TY - CONF A1 - Kulla, Hannes A1 - Becker, Christian A1 - Casati, Nicola A1 - Paulus, Beate A1 - Rademann, Klaus A1 - Emmerling, Franziska T1 - In situ PXRD monitoring of a mechanochemical cocrystal formation in milling jars of different material N2 - We present an in situ PXRD investigation of the mechanochemical cocrystal formation of pyrazinamide with pimelic acid in two milling jar materials. In the steel jar a polymorph transformation presenting an exception of Ostwald’s rule of stages is observed. T2 - BESSY User Meeting 2017 CY - Bessy II (HZB), Berlin, Germany DA - 14.12.2017 KW - In situ KW - XRD KW - Polymorph KW - Cocrystal KW - Milling PY - 2017 AN - OPUS4-43502 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Emmerling, Franziska A1 - Kulla, Hannes A1 - Wilke, Manuel T1 - In situ investigations of mechanochemical reactions - new insights in formation pathways N2 - Mechanochemistry is increasingly used for synthesizing soft matter materials including metal organic compounds and cocrystals. The ever-increasing interest in this method is contrasted by a limited mechanistic understanding of the mechanochemical reactivity and selectivity. Time-resolved in situ investigations of milling reactions provide direct insights in the underlying mechanisms. We recently introduced a setup enabling in situ investigation of mechanochemical reactions using synchrotron XRD combined with Raman spectroscopy. The specific combination allows to study milling processes comprehensively on the level of the molecular and crystalline structure and thus obtaining reliable data for mechanistic studies. In situ Raman spectroscopy coupled with thermography revealed a low temperature increase during milling reactions due to the mechanical impact and clear temperature increases because of the reaction heat. Based on the data, temperature rises as postulated in the magma plasma and hot spot theory can be excluded for soft matter milling syntheses. Our results indicate that in situ investigation of milling reactions offer a new approach to tune and optimize mechanochemically synthesized compounds. T2 - Wissenschaftsforum Chemie CY - Berlin, Germany DA - 10.09.17 KW - Mechanochemistry KW - In situ PY - 2017 AN - OPUS4-43563 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Caldeira, Rui A1 - Bartusch, Jürgen A1 - Schadow, Florian A1 - Gaal, Mate T1 - Verbesserung der Empfindlichkeit von Ferroelektret-Empfängern für Luftultraschall-Prüfung N2 - Der immer steigende Bedarf nach Prüfungsverfahren von Verbundwerkstoffen eröffnet die Möglichkeit von Prüfverfahren mittels luftgekoppelten Ultraschalls. Die Steigerung der Empfindlichkeit der Luftultraschall-Wandler erhöht deren Einsatzbereich. Die größte Herausforderung des Verfahrens stellt die Impedanzanpassung an die Luft dar. Ende der 1990er Jahre entdeckte man in Ferroelektreten (geladenen zellulären Polymeren) das Potential zur Lösung dieser Problematik. Geladenes zelluläres Polypropylen, mit einer geringen akustischen Impedanz als bei den meist verwendeten piezoelektrischen Materialien, bietet eine deutlich bessere Anpassung an die Luft. Sein piezoelektrisches Verhalten mit einem piezoelektrischen Koeffizient d33 von 200-800 pm/V ähnelt dem von piezoelektrischen Keramiken. Grund für dieses Verhalten sind die polarisierten Zellen, die eine permanente Ladung erzeugen. Die permanente Ladung erzeugt ein starkes elektrisches Feld in der Folie. Eine auf die Oberfläche einwirkende Kraft staucht die Zellen, wodurch sich die eingeschlossenen Ladungsträger im Verhältnis zueinander bewegen. Durch diese Potential- Verschiebung entsteht eine Ladung auf der Oberfläche. Mit angelegter Vorspannung kann die Empfindlichkeit des Wandlers kontrolliert werden, indem die vorgegebene Polarisierung temporär unterstützt oder reduziert wird. In diesem Beitrag ist die Entwicklung eines Ultraschallempfängers aus geladenem zellulärem Polypropylen mit Anwendung der Vorspannung dargestellt. Eine Verbesserung des Signal-Rausch-Abstands bei der Durchschallung eines Testkörpers um 12-15 dB wurde erreicht. T2 - DGZfP-Jahrestagung CY - Koblenz, Germany DA - 22.5.2017 KW - Ultraschall KW - Luftultraschall KW - Ferroelektret KW - Prüfung KW - Sensor PY - 2017 AN - OPUS4-40880 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Keller, Julia A1 - Haase, H. A1 - Koch, Matthias T1 - Electrochemistry coupled with LC/MS for production and characterization of mycotoxin oxidation products N2 - Mycotoxins cause a variety of mold-related health risks which makes it necessary to further examine their metabolic pathways in human and other mammals. Beside standard in vitro assays with liver cell microsomes an increasing interest in new and rapid simulation techniques are playing a growing role in mycotoxin research. Herein, the coupling of electrochemistry with liquid chromatography and mass spectrometry (EC/LC/MS) is presented as fast and simple method to investigate the oxidative fate of mycotoxins. For this case study, two food relevant mycotoxins (zearalenone and citrinin) were selected. Experiments were performed by using an electrochemical flow through cell integrated in the flow path of the autosampler of the chromatographic system. The reaction mixture was separated by a RP-C18 column and analyzed by a single quadrupole MS (Figure 1). Oxidation products were generated by applying potentials of 400, 800, 1200 and 1600 mV vs Pd/H2 using a glassy carbon working electrode. Different oxidation reactions like hydroxylation, dehydrogenation and dimerization lead to a diverse product pattern of the investigated mycotoxins. In a comparative study, electrochemical generated reaction products were compared with metabolites produced by human and rat liver microsomes in vitro. The obtained data show that EC/LC/MS is a versatile and promising tool in mycotoxin research to support metabolic investigations of known and unknown mycotoxins. T2 - Tag der Chemie CY - Berlin, Germany DA - 03.07.2017 KW - Electrochemistry KW - Mycotoxins PY - 2017 AN - OPUS4-42980 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kowarik, Stefan A1 - Schukar, Marcus A1 - Wischerhoff, E. A1 - Krebber, Katerina T1 - Neuartiger faseroptischer Temperatursensor basierend auf thermoresponsiven Polymeren N2 - Wir zeigen Resultate für einen faseroptischen Temperatursensor, der auf der temperaturabhängigen Eintrübung einer wässrigen Polymerlösung beruht. Da der Sensor auf dem Phasenübergang der spinodalen Entmischung bei fester Temepratur beruht, kann sich der Sensor selbst kalibrieren und daher für Anwendungen zur absoluten Temperaturmessung eingesetzt werden. T2 - Hybrid Sensor Net CY - Karlsruhe, Germany DA - 22.11.2017 KW - LCST PY - 2017 AN - OPUS4-43310 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Iznaguen, Hassan A1 - Piechotta, Christian A1 - Ostermann, Markus A1 - Traub, Heike T1 - Homogeneity of dispersed brominated flame retardants (HBCD) in polystyrene by LA-ICP-MS and XRF N2 - To investigate the release or migration of flame retardants from polypropylene (PP) and polysytrene (PS) samples with a defined content of flame retardants as additives were prepared and used. Therefore a distinct 1,2,5,6,9,10-hexabromocyclododecane HBCD concentration of 1 wt.% in PS resp. a specified bromodiphenylether (BDE-209) of 0.1 wt.% in PP is defined. For the preparation of the samples granular PP or PS are extruded together with the BFR additives. Even the result of this process may lead to homogenous partitions of the BFR additives. So, the distribution of these additives must be proven before using the samples in an experimental setup for weathering studies. In accordance to the regulation of RoHS (2011/65/EU) , where the use of XRF is recommended for the proof of flame retardants in electronic consumer products, we use this method as a reference to the laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). Therefore we present the correlation of these experiments. The experimental setup for the XRF experiment is like a standard addition: in cavities, which are introduced in the sample plates subsequently, solutions of defined concentration of flame retardants are put in there. According to the idea of standard addition, we get an information of the originating mass fraction of flame retardant in each sample and we can monitor the release and migration of these additives during/after the weathering experiments with high precision. An internal standard of HBCD is added as a marker and can be analyzed after the weathering experiment. T2 - 8th European Weathering Symposium EWS CY - Wien, Austria DA - 20.09.2017 KW - LA-ICP-MS KW - XRF KW - BFR PY - 2017 AN - OPUS4-43313 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gawlitza, Kornelia A1 - Tiebe, Carlo A1 - Banach, Ulrich A1 - Noske, Reinhard A1 - Bartholmai, Matthias A1 - Rurack, Knut T1 - Novel sensor for long-term monitoring of ammonia in gas phase N2 - Pollution through emission of toxic gases is of utmost environmental concern, raising the interest in developing reliable gas sensors. Exemplarily, ammonia and its conversion products can provoke considerable damage on human health and ecosystems. Hence, there is a need for reliable and reversible sensor materials to monitor traces of gaseous ammonia in ambient air, which at best can be used on-site for field measurements. Although various types of sensors such as potentiometric, amperometric, and biological sensors are available for detecting trace amounts of gases, fluorescent sensors have gained importance due to several advantages such as high sensitivity, possible miniaturization, as well as potential multiplexing. Herein, we present the development of a sensor material for gaseous ammonia in the lower ppm or even ppb range using optical fluorescence as transduction mechanism due to its intrinsically high sensitivity and high spatial resolution.[1] Therefore, a fluorescent dye, which shows reversible fluorescence enhancement in the presence of the analyte was incorporated into a polymer matrix, the latter to ensure the accumulation of ammonia. To calibrate the designed optical sensor system a gas standard generator was used, producing standard gas mixtures, which comply with the metrological traceability for ammonia gas standards in the desired environmentally relevant measurement range.[2] Beside the development of a highly sensitive, selective, and reversible sensor, the integration of such systems into mobile sensor devices is addressed. Therefore, a prototype of a miniaturized hand-held instrument was developed enabling a straightforward and long-term read-out of the measurement signal. T2 - 13. Dresdner Sensor Symposium (13. DSS) CY - Dresden, Germany DA - 04.12.2017 KW - Ammonia gas sensor KW - Fluorescence KW - Air quality monitoring KW - Standard gas generator KW - Minitaurized sensor device PY - 2017 AN - OPUS4-43351 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Tiebe, Carlo A1 - Banach, Ulrich A1 - Hübert, Thomas A1 - Gawlitza, Kornelia A1 - Bartholmai, Matthias T1 - Development of a gas standard generator N2 - Pollution through emission of toxic gases is an increasing problem for the environment. It affects similarly agricultural, industrial and urban areas. In future, environmental emissions in ambient air must be monitored at even lower concentrations as nowadays. One environmental relevant compound is ammonia and its conversion product ammonium that have strong negative impact on human health and ecosystems. Most ammonia measurements in ambient air are performed in the range below 1000 nmol·mol-1 and thus there is a need for reliable traceable ammonia gas standards and in addition in situ analytical procedures for monitoring (in ambient air to avoid that thresholds are exceeded). Therefore, the use of reference materials is necessary for development accompanying test or for calibration, e. g. of structure-integrated sensors and mobile multi-gas sensors. The developed gas standard generator produces gas mixtures that comply with the metrological traceability for ammonia gas standards in the desired environmentally relevant measurement range. The method is based on the permeation of ammonia through a membrane at constant temperature and pressure. The resulting ammonia penetrant gas flow is then mixed with a carrier gas flow to generate a gas standard flow of known concentration. The dynamic rage is enlarged by using a two dilution steps. Depending on the permeation rate, generable molar fractions are possible in the range nmol·mol-1 to a few µmol·mol-1. We present the design of an ammonia gas standard generator and first results of the characterisation of its individual components supporting the uncertainty assessment according to GUM for stable gas concentrations in this range. The relative uncertainty of the generated ammonia gas standard is smaller than 4 % (k = 2). T2 - Colloquium of Optical Spectrometry (COSP) CY - Berlin, Germany DA - 27.11.2017 KW - Gas standard generator KW - Permeation method KW - Ammonia PY - 2017 AN - OPUS4-43337 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan T1 - Improved traceability chain of nanoparticle size measurements N2 - The overall objective of project Improved traceability chain of nanoparticle size measurements is to improve the traceability chain for nanoparticle size measurements. The main impact will be achieved by manifold contributions to standard documents for CEN/TC 352 “Nanotechnologies”, which directly addresses the research needs of CEN, CENELEC and ETSI mandated by EC to develop standards for methods and reference materials to accurately measure the size and size distribution of nanoparticles. This will take place in collaboration with ISO/TC229 ‘Nanotechnologies’, ISO/TC24/SC4 ‘Particle characterization’ and ISO/TC201 ‘Surface analysis’/ SC9 ‘Scanning probe microscopy’. T2 - EMPIR 2017 Review Conference CY - Monaco DA - 9.11.2017 KW - Nanoparticles KW - Traceability KW - Electron micrsocopy KW - Size KW - Shape PY - 2017 AN - OPUS4-43019 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zavoiura, Oleksandr A1 - Resch-Genger, Ute A1 - Seitz, O. T1 - RNA detection by FRET systems based on peptide nucleic acid-QD conjugates N2 - Today, 40 % of the world’s population live in areas with a significant risk of dengue infection. Early and reliable diagnosis of dengue virus (DENV) is essential to provide the patients with the required medical care and prevent spreading of the disease. Conventional methods for DENV diagnosis like PCR and virus isolation can be used in laboratory settings, yet are difficult to implement in point-of-care diagnostics, requiring simple, selective, fast, and sensitive detection schemes. We present here a novel approach for the detection of DENV, via its RNA, with optical read-out that relies on RNA-catalyzed fluorophore transfer onto a semiconductor quantum dot (QD) and Förster resonance energy transfer (FRET). For this RNA assay, peptide nucleic acid (PNA) oligomers were used as highly specific capture and reporter probes. PNA exhibits remarkable affinity towards RNA as well as extremely high chemical and enzymatic stability. The capture probe, which is immobilized on a QD acting as FRET donor, bears a nucleophile at the N-terminus and the reporter probe is modified with an organic dye acting as FRET acceptor. The presence of DENV genomic RNA in the sample triggers a transfer of the dye onto the QD, signaled by FRET between the QD and the dye. A unique advantage of this system is the ability of one RNA molecule to trigger multiple transfer reactions, thereby amplifying the fluorescence signal. This assay together with the exceptional brightness of QDs and outstanding hybridization properties of PNA allows for highly specific and sensitive detection of DENV RNA in the sub-nM range. T2 - MAF 2017 CY - Brügge, Belgium DA - 10.09.2017 KW - QD KW - RNA detection KW - PNA KW - Click chemistry PY - 2017 AN - OPUS4-43230 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -