columns. This approach incorporates standard crosshole and downhole seismic measurements. To demonstrate its effectiveness, we tested the new approach within two-dimensional finite-difference numerical simulations. Additional field tests showed that this tool is also applicable in real site conditions. For this purpose, three jet grout columns were produced with different process parameters in a depth between 3.0 and 10 m. The evaluated diameters were within 1.0 and 1.5 m, slightly deviating from the previously predicted range by the jet grouting contractor. Moreover, we were able to detect the base of the columns at 10 m depth with no significant difficulties. On the other hand, unsaturated, partly unconsolidated sands between ground water level and surface considerably affected the seismic data, hence complicating the detection of the top of the columns. T2 - NDT-CE 2015 - International symposium non-destructive testing in civil engineering CY - Berlin, Germany DA - 15.09.2015 KW - Jet grout KW - Seismics KW - Crosshole KW - Downhole PY - 2015 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-346753 UR - https://www.ndt.net/?id=18277 SN - 1435-4934 VL - 20 IS - 11 SP - 1 EP - 7 PB - NDT.net CY - Kirchwald AN - OPUS4-34675 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hemmann, Felix A1 - Agirrezabal-Telleria, Iker A1 - Jäger, Christian A1 - Kemnitz, E. T1 - Quantification of acidic sites of nanoscopic hydroxylated magnesium fluorides by FTIR and 15N MAS NMR spectroscopy N2 - Lewis and Brønsted sites were quantified in a series of weak acidic hydroxylated magnesium fluorides by Fourier transform infrared spectroscopy (FTIR) and solid state nuclear magnetic resonance spectroscopy (NMR) with pyridine as probe molecule. Molar extinction coefficients, which are necessary for quantitative FTIR measurements, were calculated by an easy approach. It utilizes the fact that both signals, used for the quantification by FTIR, are caused by the same deformation vibration mode of pyridine. Comparison of quantitative FTIR experiments and quantification by NMR shows that concentrations of acidic sites determined by FTIR spectroscopy have to be interpreted with caution. Furthermore, it is shown that the transfer of molar extinction coefficients from one catalyst to another may lead to wrong results. Molar extinction coefficients and concentrations of acidic sites determined by FTIR spectroscopy are affected by grinding and probably the particle size of the sample. High temperature during FTIR experiments has further impact on the quantification results. KW - Acidity KW - Fluoride catalyst KW - Infrared spectroscopy KW - Adsorption of pyridine KW - Molar extinction coefficient determination PY - 2015 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-351448 DO - https://doi.org/10.1039/C5RA15116C SN - 2046-2069 VL - 5 IS - 109 SP - 89659 EP - 89668 PB - RSC Publishing CY - London AN - OPUS4-35144 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Klykov, Oleg A1 - Weller, Michael G. T1 - Quantification of N-hydroxysuccinimide and N-hydroxysulfosuccinimide by hydrophilic interaction chromatography (HILIC) N2 - N-Hydroxysuccinimide (NHS) esters are the most important activated esters used in many different bioconjugation techniques, such as protein labelling by fluorescent dyes and enzymes, surface activation of chromatographic supports, microbeads, nanoparticles, and microarray slides, and also in the chemical synthesis of peptides. Usually, reactions with NHS esters are very reliable and of high yield, however, the compounds are sensitive to air moisture and water traces in solvents. Therefore, the quantification of NHS would be a very helpful approach to identify reagent impurities or degradation of stored NHS esters. No robust and sensitive method for the detection of NHS (or the more hydrophilic sulfo-NHS) has been reported yet. Here, a chromatographic method based on HILIC conditions and UV detection is presented, reaching a detection limit of about 1 mg L-1, which should be sensitive enough for most of the applications mentioned above. Exemplarily, the hydrolytic degradation of a biotin-NHS ester and a purity check of a fluorescent dye NHS ester are shown. An important advantage of this approach is its universality, since not the structurally variable ester compound is monitored, but the constant degradation product NHS or sulfo-NHS, which avoids the necessity to optimize the separation conditions and facilitates calibration considerably. KW - NHS KW - Sulfo-NHS KW - NHS-Ester KW - Qualitätskontrolle KW - Reinheitsbestimmung KW - HPLC PY - 2015 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-337833 DO - https://doi.org/10.1039/c5ay00042d SN - 1759-9660 SN - 1759-9679 VL - 7 IS - 15 SP - 6443 EP - 6448 PB - RSC Publ. CY - Cambridge AN - OPUS4-33783 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maiwald, Michael A1 - Zientek, Nicolai A1 - Meyer, Klas A1 - Kern, Simon A1 - Paul, Andrea T1 - Quantitative and online NMR Spectroscopy at BAM N2 - Online NMR spectroscopy, Determination of impurities of fluids, NMR process Monitoring, purity assessment T2 - NMR-Kolloquium Buchs CY - Buchs, Switzerland DA - 29.05.2015 KW - qNMR KW - Quantitative NMR-Spektroskopie KW - Online NMR Spectroscopy KW - Reaction monitoring KW - Reference material KW - Metrology PY - 2015 AN - OPUS4-36143 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wilsch, Gerd A1 - Eichler, T. A1 - Millar, Steven A1 - Gottlieb, Cassian T1 - Quantitative determination of chloride-to-cement content of concrete by laser-induced breakdown spectroscopy (LIBS) N2 - Laser-induced breakdown spectroscopy (LIBS) is a combination of plasma generation on the sample surface by a high power laser pulse and optical emission spectroscopy (OES). It is a direct measurement method without an extensive sample preparation. Concrete is a multi phase system. With LIBS it is possible to distinguish the different phases and based on that to correlate the chloride content to the cement mass. This is done by scanning the surface with a resolution of up to 0.1 mm. The high measurement frequency of 100 Hz or even higher allows the in-situ visualization of the chloride content over the measured area. With a calibration a quantification of chloride concentration is possible. As an example the LIBS measurement on a 50 mm by 70 mm area with a resolution of 0.5 mm and the visualization of the chloride distribution takes only 10 minutes. Additionally it is possible to evaluate the carbonation depth from the same measurement. Examples of practical application to determine the chloride-to-cement-content on concrete samples are presented. The possibilities and the limitations of LIBS are discussed. T2 - CONCREEP 10 - Mechanics and physics of creep, shrinkage, and durability of concrete and concrete structures CY - Vienna, Austria DA - 21.09.2015 KW - LIBS KW - Chlorides KW - Carbonation KW - Heterogeneity KW - Quantitative concentration KW - 2D-map PY - 2015 SP - 815 EP - 822 AN - OPUS4-34677 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Krause, Christina A1 - Zorn, R. A1 - Frick, B. A1 - Schönhals, Andreas T1 - Quasi- and inelastic neutron scattering to investigate the molecular dynamics of discotic molecules in the bulk N2 - In- and quasielastic neutron scattering is employed to investigate both the vibrational density of states and the molecular dynamics of two homologous discotic liquid crystals (DLC) with different length of the alkyl side chain based on a triphenylene derivate. For both compounds characteristic low frequency excess contributions to the vibrational density of states are found. Therefore it is concluded that these liquid crystals show a glass-like behaviour. Elastic scans further show that in these materials a rich molecular dynamics takes place. T2 - QENS/WINS 2014 - 11th International Conference on Quasielastic Neutron Scattering and 6th International Workshop on Inelastic Neutron Spectrometers CY - Autrans, France DA - 2014-05-11 PY - 2015 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-325477 DO - https://doi.org/10.1051/epjconf/20158302017 SN - 2100-014X VL - 83 SP - 02017-1 EP - 02017-4 PB - EDP Sciences CY - Les Ulis AN - OPUS4-32547 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Esche, E. A1 - Müller, D. A1 - Maiwald, Michael A1 - Wozny, G. T1 - Raman-based advanced control of an absorption desorption system N2 - For absorption processes with fluctuating feed gas compositions it is vital to continuously adjust the operation point to achieve energy efficiency. In this contribution a Raman-based advanced process control (APC) is introduced for the absorption of carbon dioxide (CO2) using an aqueous solution of monoethanolamine (MEA). The APC is based on a Raman spectroscopic analysis of the composition and CO2 load of the scrubbing liquid and a non-linear model predictive control (NMPC) to adjust the scrubbing liquid cycle. In addition, an outer real-time optimization loop is set in place to update the set points for the absorption process depending on the current feed gas composition minimizing the energy consumption of the process. Implementation and testing of the APC have been carried out in a mini-plant at TU Berlin. During a plant operation of more than 160 hours robustness and stability of the APC were shown. T2 - 12th International Symposium on Process Systems Engineering and 25th European Symposium on Computer Aided Process Engineering CY - Kopenhagen, Denmark DA - 31.05.2015 KW - Raman spectroscopy KW - Advanced process control KW - CO2 KW - Carbon dioxide KW - Absorption KW - Process analytical technology PY - 2015 UR - https://www.elsevier.com/books/12th-international-symposium-on-process-systems-engineering-and-25th-european-symposium-on-computer-aided-process-engineering/author/978-0-444-63429-0 SN - 9780444634290 SN - 9780444634450 VL - 37 SP - 1523 EP - 1528 PB - Elsevier CY - Amsterdam AN - OPUS4-37669 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - RPRT A1 - Rauscher, H. A1 - Mech, A. A1 - Gaillard, C. A1 - Stintz, M. A1 - Wohlleben, W. A1 - Weigel, St. A1 - Ghanem, A. A1 - Hodoroaba, Vasile-Dan A1 - Babick, F. A1 - Mielke, Johannes T1 - Recommendations on a Revision of the EC Definition of Nanomaterial Based on Analytical Possibilities N2 - In October 2011 the European Commission (EC) published a "Recommendation on the definition of nanomaterial" (2011/696/EU), to promote consistency in the interpretation of the term "nanomaterial" for legislative and policy purposes in the EU. The EC NM Definition includes a commitment to its review in the light of experience and of scientific and technological developments. This review is ongoing in 2015 and as a contribution to the review the Joint Research Centre of the European Commission (JRC) has already developed a series of three scientific-technical reports with the title: “Towards a review of the EC Recommendation for a definition of the term nanomaterial” which provides to the EC policy services science-based options on how the definition could be revised or supported with additional guidance. The overarching nature and wide scope of the EC NM Definition, as it does not exclude a priori any particulate material regardless the state, form and size, creates many analytical challenges in its imple-mentation for all stakeholders, including enterprises and regulators. The NanoDefine project has as core objective to support the implementation of the EC NM Definition. In this report key aspects of the EC NM Definition are addressed, with the goal to improve the implement-ability of the EC NM Definition. These aspects are presented and discussed based on the results of two years of research performed within the framework of the project. As a result this report assesses how well the requirements of the EC NM Definition can be fulfilled with currently available analytical possi-bilities. It presents recommendations and options on a revision of the EC NM Definition to improve the implementability of the definition based on currently available analytical possibilities, according to the state of the art of mid-2015. Of the technical issues considered in this report, the following seem to deserve the most attention in terms of clarification of the definition and/or provision of additional implementation guidance:  The term ‘external dimension’. A clear definition of 'External dimension' should be included in the text of the EC NM definition and more precise guidance on what is considered as an external dimension and how to properly character-ise it should be provided.  The ‘number based particle size distribution‘. The EC NM Definition uses a threshold related to the number based size distribution of particles. Yet most of the easily available techniques provide a mass-, volume- or scattered light intensity-based size distribution which needs to be converted into a number based distribution to be used for regulatory pur-poses. A specific guidance on the conditions under which these methods can be used to identify a na-nomaterial by employing appropriate quantity or metrics conversion should be provided.  The ‘polydispersity‘ and ‘upper size limit‘ Polydispersity is a challenge for the measurement of particle size distribution for the EC NM definition, specifically for materials with high polydispersity index and broad size distribution especially when the volume or mass of the fraction containing particles below 100 nm is very small. Therefore a dedicated guidance should be provided that allows applying an upper size limit in measurements and particle statistics. KW - Nanomaterial KW - EU Definition of nanomaterial KW - Nanoparticles PY - 2015 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-432339 UR - http://www.nanodefine.eu/publications/reports/NanoDefine_TechnicalReport_D7.10.pdf SP - 1 EP - 68 PB - The NanoDefine Consortium CY - Wageningen, The Netherlands AN - OPUS4-43233 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Roebben, G. A1 - Kestens, V. A1 - Varga, Z. A1 - Charoud-Got, J. A1 - Ramaye, Y. A1 - Gollwitzer, Christian A1 - Bartczak, D. A1 - Geißler, Daniel A1 - Noble, J.E. A1 - Mazoua, S. A1 - Meeus, N. A1 - Corbisier, P. A1 - Palmai, M. A1 - Mihály, J. A1 - Krumrey, M. A1 - Davies, J. A1 - Resch-Genger, Ute A1 - Kumarswami, N. A1 - Minelli, C. A1 - Sikora, A. A1 - Goenaga-Infante, H. T1 - Reference materials and representative test materials to develop nanoparticle characterization methods: the NanoChOp project case N2 - This paper describes the production and characteristics of the nanoparticle test materials prepared for common use in the collaborative research project NanoChOp (Chemical and optical characterization of nanomaterials in biological systems), in casu suspensions of silica nanoparticles and CdSe/CdS/ZnS quantum dots (QDs). This paper is the first to illustrate how to assess whether nanoparticle test materials meet the requirements of a "reference material" (ISO Guide 30, 2015) or rather those of the recently defined category of "representative test material (RTM)" (ISO/TS 16195, 2013). The NanoChOp test materials were investigated with small-angle X-ray scattering (SAXS), dynamic light scattering (DLS), and centrifugal liquid sedimentation (CLS) to establish whether they complied with the required monomodal particle size distribution. The presence of impurities, aggregates, agglomerates, and viable microorganisms in the suspensions was investigated with DLS, CLS, optical and electron microscopy and via plating on nutrient agar. Suitability of surface functionalization was investigated with attenuated total reflection Fourier transform infrared spectrometry (ATR-FTIR) and via the capacity of the nanoparticles to be fluorescently labeled or to bind antibodies. Between-unit homogeneity and stability were investigated in terms of particle size and zeta potential. This paper shows that only based on the outcome of a detailed characterization process one can raise the status of a test material to RTM or reference material, and how this status depends on its intended use. KW - Nanoparticle KW - Materials characterization KW - Reference material KW - Analytical quality assurance KW - Metrology PY - 2015 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-349644 DO - https://doi.org/10.3389/fchem.2015.00056 SN - 2296-2646 VL - 3 SP - Article 56, 1 EP - 16 PB - Frontiers Media CY - Lausanne AN - OPUS4-34964 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hoffmann, Katrin A1 - Hoffmann, Angelika A1 - Pauli, Jutta A1 - Spieles, Monika A1 - Brunner, Claudia A1 - Resch-Genger, Ute T1 - Reference Materials for Standardization of Fluorescence-based Measurements N2 - Here, we summerize our efforts concerning new design concepts and examples for fluorescence standards that can provide traceability to radiometric units and present a first step towards a toolbox of fluorescence standards, currently consisting of: i) A first set of liquid fluorescence standards enables the determination of a broad variety of fluorescence parameters was developed and certified by BAM and is distributed by Sigma-Aldrich. ii) Ready-to-use, glass-based fluorescence standards for instrument performance validation (IPV) and determination instrument-to-instrument variations can also be used as wavelength standard for fluorescence instruments with low requirements on spectral resolution and allow monitoring of temporal changes of the wavelength-dependent spectral responsivity. iii) Novel calibration tools and validation concepts for microarray-based platforms used in molecular diagnostics and food safety control. iv) We currently develop reference materials, which can be used as reliable quantum yield standards for relative methods for the determination of QY and can be valuable in the evaluation of the performance and sources of uncertainty of absolute, standard-free methods using e.g. integrating spheres. T2 - 14th Conference on Methods and Applications in Fluorescence CY - Würzburg, Germany DA - 13.09.2015 KW - Fluorescence KW - Standards KW - Quantum yield KW - Microarray PY - 2015 AN - OPUS4-38882 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Grohmann, Maria A1 - Müller, Sabine A1 - Niederleithinger, Ernst T1 - Reverse time migration: Introduction of a new imaging technique for ultrasonic measurements in civil engineering N2 - Ultrasonic echo testing is widely used in non-destructive testing in civil engineering to investigate concrete structures, to measure thickness, and to locate and characterise built-in components or inhomogeneities. Currently, synthetic aperture focusing techniques are mostly used for imaging. These algorithms are highly developed but have some limitations. For example, it is not possible to image the lower boundary of built-in components like tendon ducts or vertical reflectors. We adopted reverse time migration for non-destructive testing in civil engineering in order to improve the imaging of complicated structures in concrete. By using the entire wavefield, including waves reflected more than once, there are fewer limitations compared to synthetic aperture focusing technique algorithms. As a drawback, the required computation is significantly higher than that for the techniques currently used. Simulations for polyamide and concrete structures showed the potential for non-destructive testing. The simulations were followed by experiments at a polyamide specimen. Here, having acquired almost noise-free measurement data to test the algorithm, we were able to determine the shape and size of boreholes with sufficient accuracy. After these successful tests, we performed experiments at a reinforced concrete foundation slab. We obtained information from the data by reverse time migration, which was not accessible by traditional imaging. The imaging of the location and structure of the lower boundary of the concrete foundation slab was improved. Furthermore, vertical reflectors inside the slab were imaged clearly, and more flaws were found. It has been shown that reverse time migration is a step forward in ultrasonic testing in civil engineering. T2 - NDT-CE 2015 - International symposium non-destructive testing in civil engineering CY - Berlin, Germany DA - 15.09.2015 KW - Ultrasound KW - Imaging KW - Reverse time migration KW - Reflection seismics KW - Concrete PY - 2015 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-345406 SN - 1435-4934 SP - 1 EP - 10 PB - Technische Universität Berlin / Bundesanstalt für Materialforschung und -prüfung AN - OPUS4-34540 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Krämer, D. A1 - Violet, N. A1 - Paul, Andrea A1 - Maiwald, Michael A1 - King, R. T1 - Robustification of partial least squares predictions based on near infrared spectroscopy trough nonlinear state estimation N2 - The Cultivation of “Saccharomyces cerevisiae” for enzyme production was monitored using Near-infrared spectroscopy. An inline NIR optrode was therefore immersed in a 15 L vessel. The calibration was done using a Partial Least Squares (PLS) model with reference measurements of glucose, ammonium, phosphate, ethanol, and optical density. A nonlinear biological process model based on an extended Kalman Filter (EKF) was used to describe the fermentation behavior. It was found that EKF corrects inaccurate PLS predictions. T2 - 11. Kolloquium Arbeitskreis Prozessanalytik CY - Wien, Austria DA - 30.11.2015 KW - PLS-R KW - Near infrared spectroscopy KW - Prozess-Spektroskopie KW - Process analytical technology KW - Fermentation PY - 2015 SP - 77 EP - 77 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-38844 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sötebier, Carina A1 - Bierkandt, Frank A1 - Rades, Steffi A1 - Jakubowski, Norbert A1 - Panne, Ulrich A1 - Weidner, Steffen T1 - Sample loss in asymmetric flow field-flow fractionation coupled to inductively coupled plasma-mass spectrometry of silver nanoparticles N2 - In this work, sample losses of silver nanoparticles (Ag NPs) in asymmetrical flow field-flow fractionation (AF4) have been systematically investigated with the main focus on instrumental conditions like focusing and cross-flow parameters as well as sample concentration and buffer composition. Special attention was drawn to the AF4 membrane. For monitoring possible silver depositions on the membrane, imaging laser ablation coupled to inductively coupled plasma mass spectrometry (LA-ICP-MS) was used. Our results show that the sample residue on the membrane was below 0.6% of the total injected amount and therefore could be almost completely avoided at low sample concentrations and optimized conditions. By investigation of the AF4 flows using inductively coupled plasma mass spectrometry (ICP-MS), we found the recovery rate in the detector flow under optimized conditions to be nearly 90%, while the cross-flow, slot-outlet flow and purge flow showed negligible amounts of under 0.5%. The analysis of an aqueous ionic Ag standard solution resulted in recovery rates of over 6% and the ionic Ag content in the sample was found to be nearly 8%. Therefore, we were able to indicate the ionic Ag content as the most important source of sample loss in this study. KW - Asymmetric flow filed-flow fractionation KW - ICP-MS KW - Nanoparticles KW - Sample loss KW - Quantification PY - 2015 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-336171 DO - https://doi.org/10.1039/c5ja00297d SN - 0267-9477 SN - 1364-5544 VL - 30 IS - 10 SP - 2214 EP - 2222 PB - Royal Society of Chemistry CY - London AN - OPUS4-33617 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - RPRT A1 - Beck, Uwe A1 - Baier, Jennifa A1 - Dähne, L. A1 - Lerche, K.-H. T1 - Schlussbericht zum BMWi/MNPQ-Verbundprojekt: PLASMA-FIT (PLASMA-kompatible Partikel zur gepulsten in-situ Injektion von ex-situ hergestellten Partikeln für add-on Funktionen und zur Identifizierung in BeschichTungen) N2 - Im Fokus steht die Qualitätssicherung mit Blick auf Herstellung, Modifizierung, Handling und Erprobung von PLASMA-kompatiblen Partikeln zur gepulsten in-situ Injektion von ex-situ hergestellten Partikeln für add-on Funktionen in und zur Identifikationsprüfung von BeschichTungen (PLASMA-FIT). Im Kern war zunächst zu prüfen, welche Klassen ex-situ hergestellter Partikel unterschiedlichster Materialien überhaupt bzw. unter welchen Bedingungen PLASMA-fit sind oder unter welchen Randbedingungen PLASMA-fit gemacht werden können. In den dazugehörenden Projektphasen Screening und Adaption stand dabei das komplexe Beanspruchungsszenario bestehend aus Vakuum-, Temperatur- und wenigstens kurzzeitiger Plasmabeständigkeit der ex-situ bereitgestellten Partikel im Fokus. In der Projektphase Applikation sollte dann unter Verwendung einer modifizierten Plasmaquelle (BAM-Patentanmeldung, beabsichtigte Lizenznahme durch Fa. CemeCon, Optionsvertrag) hinsichtlich der Realisierbarkeit, Prüfung und Qualitätssicherung von Plasmadispersionsschichten ein erster Praxistest zur in-situ Injektion von Partikeln in einen laufenden Beschichtungsprozess, zur Realisierung funktioneller Eigenschaften z.B. zur Identifikation oder Authentifizierung von Originalteilen, vorgenommen werden KW - Plasma-kompatible Partikel KW - Plasma-Injektion KW - add-on Funktionen PY - 2015 N1 - Das Dokument unterliegt der Vertraulichkeit und kann nicht zugänglich gemacht werden - The document is subject to confidentiality restrictions and cannot be made accessible - Projektlaufzeit: 17.11.2010-16.02.2015 - Project runtime: 17.11.2010-16.02.2015 SP - 1 EP - 10 AN - OPUS4-48360 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - RPRT A1 - Bellon, Carsten T1 - Schlussbericht zum MNPQ-Projekt 18/11 - Simulationsbasierte Effizienzsteigerung bei Nanofokus-Röntgenröhren für höchstauflösende Materialprüfung N2 - Ziel des Projektes war, mit Hilfe von Computersimulationen die Brennfleckgröße, das Spektrum und die erreichbare Dosisleistung von Transmissionsröhren vorherzusagen sowie diese Kenngrößen zu optimieren. Hierbei sollten insbesondere die Materialien und Schichtdicken von Substrat und strahlungserzeugender Schicht untersucht werden. Eine Voraussetzung für die Überprüfung der Ergebnisse ist die reproduzierbare, korrekte messtechnische Erfassung von Brennfleckgrößen unterhalb 5 μm. KW - Brennfleckgröße KW - Röntgenröhre KW - Transmissionstarget KW - Computersimulation KW - Dosisleistung PY - 2015 SP - 1 EP - 13 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-39192 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nolze, Gert T1 - SEM-TKD: Signal formation, practical challenges and related applications N2 - TKD and EBSD will be compared and benefits as well as limitations of TKD will be discussed. T2 - XIV Brazilian MRS Meeting CY - Rio de Janeiro, Brazil DA - 27.09.2015 KW - TKD KW - EBSD KW - Kikuchi diffraction KW - Nanoanalytic KW - Orientation mapping PY - 2015 AN - OPUS4-37788 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Menzel, M. A1 - Scharf, O. A1 - Novak, S. A1 - Radtke, Martin A1 - Reinholz, Uwe A1 - Hischenhuber, P. A1 - Buzanich, Günter A1 - Meyer, A. A1 - Lopez, V. A1 - McIntosh, K. A1 - Streli, C. A1 - Havrilla, G. A1 - Fittschen, U. T1 - Shading in TXRF: calculations and experimental validation using a color X-ray camera N2 - Absorption effects in total reflection X-ray fluorescence (TXRF) analysis are important to consider, especially if external calibration is to be applied. With a color X-ray camera (CXC), that enables spatially and energy resolved XRF analysis, the absorption of the primary beam was directly visualized for mL-droplets and an array of pL-droplets printed on a Si-wafer with drop-on-demand technology. As expected, deposits that are hit by the primary beam first shade subsequent droplets, leading to a diminished XRF signal. This shading effect was quantified with enhanced precision making use of sub-pixel analysis that improves the spatial resolution of the camera. The measured absorption was compared to simulated results using three different model calculations. It was found they match very well (average deviation < 10%). Thus errors in quantification due to absorption effects can be accounted for in a more accurate manner. KW - absorption KW - X-ray Fluorescence analysis PY - 2015 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-359000 DO - https://doi.org/10.1039/C5JA00127G IS - 10 SP - 2184 EP - 2193 PB - Royal Society of Chemistry CY - Cambridge AN - OPUS4-35900 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nolze, Gert T1 - Simulation of powder diffraction patterns N2 - The theory of powder diffraction simulation is explained at the example of PowderCell, a free-available software of BAM. T2 - PowderCell Users meeting CY - Joinville, Brazil DA - 21.09.2015 KW - Powder diffraction KW - X-ray diffraction KW - Phase analysis KW - Simulation PY - 2015 AN - OPUS4-37789 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Maack, Stefan A1 - Thunell, B. A1 - Wiggenhauser, Herbert T1 - Study of special challenges for NDT-methods on nuclear structures N2 - The special design of buildings, constructed for nuclear power plants is a particular challenge for the nondestructive testing in the building industry. In particular the major component thicknesses, the degree of reinforcement and surface coating systems make the application of NDT methods difficult. The studies first steps were undertaken to determine to which extent established applications of these techniques are useable in the field of infrastructure buildings. Methods have been evaluated that are already state of the art. So for example the ground penetrating radar was used for locating metallic mounting parts. Furthermore, the low-lying internal structure of the containment was investigated with the ultrasonic method. T2 - NDT-CE 2015 - International symposium non-destructive testing in civil engineering CY - Berlin, Germany DA - 15.09.2015 KW - Non-destructive testing KW - Ground penetrating radar KW - Ultrasonic KW - Nuclear structures KW - Pulse echo technique PY - 2015 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-345330 UR - http://www.ndt.net/?id=18422 SN - 1435-4934 VL - 20 IS - 11 SP - 1 EP - 4 PB - NDT.net CY - Kirchwald AN - OPUS4-34533 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fischer, Franziska A1 - Scholz, G. A1 - Batzdorf, Lisa A1 - Wilke, Manuel A1 - Emmerling, Franziska T1 - Synthesis, structure determination, and formation of a theobromine: oxalic acid 2:1 cocrystal N2 - The structure and the formation pathway of a new theobromine : oxalic acid (2 : 1) cocrystal are presented. The cocrystal was synthesised mechanochemically and its structure was solved based on the powder X-ray data. The mechanochemical synthesis of this model compound was studied in situ using synchrotron XRD. Based on the XRD data details of the formation mechanism were obtained. The formation can be described as a self-accelerated ('liquid like') process from a highly activated species. KW - ssNMR spectroscopy KW - Synchrotron measurements KW - API molecule PY - 2015 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-331567 DO - https://doi.org/10.1039/c4ce02066a SN - 1466-8033 VL - 17 IS - 4 SP - 824 EP - 829 CY - London, UK AN - OPUS4-33156 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nadejde, C. A1 - Neamtu, M. A1 - Hodoroaba, Vasile-Dan A1 - Schneider, Rudolf A1 - Paul, Andrea A1 - Ababei, G. A1 - Panne, Ulrich T1 - Tannic acid- and natural organic matter-coated magnetite as green Fenton-like catalysts for the removal of water pollutants N2 - The use of magnetic materials as heterogeneous catalysts has attracted increasing attention in the last years since they proved to be promising candidates for water treatment. In the present study, two types of surface-modified magnetite (Fe3O4) nanoparticles, coated with non-hazardous naturally occurring agents—either tannic acid (TA) or dissolved natural organic matter—were evaluated as magnetic heterogeneous catalysts. Chemical synthesis (co-precipitation) was chosen to yield the nanocatalysts due to its well-established simplicity and efficiency. Subsequently, the properties of the final products were fully assessed by various characterization techniques. The catalytic activity in heterogeneous oxidation of aqueous solutions containing a model pollutant, Bisphenol A (BPA), was comparatively studied. The effect of operational parameters (catalyst loading, H2O2 dosage, and UV light irradiation) on the Degradation performance of the oxidation process was investigated. The optimum experimental parameters were found to be 1.0 g/L of catalysts and 10 mM H2O2, under UV irradiation. The highest mineralization rates were observed for Fe3O4-TA catalyst. More than 80 % of BPA was removed after 30 min of reaction time under the specified experimental conditions. The obtained results showed that the two catalysts studied here are suitable candidates for the removal of pollutants in wastewaters by means of heterogeneous reaction using a green sustainable treatment method. KW - Nanocatalysts KW - Photo-Fenton oxidation KW - Wastewater KW - Bisphenol A degradation KW - Environment KW - Mitigation PY - 2015 UR - http://link.springer.com/article/10.1007/s11051-015-3290-0 DO - https://doi.org/10.1007/s11051-015-3290-0 VL - 17 IS - 12 SP - 476 (1) EP - 476 (10) PB - Springer AN - OPUS4-38758 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - RPRT A1 - Hodoroaba, Vasile-Dan A1 - Mielke, Johannes T1 - Techniques evaluation report for selection of characterisation methods N2 - This report is the result of a comprehensive study on the available CMs which come potentially in question for the reliable analysis of the number based size distribution of a nanomaterial according to the EC recommendation for a definition of nanomaterial. Based on the performance criteria already established in NanoDefine the potential CMs are evaluated according to studies available in the literature as well as following the expertise of the NanoDefine consortium partners. The specific advantages and disadvantages of each method with respect to its applicability to the scope of NanoDefine are particularly highlighted. An CM evaluation table is produced so that the mostly suited CMs with respect to the EC definition can be grouped and recommended to the corresponding NanoDefine work packages for further specific development (improvement and adaption), or for direct validation and standardisation, respectively. The actual evaluation report including the recommended CMs will be revised and, if necessary, eventually updated at the mid time of the project. The update will be jointly discussed in the NanoDefine consortium on the basis of the results of testing the methods on the NanoDefine real world materials. KW - Nanomaterial KW - Characterization method KW - EC definition PY - 2015 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-389473 UR - http://www.nanodefine.eu/publications/reports/NanoDefine_TechnicalReport_D3.1.pdf SP - D3.1, 1 EP - 57 CY - Wageningen, The Netherlands AN - OPUS4-38947 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nolze, Gert A1 - Winkelmann, Aimo T1 - The challenge of band detection N2 - The presentation demonstrates different traps which are related to the detection of Kikuchi bands in EBSD patterns. T2 - EBSD 2015 CY - Glasgow, UK DA - 30.03.2015 KW - Electron backscatter diffraction KW - Image processing KW - Pseudo symmerty KW - Crystal lattice KW - Pyrite KW - Pattern matching KW - Misindexing PY - 2015 AN - OPUS4-37805 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bruno, Giovanni A1 - Shyam, A. A1 - Watkins, T. R. A1 - Pandey, A. A1 - Lara-Curzio, E. A1 - Parish, C. M. A1 - Stafford, R. J. T1 - The effect of porosity and microcracking on the thermomechanical properties of cordierite N2 - The effect of porosity and microcracking on the mechanical properties (strength, fracture toughness,Young’s modulus, and fracture energy) and thermal expansion of diesel particulate filter (DPF) gradecordierite materials has been investigated. A method to deconvolute the effect of porosity and microc-racking on Young’s modulus is proposed. In addition, the microcrack density and the pore morphologyfactor are calculated by applying a micromechanical differential scheme. The values of the investigatedmechanical properties are shown to decrease with an increase in porosity, but the thermal expansionvalues are insensitive to porosity. The variation in mechanical properties as a function of porosity leadsto distinct porosity dependence of thermal shock resistance for crack initiation and crack propagationfor DPF grade synthetic cordierite. KW - Diesel particulate filter KW - Cordierite KW - Porosity KW - Microcracking KW - Micromechanical differential scheme PY - 2015 DO - https://doi.org/10.1016/j.jeurceramsoc.2015.08.014 VL - 2015/35 IS - 16 SP - 4557 EP - 4566 PB - Elsevier Ltd. AN - OPUS4-37973 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kabelitz, Anke A1 - de Oliveira Guilherme Buzanich, Ana A1 - Joester, Maike A1 - Reinholz, Uwe A1 - Radtke, Martin A1 - Bienert, Ralf A1 - Schulz, K. A1 - Schmack, R. A1 - Kraehnert, R. A1 - Emmerling, Franziska T1 - Time-resolved in situ studies on the formation mechanism of iron oxide nanoparticles using combined fast-XANES and SAXS N2 - The reaction of iron chlorides with an alkaline reagent is one of the most prominent methods for the synthesis of iron oxide nanoparticles. We studied the particle formation mechanism using triethanolamine as reactant and stabilizing agent. In situ fast-X-ray absorption near edge spectroscopy and small-angle X-ray scattering provide information on the oxidation state and the structural information at the same time. In situ data were complemented by ex situ transmission electron microscopy, wide-angle X-ray scattering and Raman analysis of the formed nanoparticles. The formation of maghemite nanoparticles (γ-Fe2O3) from ferric and ferrous chloride was investigated. Prior to the formation of these nanoparticles, the formation and conversion of intermediate phases (akaganeite, iron(II, III) hydroxides) was observed which undergoes a morphological and structural collapse. The thus formed small magnetite nanoparticles (Fe3O4) grow further and convert to maghemite with increasing reaction time. KW - oxidation state KW - structural information KW - maghemite PY - 2015 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-351376 DO - https://doi.org/10.1039/C5CE01585E SN - 1466-8033 VL - 17 IS - 44 SP - 8463 EP - 8470 CY - London, UK AN - OPUS4-35137 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hartmann, S. A1 - Shaporin, A. A1 - Hermann, S. A1 - Bonitz, J. A1 - Heggen, M. A1 - Meszmer, P. A1 - Sturm, Heinz A1 - Hölck, O. A1 - Blaudeck, T. A1 - Schulz, S. E. A1 - Mehner, J. A1 - Gessner, T. A1 - Wunderle, B. T1 - Towards nanoreliability of CNT-based sensor applications: Investigations of CNT-metal interfaces combining molecular dynamics simulations, advanced in situ experiments and analytics N2 - In this paper we present results of our recent efforts to understand the mechanical interface behaviour of single-walled carbon nanotubes (CNTs) embedded in metal matrices. We conducted experimental pull-out tests of CNTs embedded in Pd or Au and found Maximum forces in the range 10 - 102 nN. These values are in good agreement with forces obtained from molecular Dynamics simulations taking into account surface functional Groups (SFGs) covalently linked to the CNT material. The dominant failure mode in experiment is a CNT rupture, which can be explained with the presence of SFGs. To qualify the existence of SFGs on our used CNT material, we pursue investigations by means of fluorescence labeling of surface species in combination with Raman imaging. We also report of a tensile test system to perform pull-out tests inside a transmission electron microscope to obtain in situ images of CNT-metal interfaces under mechanical loads at the atomic scale. T2 - 2015 16th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems CY - Budapest, Hungary DA - 20.4.2015 KW - Carbon nanotube CNT KW - Metal matrix KW - Pull-out test KW - Molecular dynamics simulation KW - Surface functional groups KW - Fluorescence labeling KW - Raman imaging KW - Tensile test inside a TEM PY - 2015 SN - 978-1-4799-9950-7 VL - 2015 SP - 1 EP - 8 PB - IEEE AN - OPUS4-37625 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maiwald, Michael A1 - Meyer, Klas A1 - Zientek, Nicolai T1 - Towards online reaction monitoring with fully automated NMR data evaluation and modelling - Current results from simultaneous 19F-1H medium resolution NMR experiments N2 - NMR Process Monitoring Towards an automated field integration T2 - 3rd Practical Applications of NMR in Industry Conference (PANIC) - Mestrelab users' meeting CY - La Jolla, CA, USA DA - 08.02.2015 KW - Online NMR spectroscopy KW - Reaction monitoring KW - Prozessanalytik KW - Process analytical technology PY - 2015 AN - OPUS4-36145 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Guo, Y. A1 - Lippitz, Andreas A1 - Saftien, P. A1 - Unger, Wolfgang A1 - Kemnitz, E. T1 - Tuning the surface properties of novel ternary iron(III) fluoride-based catalysts using the template effect of the matrix N2 - Sol–gel prepared ternary FeF3–MgF2 materials have become promising heterogeneous catalysts due to their porosity and surface Lewis/Brønsted acidity (bi-acidity). Despite the good catalytic performance, nanoscopic characterisations of this type of material are still missing and the key factors controlling the surface properties have not yet been identified, impeding both a better understanding and further development of ternary fluoride catalysts. In this study, we characterised the interaction between the bi-acidic component (FeF3) and the matrix (MgF2) on the nano-scale. For the first time, the formation pathway of FeF3–MgF2 was profiled and the template effect of MgF2 during the synthesis process was discovered. Based on these new insights two novel materials, FeF3–CaF2 and FeF3–SrF2, were established, revealing that with decreasing the atomic numbers (from Sr to Mg), the ternary fluorides exhibited increasing surface acidity and surface area but decreasing pore size. These systematic changes gave rise to a panel of catalysts with tuneable surface and bulk properties either by changing the matrix alkaline earth metal fluoride or by adjusting their ratios to Fe or both. The template effect of the alkaline earth metal fluoride matrix was identified as the most probable key factor determining the surface properties and further influencing the catalytic performance in ternary fluoride based catalysts, and paves the way to targeted design of next-generation catalysts with tunable properties. KW - Catalysis KW - Surface analysis KW - XPS PY - 2015 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-327410 DO - https://doi.org/10.1039/c4dt03229b SN - 1477-9226 SN - 1477-9234 SN - 1364-5447 VL - 44 IS - 11 SP - 5076 EP - 5085 PB - RSC CY - Cambridge AN - OPUS4-32741 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Grothe, Sven T1 - Ultrasonic signal evaluation used to detect weather-related temperature changes in a concrete specimen N2 - Ultrasonic measurement evaluation methods have been proven to be effective for detection of subtle changes, caused by temperature, load or moisture. However, for its application outdoors it is necessary to analyse unavoidable influences, such as weather. Therefore an ultrasonic monitoring system with 40 ultrasonic sensors (20 transmitters, 20 receivers; 25 kHz central frequenzy) has been implemented on a concrete specimen (4×5×0.8m3), that is exposed to weather conditions. Data from 400 sensor combinations was collected over a period of six months with an interval of two hours. The data was evaluated by both qualitative (correlation techniques) and quantitative (ultrasonic velocity changes via Coda Wave Interferometry and time of flight method) evaluation methods and compared to the temperature changes caused by weather. T2 - NDT-CE 2015 - International symposium non-destructive testing in civil engineering CY - Berlin, Germany DA - 15.09.2015 PY - 2015 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-346398 UR - https://www.ndt.net/?id=18336 SN - 1435-4934 VL - 20 IS - 11 SP - 1 EP - 4 PB - NDT.net CY - Kirchwald AN - OPUS4-34639 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Niederleithinger, Ernst A1 - Wolf, Julia A1 - Mielentz, Frank A1 - Wiggenhauser, Herbert T1 - Using embedded ultrasonic sensors for active and passive concrete monitoring N2 - Challenging new constructions and ageing infrastructure are increasing the demand for permanent monitoring of loads and condition. Various methods and sensors are used for this purpose. But the technologies available today have difficulties in detecting slowly progressing locally confined damages. Extensive investigations or instrumentations are required so far for this purpose. In this study we present new sensors and data processing methods for ultrasonic transmission, which can be used for non-destructive long term monitoring of concrete. They can be mounted during construction or thereafter. Larger volumes can be monitored by a limited number of sensors for changes of material properties. The principles of ultrasonic transmission and influencing factors are presented. This latter include load, damages as well as environmental parameters as temperature or moisture. Various methods for data processing, e. g. coda wave interferometry are introduced. They allow the detection of very small changes in the medium. The embedded sensors are shown including mounting and operation. Application examples so far include small scale laboratory freeze-thaw experiments, localizing loads in larger concrete models, monitoring load effects on real structures as well as detecting acoustic events. Some sensors are operating already for several years. The sensors can be used as transmitter or receivers or switched between both roles. While most of the previous experiments have been active (at least one sensor serving as transmitter), new studies show that the sensors are useful as well for passive measurements, e. g. in acoustic emission or time reversal experiments. Besides application in civil engineering our setups can also be used for model studies in geosciences. T2 - NDT-CE 2015 - International symposium non-destructive testing in civil engineering CY - Berlin, Germany DA - 15.09.2015 KW - SHM KW - Monitoring KW - Ultrasound concrete KW - Embedded sensors PY - 2015 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-344652 UR - http://www.ndt.net/?id=18408 SN - 1435-4934 VL - 20 IS - 11 SP - 1 EP - 4 PB - NDT.net CY - Kirchwald AN - OPUS4-34465 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wilhelm, Stefan A1 - Kaiser, Martin A1 - Würth, Christian A1 - Heiland, J. A1 - Carrillo-Carrion, C. A1 - Muhr, V. A1 - Wolfbeis, Otto S. A1 - Parak, W.J. A1 - Resch-Genger, Ute A1 - Hirsch, T. T1 - Water dispersible upconverting nanoparticles: effects of surface modification on their luminescence and colloidal stability N2 - We present a systematic study on the effect of surface ligands on the luminescence properties and colloidal stability of β-NaYF4:Yb3+,Er3+ upconversion nanoparticles (UCNPs), comparing nine different surface coatings to render these UCNPs water-dispersible and bioconjugatable. A prerequisite for this study was a large-scale synthetic method that yields ~2 g per batch of monodisperse oleate-capped UCNPs providing identical core particles. These ~23 nm sized UCNPs display an upconversion quantum yield of ~0.35% when dispersed in cyclohexane and excited with a power density of 150 W cm-2, underlining their high quality. A comparison of the colloidal stability and luminescence properties of these UCNPs, subsequently surface modified with ligand exchange or encapsulation protocols, revealed that the ratio of the green (545 nm) and red (658 nm) emission bands determined at a constant excitation power density clearly depends on the surface chemistry. Modifications relying on the deposition of additional (amphiphilic) layer coatings, where the initial oleate coating is retained, show reduced non-radiative quenching by water as compared to UCNPs that are rendered water-dispersible via ligand exchange. Moreover, we could demonstrate that the brightness of the upconversion luminescence of the UCNPs is strongly affected by the type of surface modification, i.e., ligand exchange or encapsulation, yet hardly by the chemical nature of the ligand. KW - upconverting nanoparticles (UCNPs) KW - Luminescence KW - surface modification PY - 2015 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-324071 DO - https://doi.org/10.1039/c4nr05954a SN - 2040-3364 SN - 2040-3372 VL - 7 IS - 4 SP - 1403 EP - 1410 PB - RSC Publ. CY - Cambridge AN - OPUS4-32407 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -