TY - CONF A1 - Beck, Uwe A1 - Hidde, Gundula A1 - Lange, Thorid A1 - Gargouri, H. A1 - Kärkkänen, I. A1 - Naumann, F. T1 - Plasma Activation and Plasma-assisted ALD Surface Modification of Polymers for Improved Bonding and Adhesive Strength N2 - Bonding strength is crucial on polymers of low surface energy, for clean surfaces limited to 0.5, 1, and 2 MPa for PTFE, PP, and PE. Plasma treatment may improve bonding strength by a factor of 2 (PTFE) or 5 (PP and PE). The efficiency of treatment is usually 10% as both low pressure and atmospheric pressure processes show low topographic conformity. Besides, lifetime of activation/modification is rather short. Hence, bonding has to be carried out immediately after plasma treatment. The concept of plasma-assisted ALD (atomic layer deposition) interlayers was introduced in the project HARFE of SENTECH (modification/deposition/in-situ monitoring) and BAM (bonding, characterization, testing). ALD deposition has a high surface conformity and for dielectric films of Al2O3 also a good long-term stability given that the films are dense enough. Based on TMA and O2/O3 precursors, ALD layer stacks from 60 to 375 monolayers were prepared under different conditions. For a transfer time of 24 hours from deposition to measurement, bonding strength could be increased up to 5 MPa (PTFE) respectively 10 MPa (PP, PE). The huge potential of ALD layers as adhesive interlayers was demonstrated for Al2O3 on stainless steel with bonding strength beyond 15 MPa, i.e. interface strength within the ALD stack is also in this range. This is a prerequisite for subsequent PVD/CVD-deposition in hybrid systems. By means of the SI ALD LL system of SENTECH thermal and plasma-supported ALD processes can be alternatively realized. Ellipsometric in-situ monitoring provides monolayer sensitivity and reveals that the efficient bonding of the lower ALD layers on the polymer has to be further improved. Testing of bonding strength was realized by CAT (centrifugal adhesion testing) technology. It was shown that ALD modification correlates with the increase of surface energy and bonding strength. T2 - PSE 2018 - 16th Conference on Plasma Surface Engineering CY - Garmisch-Partenkirchen, Germany DA - 17.09.2018 KW - Plasma activation KW - Plasma-assisted ALD modification KW - Adhesive ALD interlayer KW - Bonding strength KW - Adhesive strength PY - 2018 AN - OPUS4-46015 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Emmerling, Franziska T1 - Mechanochemical Syntheses of Metal Phosphonates N2 - Mechanochemistry is a suitable method for synthesizing a variety of metal phosphonates. By varying the ratio of the reactants, it is possible to control the reaction pathway. With this approach targeted synthesis of a certain composition is possible. Several new metal phosphonate structures were solved from the powder X-ray diffraction data including molecular metal phosphonates. The results demonstrate a new fast, facile, and environmental friendly alternative for the preparation of metal phosphonates. In situ investigations of the milling processes provided insights into the formation process of metal phosphonates. A multi-step diffusion mechanism was identified for most systems. Crystalline phases were obtained intermediately, suggesting that the synthesis is following Ostwald’s rules of stages. T2 - 1st European Workshop on Metalphophantes CY - Swanse, UK DA - 18.09.2018 KW - Mechanochemistry PY - 2018 AN - OPUS4-46382 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gollwitzer, Christian A1 - Ulbricht, Alexander A1 - Scholz, Philipp A1 - Joshi, Yogita A1 - Weidner, Steffen T1 - 3D printing material filled with metal organic frameworks analyzed by synchrotron based absorption edge tomography N2 - Absorption edge tomography, also known as differential tomography at absorption edges, is a method which exploits the sudden change of the attenuation coefficient, when the photon energy crosses the absorption edge of an element. Synchrotron radiation is the best source for absorption edge tomography, because of its small bandwidth, high intensity and easily adjustable photon energy. The synchrotron beamline BAMline at the synchrotron radiation facility BESSY II in Berlin, which is operated by the Bundesanstalt für Materialforschung und -prüfung (BAM), provides a monochromatized beam in a photon energy range from 5 keV up to 80 keV with a bandwidth of 2%, when the double multilayer monochromator is used. Together with the microtomography setup, this enables differential tomography with submicron resolution at the K edge of the elements from chromium up to the lanthanides, and up to uranium, when the L edges are used as well. In this work, metal organic frameworks (MOFs) embedded in polymer are characterized using differential tomography. MOFs are microporous structures of metal ions, coordinated by organic linker molecules, that can be used in a broad field of applications, especially in gas storage and catalysis. In this work, polymer embedded MOFs were extruded into filaments, which could be used for 3d-printing to profit from the specific properties of the MOFs in polymeric materials combined with the arbitrary shapes provided by 3d-printing. For the extrusion, different polymer classes like ABS, polyester- and polyetherurethanes, as well as different MOFs (ZIF-8, ZIF-67, HKUST-1) were used to create MOF containing filaments with a nominal diameter of 3.0 mm. Differential tomography at the edges of the Zn, Co, and Cu was then used to find the distribution of the corresponding MOF in the filament and to analyze the shape of the inclusions. T2 - MSE 2018 CY - Darmstadt, Germany DA - 26.09.2018 KW - Absorption edge KW - Tomography KW - Metal organic framework KW - Synchrotron PY - 2018 AN - OPUS4-46429 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Witte, Steffen A1 - Radtke, Martin A1 - de Oliveira Guilherme Buzanich, Ana A1 - Grunewald, Christian A1 - Reinholz, Uwe A1 - Riesemeier, Heinrich A1 - Emmerling, Franziska T1 - XAFS@BAMline N2 - X-ray Absorption fine structure spectroscopy (XAFS) is a frequently employed technique in order to investigate structural composition and Change of chemical compounds such as catalytic species or corrosion processes. These structural properties are essential (i) to understand underlying reaction mechanism and (ii) to further improve the design of materials. While XAFS measurements are usually performed with ionization Chambers or simple fluorescence detectors, we at BAMline specialize in measurements with innovative set-ups that meet Specialrequirements such as time resolution, (3D-) spatial Resolution or demanding sample environments. This contribution presents various available XAFS configurations with their corresponding applications. In particular, these comprise single -shot XAFS for time- resolved measurements, grazing-exit XAFS with energy and a spatially resolved detector for the characterization of thin films and an in situ grazing incidence Setup for the characterization of corrosion layers. Additionally,the possibility of analyzing Minute samples in total-reflection geometry is demonstrated. T2 - EXRS 2018 CY - Ljubljana, Slovenia DA - 24.06.2018 KW - XANES KW - XAFS KW - BAMline KW - Synchrotron KW - TXRF PY - 2018 AN - OPUS4-46361 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radtke, Martin A1 - de Oliveira Guilherme Buzanich, Ana A1 - Reinholz, Uwe A1 - Riesemeier, Heinrich A1 - Scharf, o T1 - The colour X-ray camera – Basics and applications of a 2D X-ray detector N2 - The Color X-ray Camera CXC or SLcam® is an energy-resolving X-ray camera capable of energy- and space-resolved measurements. It consists of a high-speed CCD detector coupled to a polycapil-lary optic that conducts the X-ray photons from the probe to distinct pixels onto the detector. The camera is capable of fast acquisition of spatially and energy resolved fluorescence images. A dedicated software enables the acquisition and the online processing of the spectral data for all 69696 pixels, leading to a real-time visualization of the elements distribution in a sample. It was developed in a joint project with BAM, IFG Berlin and PN Sensors. In this contribution we will mainly discuss the use of the CXC at our beamline, the BAMline at BESSY II and imaging applications of the CXC from different areas, like biology and archaeometry. Additionally new developments for the use of the detector without optics, like wavelength dispersive detection or 1shot-XANES, will be presented. T2 - Seminar Strahlenphysikalische Anwendungen in Technik und Medizin CY - ATi Wien, Austria DA - 24.01.2018 KW - XRF KW - Synchrotron KW - BAMline PY - 2018 AN - OPUS4-46365 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Braun, Ulrike T1 - About Standardization and Analytics of Microplastics N2 - Presentation about national and international standardization of microplastic analysis, as well as the project RUSEKU T2 - Industrievereinigung Chemiefaser e.V. CY - Frankfurt, Germany DA - 26.02.2019 KW - Standardisation KW - Microplastic KW - Analysis PY - 2019 AN - OPUS4-47577 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Braun, Ulrike T1 - Mikroplastik in der Umwelt und im Trinkwasser: Einordnung der Relevanz und der Methodik N2 - Überblick zur Thematik Mikroplastik mit speziellem Fokus auf Trinkwasser T2 - 20. Jahrestagung Trinkwasserringversuche Nordrhein-Westfalen – Niedersachsen CY - Osnabrück, Germany DA - 06.03.2019 KW - Trinkwasser KW - Umwelt KW - Mikroplastik PY - 2019 AN - OPUS4-47578 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Braun, Ulrike A1 - Müller, Axel A1 - Grathwohl, P. A1 - Vogler, M. A1 - Scholz, K. T1 - Plastik im Boden, Aktueller Forschungsstand N2 - Der Vortrag gibt einen Überblick über ein laufendes Vorhaben zum Thema Mikroplastik in Böden. T2 - NUA-Veranstaltung "Plastik in Natur und Umwelt" CY - Münster, Germany DA - 08.03.2019 KW - Mikroplastik KW - Böden KW - Analytik PY - 2019 AN - OPUS4-47579 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Braun, Ulrike A1 - Bannick, C. G. T1 - Harmonisierung von Untersuchungsverfahren für (Mikro-)Plastik in der Umwelt N2 - Im Rahmen der Thematik "Recycling von Kunststoffen" wird die Thematik "Mikroplastik" vorgestellt T2 - Berliner Recycling- und Rohstoffkonferenz CY - Berlin, Germany DA - 11.03.2019 KW - Mikroplastik KW - Standarisierung KW - Analytik PY - 2019 AN - OPUS4-47582 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Braun, Ulrike A1 - Eisentraut, Paul A1 - Dümichen, E. T1 - Analytik von Mikroplastik mittels Thermoextraktion Desorption Gas Chromatographie Massen Spektrometrie (TED-GC-MS): Nun auch die Luft? N2 - Der Vortrag gibt eine Überblick über die Messung von Mikroplastik mittels TED-GC-MS mit speziellem Fokus auf Luftgetragene Partikel T2 - Odour and Emissions of Plastic Materials CY - Kassel, Germany DA - 19.03.2019 KW - Mikroplastik KW - Standarisierung KW - Analytik PY - 2019 AN - OPUS4-47583 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -