TY - CONF A1 - Schneider, Rudolf T1 - Insights at the point-of-need via immunoanalytical methods N2 - A vast number of emerging pollutants is being detected in the environment. Another lingering problem are health-threatening contaminants, such as mycotoxins, that deteriorate food and feed, and the pathogens themselves. Analytical methods, suitable for trace analysis, are needed that are desirably also fast, inexpensive and, if possible, robust and portable. It is set out, how immunoana-lytical, i.e., antibody-based methods, which are elaborated in a broad range of formats, can be profitably used to gain insights on the distribution and concentration trends of the target analytes at the point-of-need. T2 - Kolloquium der Fakultät für Pharmazie der Universität Porto CY - Porto, Portugal DA - 01.07.2022 KW - Immunoassay KW - Sensor KW - Antibody PY - 2022 AN - OPUS4-56781 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schneider, Rudolf T1 - Anthropogenic markers quantified by rapid immunochemical methods – what can their occurrence in wastewater, surface water, and drinking water tell us? N2 - In urban waters, a multitude of organic micropollutants, often termed emerging pollutants, has been found over the last decades. Analytical methods suitable for trace analysis are needed that are desirably also fast, inexpensive and, if possible, robust and portable. Immunoanalytical, i.e., antibody-based, methods which are available in a broad range of formats, can be profitably used here to screen for the distribution and to monitor the trends of concentration levels of contaminants of emerging concern in the environment. Some of these formats are single-analyte but high-throughput methods. To use them wisely, indicator substances, sometimes called anthropogenic markers, should be selected and used in screening approaches, i.e., as indicators for contamination and the pre-selection of samples at which to have a closer look by multiplex methods like LC-MS/MS. Other methods are suitable to be performed on portable instrumentation in the field (on-site) or in facilities such as wastewater treatment plants for on-line monitoring of the treatment and elimination process. Furthermore, array technologies have been established that allow for parallel (multiplex) analysis of several analytes of interest. The microtiter-plate based ELISA (Enzyme-linked Immunosorbent Assay) is the method of choice for the analysis of a large number of samples [1]. ELISAs are available to monitor for anthropogenic markers such as the antiepileptic carbamazepine, the analgesic diclofenac, the antihistaminic cetirizine, the steroid hormone estrone, the antimicrobial sulfamethoxazole, psychoactive caffeine and cocaine, the priority pollutant bisphenol A, and the bile acid isolithocholic acid. For on-site screening and monitoring, simpler formats, like mix-and-read assays, e.g., the Fluorescence Polarization Immunoassay (FPIA) [2] or Lateral-flow Immunoassays (LFIA) [3] are more suitable tools, the latter based on dipsticks or little cassettes, with which users have become very familiar during the COVID-19 pandemic via rapid antigen tests. The suitability of multi-analyte formats such as immunomicroarrays depends on the choice of a signal-producing system that provides small uncertainties and good reproducibility of the measurements. Bead-based (“suspension”) arrays, read out in flow cytometers, are a powerful platform for multiplex assays [4]. Electrochemical formats, run on portable devices, provide additional advantages as no light source is required. They are most promising for stand-alone analysers and biosensors [5]. The speed, low cost and on-site capabilities of these methods allow to gather a lot more data on anthropogenic compounds which enables to quantify inputs, differences in degradation power of elimination processes, dilution phenomena and a more precise image of individual water cycles which is demonstrated by several examples. T2 - EuChemS Chemistry Congress ECC8 CY - Lisbon, Portugal DA - 28.08.2022 KW - Biosensor KW - Immunoassay KW - Antibody PY - 2022 AN - OPUS4-56783 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schneider, Rudolf T1 - Field Analysis by Antibody-based Analytical Methods: The Importance of Advanced Materials N2 - Analytical methods based on the selectivity of antibodies, often called immunoassays, are a back-bone of clinical laboratory diagnostics. To bring them to the field, i.e., to make immunoanalytical methods portable, hopefully even faster, more sensitive, and robust, advanced materials are re-quired. Materials can be novel labels, e.g., chemical or particle labels, such as fluorophores or na-noparticles. Carrier particles, such as magnetic or polymer beads, make it possible to adopt the as-says to meso- or microfluidic set-ups and encoding them opens the path to multiplex analysis. Spe-cialty electrodes can enable for higher sensitivity in electrochemical detection. Without research into better materials, efforts to bring analysis to the point-of-need will not bear fruit. T2 - Kolloquium des Aveiro Institut of Materials (CICECO) der Universität Aveiro CY - Aveiro, Portugal DA - 20.09.2022 KW - Immunoassay KW - Biosensor KW - Antibody PY - 2022 AN - OPUS4-56785 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schneider, Rudolf T1 - Advanced materials broadening the scope of antibody-based analytical methods N2 - Immunoanalytical Techniques, i.e., antibody-based analytical methods, have been used for decades in clinical diagnostics. What makes them attractive for other fields of application is their short time-to-result and high sensitivity. Microplate-based assays such as ELISA have been adopted early in environmental and food analysis. Yet, to make immunoassays even faster, more sensitive, robust, and, most desirable, portable, advanced materials, sometimes developed for other purposes, can be profitably used to achieve these goals. Materials can be novel labels, e.g., chemical or particle labels, such as fluorophores or nanoparticles. Carrier particles, such as magnetic or polymer beads, make it possible to adopt the assays to meso- or microfluidic set-ups and encoding them opens the path to multiplex analysis. Specialty electrodes can enable for higher sensitivity in electrochemical detection. All this broadens the scope of application and lowers effort and cost for analysis at the point-of-need. T2 - ChemForum - Kolloquium des Instituts für Strukturchemie CY - Lisbon, Portugal DA - 07.09.2022 KW - Immunoassay KW - Biosensor KW - Antibody PY - 2022 AN - OPUS4-56782 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schneider, Rudolf T1 - Bestimmung von anthropogenen Markerkonzentrationen für die SARS-CoV-2 Quantifizierung mittels eines Hochdurchsatzverfahrens (ELISA) N2 - ESI-CorA ist ein nationales Verbundprojekt mit dem Ziel des Nachweises von SARS-CoV-2 im Abwasser. Das UBA hat als Teilprojekt das Projekt MARKERIA (VH1802) an die BAM vergeben. Ziel des Projektes ist es, die Eignung der Bestimmung eines oder mehrerer der genannten anthropogenen Marker im Abwasser zur Volumenkorrektur („Kalibration“) im SARS-CoV-2-Monitoring von Abwässern auf der Basis eines von der BAM zu erhebenden Messdatensatzes zu evaluieren. T2 - 12. Sitzung des Begleitkreises des nationalen Verbundprojektes ESI-CorA CY - Online meeting DA - 13.06.2022 KW - Biosensoren KW - Immunoassay KW - SARS-CoV-2 PY - 2022 AN - OPUS4-57110 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schneider, Rudolf T1 - Bestimmung von anthropogenen Markerkonzentrationen für die SARS-CoV-2 Quantifizierung mittels eines Hochdurchsatzverfahrens (ELISA) N2 - 1. Projektreffen mit dem Umweltbundesamt für das Projekt MARKERIA (VH1802). Ziel des Projektes ist es, die Eignung der Bestimmung eines oder mehrerer der genannten anthropogenen Marker im Abwasser zur Volumenkorrektur („Kalibration“) im SARS-CoV-2-Monitoring von Abwässern auf der Basis eines von der BAM zu erhebenden Messdatensatzes zu evaluieren. T2 - 1. Projekttreffen mit dem UBA zum Projekt MARERIA (VH1802) CY - Berlin, Germany DA - 15.09.2022 KW - Biosensoren KW - Immunoassay KW - SARS-CoV-2 PY - 2022 AN - OPUS4-57111 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Riedel, Soraya A1 - Bayram, Rabia A1 - Döring, Sarah A1 - Schneider, Rudolf A1 - Konthur, Zoltán T1 - Tracing toxic fumonisins - Fumonisin sensing by Aspergillus niger Fumonisin Amine Oxidase (AnFAO) and amperometric hydrogen peroxide detection N2 - Fumonisins are a class of toxic secondary metabolites produced by various Fusarium species. The two most important producers of fumonisins are F. verticillioides and F. proliferatum but also Aspergillus niger is known to produce fumonisins. Most frequently they occur on maize, but also other grains can be contaminated with this group of mycotoxins. Exposure to fumonisins by dietary intake can have serious health effects on farm animals such as equine leukoencephalomalacia and porcine pulmonary oedema and is associated with neural tube defects and esophageal cancer in humans. Thus, the European Commission sets legal limits for fumonisins in foodstuffs. The detection of fumonisins is frequently performed in laboratories by chromatographic methods, which are costly and require trained personnel. Simplifying the analysis is therefore a major goal using portable detection systems. Electrochemical enzymatic biosensors offer great promise to meet this demand. Here we report for the first time an enzymatic fumonisin sensing approach with amperometric detection. For this purpose, an Aspergillus niger fumonisin amine oxidase (AnFAO) catalyzing the oxidative deamination of fumonisins, producing hydrogen peroxide, was recombinantly produced in E. coli. For the first time, the specific enzyme activity of AnFAO was determined using a horseradish peroxidase-based fluorescence assay. It was found that the specific activity of AnFAO using 20 μM Fumonisin B1 as substrate is higher than for 20 μM Fumonisin B2 with 0.122 U mg-1 and 0.058 U mg-1, respectively. It was possible to show a dependence of enzyme activity with enzyme – and substrate-concentration. For fumonisin B1 detection, the enzyme was coupled covalently to magnetic particles and the enzymatically produced H2O2 was detected amperometrically in a flow injection system using Prussian blue carbon electrodes. The developed method allows to quantify fumonisin B1 concentrations down to 1.5 µM and demonstrates that the recombinantly produced AnFAO was able to deaminate different concentrations of fumonisin even in immobilized form. Thus, this enzyme is well suited to develop an enzyme based electrochemical biosensor for fumonisin contaminated food and feed. T2 - Posterschau Adlershofer Forschungsforum CY - Berlin, Germany DA - 11.11.2022 KW - Biosensor KW - Amperometry KW - Mycotoxins KW - Electrochemical sensor KW - Recombinant protein expression PY - 2022 N1 - Geburtsname von Riedel, Soraya: Höfs, S. - Birth name of Riedel, Soraya: Höfs, S. AN - OPUS4-56248 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Strangfeld, Christoph A1 - Schönsee, Eric A1 - Jeyifous, Olubunni Anthony A1 - Mezhov, Alexander A1 - Hüsken, Götz T1 - Introduction of a monitoring system for Bingham fluids in additive manufacturing with concrete N2 - Freeform additive manufacturing of concrete structures is a rising technology in civil engineering with several fascinating advantages. Nonetheless, to ensure reliability and structural integrity, standards and quality control are required in the future to bring this technology into the market. As the concrete is manufactured continuously, continuous quality control of the printing process is also required, i.e. comprehensive process monitoring. At BAM, a test rig will be installed, enabling the printing of concrete structures with a maximum size of 2 m x 1 m x 1 m (l x w x h). Here, process monitoring is the focus of the test rig. In this study, we show the results of the first pump tests, including the measurement of several parameters such as temperature and pressure along the supply system, i.e. from the concrete pump to the printer head. T2 - NDT-CE 2022 CY - Zurich, Switzerland DA - 16.08.2022 KW - Additive manufacturing of concrete KW - Process monitoring KW - Non-destructive testing KW - Bingham fluid PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-556367 SP - 1 EP - 12 AN - OPUS4-55636 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nerger, Tino A1 - Neumann, Patrick P. A1 - Weller, Michael G. T1 - A New Approach: Passive Smart Dust for Detection of Hazardous Substances N2 - Remote sensing of hazardous substances is a key task that can be achieved with the help of remotely operated platforms equipped with specific sensors. A huge variety of methods and used vehicles have been developed for different purposes in recent years. The term smart dust refers to a science fiction novel and develop shortly after into a research proposal at UC Berkley funded by DARPA. Subsequently, the topic gained attraction but was overall considered as to complex for the technologies available at that time. In the launched passive smart dust project, we shift to a simple “chemical intelligent” passive sensor particle on the ground combined a read-out active sensor attached to an Unmanned Aerial Vehicle (UAV). The reactive particle surface can be preadjusted in the lab for exact desired properties regarding certain reactions to hazardous substances. Moreover, the aimed interaction with the active sensor can be modified. Planed applications allow for different materials e.g., for short time measurement, being ecologically degradable, or weather stable for long time monitoring. T2 - 38th Danubia-Adria Symposium on Advances in Experimental Mechanics CY - Poros, Greece DA - 20.09.2022 KW - Smart Dust KW - Drone KW - Remote Detection KW - Hazardous substances PY - 2022 SP - 1 EP - 2 CY - Athens, Greece AN - OPUS4-55925 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nerger, Tino A1 - Neumann, Patrick P. A1 - Weller, Michael G. T1 - Passive Smart Dust For Detection Of Hazardous Substances N2 - High demand for remote sensing of hazardous substances. Possible solution: Use of distributed, low cost, and environmentally safe particles as passive sensors that can be read out remotely Chemical intelligence on the particle surface can be easily modified Particles enable optically quantifiable response and inference of target substances (also no maintenance or power supply required T2 - 38th Danubia-Adria Symposium on Advances in Experimental Mechanics CY - Poros, Greece DA - 20.09.2022 KW - Smart Dust KW - Drone KW - Remote Detection KW - Colorchanging Particles PY - 2022 AN - OPUS4-56025 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Neumann, Patrick P. A1 - Winkler, Nicolas P. A1 - Nerger, Tino A1 - Weller, Michael G. A1 - Otremba, Frank A1 - Werner, Jan A1 - Schugardt, Jan T1 - Capabilities of using mobile platforms for monitoring hazard scenarios by the example of the RASEM project N2 - This presentation shows the capabilities of mobile platforms for monitoring hazard scenarios. As an example the RASEM project is presented. Furthermore two ideas for future work are shown, namely, Aerial-based Gas Tomography and Passive Smart Dust. T2 - Climate Change @ Fire Science Workshop CY - Berlin, Germany DA - 10.11.2022 KW - RASEM KW - Dust sensor KW - Low-cost KW - Sensor network KW - Passive Smart Dust KW - Gas Tomography PY - 2022 AN - OPUS4-56296 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Tchipilov, Teodor A1 - Meyer, Klas A1 - Weller, Michael G. T1 - Quantitative 1H Nuclear Magnetic Resonance (qNMR) of Aromatic Amino Acids for Protein Quantification N2 - qNMR is a valuable technique for metrological studies due to the uniformity of its signal response for all chemical species of an isotope of interest, which enables compound-independent calibration. However, protein quantification remained challenging as large molecules produce wide, low-intensity signals that reduce the already low sensitivity. Combining qNMR with the hydrolysis of protein samples into amino acids circumvents many of these issues and facilitates the use of NMR spectroscopy for absolute protein and peptide quantification.In this work, different conditions have been tested for quantifying aromatic amino acids and proteins. First, we examined the pH-based signal shifts in the aromatic region. The preferable pH depends on the selection of the amino acids for quantification and which internal standard substance should be used to avoid peak overlap. Several aromatic compounds, such as terephthalic acid, sulfoisophthalic acid, and benzene tricarboxylic acid, have been applied as internal standards. The quantification of amino acids from an amino acid standard, as well as from a certified reference material (bovine serum albumin), was performed. Using the first two suggested internal standards, recovery was ~ 97 % for histidine, phenylalanine, and tyrosine at a concentration of approximately 1 mM in solution. Acidic hydrolysis of a certified reference material (CRM) of bovine serum albumin (BSA) and subsequent quantification of Phe and Tyr yielded recoveries of 98 ± 2 and 88 ± 4 %, respectively, at a protein concentration of 16 g/L or 250 µM. KW - Amino acid analysis KW - AAA KW - Protein hydrolysis KW - Metrology KW - Traceability KW - Reference materials KW - Internal standards KW - Calibration PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-564520 DO - https://doi.org/10.20944/preprints202211.0569.v1 SP - 1 EP - 13 PB - MDPI CY - Basel AN - OPUS4-56452 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Resch-Genger, Ute A1 - Meermann, Björn A1 - Koch, Matthias A1 - Weller, Michael G. T1 - Editorial: Analytical methods and applications in materials and life sciences N2 - Current trends in materials and life sciences are flanked by the need to push detection limits to single molecules or single cells, enable the characterization of increasingly complex matrices or sophisticated nanostructures, speed up the time of analysis, reduce instrument complexity and costs, and improve the reliability of data. This requires suitable analytical tools such as spectroscopic, separation and imaging techniques, mass spectrometry, and hyphenated techniques as well as sensors and their adaptation to application-specific challenges in the environmental, food, consumer product, health sector, nanotechnology, and bioanalysis. Increasing concerns about health threatening known or emerging pollutants in drinking water, consumer products, and food and about the safety of nanomaterials led to a new awareness of the importance of analytical sciences. Another important driver in this direction is the increasing demand by legislation, particularly in view of the 17 sustainable development goals by the United Nations addressing clean energy, industry, and innovation, sustainable cities, clean water, and responsible consumption and production. In this respect, also the development of analytical methods that enable the characterization of material flows in production processes and support recycling concepts of precious raw materials becomes more and more relevant. In the future, this will provide the basis for greener production in the chemical industry utilizing recycled or sustainable starting materials. This makes analytical chemistry an essential player in terms of the circular economy helping to increase the sustainability of production processes. In the life sciences sector, products based on proteins, such as therapeutic and diagnostic antibodies, increase in importance. These increasingly biotechnologically produced functional biomolecules pose a high level of complexity of matrix and structural features that can be met only by highly advanced methods for separation, characterization, and detection. In addition, metrological traceability and target definition are still significant challenges for the future, particularly in the life sciences. However, innovative reference materials as required for the health and food sector and the characterization of advanced materials can only be developed when suitable analytical protocols are available. The so-called reproducibility crisis in sciences underlines the importance of improved measures of quality control for all kinds of measurements and material characterization. This calls for thorough method validation concepts, suitable reference materials, and regular interlaboratory comparisons of measurements as well as better training of scientists in analytical sciences. The important contribution of analytical sciences to these developments is highlighted by a broad collection of research papers, trend articles, and critical reviews from these different application fields. Special emphasis is dedicated to often-overlooked quality assurance and reference materials. T2 - 150 years BAM: Science with impact CY - Berlin, Germany DA - 01.01.2021 KW - Analysis KW - Life sciences KW - Analytical sciences KW - Quality assurance KW - Reference material KW - Fluorescence KW - Nanoparticle KW - Sensor KW - Material sciences KW - Pollutant KW - Environment KW - Method KW - Limit of detection KW - 150th anniversary KW - ABC KW - BAM KW - Collection KW - Editorial KW - Special issue KW - Bundesanstalt für Materialforschung und -prüfung KW - Jahrestag PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-550720 DO - https://doi.org/10.1007/s00216-022-04082-8 SN - 1618-2642 SN - 1618-2650 VL - 414 IS - Topical collection: Analytical methods and applications in the materials and life sciences SP - 4267 EP - 4268 PB - Springer CY - Berlin AN - OPUS4-55072 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Tscheuschner, Georg A1 - Kaiser, Melanie N. A1 - Lisec, Jan A1 - Beslic, D. A1 - Muth, Thilo A1 - Krüger, M. A1 - Mages, H.-W. A1 - Dorner, B. G. A1 - Knospe, J. A1 - Schenk, J. A. A1 - Sellrie, F. A1 - Weller, Michael G. T1 - MALDI-TOF-MS-based identification of monoclonal murine anti-SARS-CoV-2 antibodies within one hour N2 - During the SARS-CoV-2 pandemic, many virus-binding monoclonal antibodies have been developed for clinical and diagnostic purposes. This underlines the importance of antibodies as universal bioanalytical reagents. However, little attention is given to the reproducibility crisis that scientific studies are still facing to date. In a recent study, not even half of all research antibodies mentioned in publications could be identified at all. This should spark more efforts in the search for practical solutions for the traceability of antibodies. For this purpose, we used thirty-five monoclonal antibodies against SARS-CoV-2 to demonstrate how sequence-independent antibody identification can be achieved by simple means applied onto the protein. First, we examined the intact and light chain masses of the antibodies relative to the reference material NIST-mAb 8671. Already half of the antibodies could be identified based solely on these two parameters. In addition, we developed two complementary peptide mass fingerprinting methods with MALDI-TOF-MS that can be performed in 45 minutes and had a combined sequence coverage of over 80%. One method is based on the partial acidic hydrolysis of the protein by 5 mM of sulfuric acid at 99 °C. Furthermore, we established a fast way for a tryptic digest without an alkylation step. We were able to show that the distinction of clones is possible simply by a brief visual comparison of the mass spectra. In this work, two clones originating from the same immunization gave the same fingerprints. Later, a hybridoma sequencing confirmed the sequence identity of these sister clones. In order to automate the spectral comparison for larger libraries of antibodies, we developed the online software ABID 2.0 (https://gets.shinyapps.io/ABID/). This open-source software determines the number of matching peptides in the fingerprint spectra. We propose that publications and other documents critically relying on monoclonal antibodies with unknown amino acid sequences should include at least one antibody fingerprint. By fingerprinting an antibody in question, its identity can be confirmed by comparison with a library spectrum at any time and context. KW - SARS-CoV-2 antibody KW - Reproducibility crisis KW - Peptide mass fingerprinting KW - Monoclonal antibody KW - Traceability KW - Antibody identification KW - Identity KW - Antibody light chain KW - MALDI-TOF-MS KW - Trypsin KW - Acidic cleavage KW - Antibody subclass KW - Database KW - Peak overlap KW - ABID KW - Sulfuric acid KW - Online software KW - Sequencing KW - Peptide coverage PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-545182 DO - https://doi.org/10.20944/preprints202203.0229.v1 SN - 2310-287X SP - 1 EP - 24 PB - MDPI CY - Basel AN - OPUS4-54518 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Hartfiel, Reni T1 - Zweistufiges Screening von One-Bead-One-Peptide-Bibliotheken linearer & cyclischer Peptide gegen Pflanzenviren N2 - In der Masterarbeit wurde ein Screening gegen den CCMV mit einer linearen Peptidbibliothek entwickelt, wobei zwei lineare Binder identifiziert wurden. Das resynthetisierte Peptid wurde auf seine Bindungseigenschaften mittels ELISA und MST untersucht. Aufgrund eines Aminosäurefehlers in der selbst durchgeführten Resynthese des Peptids sind die Ergebnisse nicht vollständig übertragbar. Um eine umsetzbare Cyclusgröße für die Peptidbibliothek zu finden, wurden Ringgrößen mit sechs bis acht Aminosäuren untersucht. Da keiner der gewählten Ringgrößen bevorzugt war, wurde die Ringgröße aus acht Aminosäuren für die Peptidbibliothek gewählt. Der Ringschluss wurde durch die Bildung einer Disulfidbrücke erreicht. Dadurch war die Alkylierung der vorhandenen Thiolgruppe in den Abbruchsequenzen notwendig. Neben den etablierten Alkylierungsreagenzien Iodessigsäure, Iodacetamid und Acrylamid wurden zwei Epoxide mituntersucht. Hierbei konnte nur bei Acrylamid und Propylenoxid eine vollständige Alkylierung beobachtet werden. Eine synthetische Peptidbibliothek aus zehn Aminosäuren pro Kopplungsschritt und einer Peptidlänge von acht Aminosäuren wurde erfolgreich nach der Split-and-Mix-Synthese hergestellt. Neben den kanonischen Aminosäuren wurde die synthetische Aminosäure 3-(3-Pyridyl)-alanin in die Peptidbibliothek mit eingebaut. Peptidsequenzen aus der cyclische Peptidbibliothek konnte mittels MALDI-TOF-MS identifiziert werden. Es konnte außerdem gezeigt werden, dass synthetische Aminosäuren mit proteinogenen Aminosäuren erfolgreich übersetzt werden. Anschließend wurde das entwickelte Screening auf eine cyclische Peptidbibliothek übertragen. Dabei konnte kein Binder identifiziert werden, da zu viele Nebenreaktionen auftraten. Ein alternativer Ringschluss über die Seitenketten von Lysin und Cystein wurden mit ortho-Phthaldialdehyd und 2,4,6-Trichloro-1,3,5-triazin (Cyanurchlorid) untersucht. Beide Bedingungen wiesen keinen erfolgreichen Ringschluss auf. Obwohl der Ringschluss über die Seitenketten von Lysin und Cystein nicht erfolgreich war, sollte ein Austausch von Cystein angestrebt werden, so dass kein freies Cystein in den Abbruchsequenzen vorhanden ist und die Alkylierung überflüssig wäre. Der Ringschluss durch Verwendung anderer Seitenketten bietet einen vielseitigen Ansatz. KW - CCMV KW - Pflanzenvirus KW - Peptidbibliothek KW - Peptid-Aptamer KW - Alkylierung KW - Cyclisierung KW - MALDI-TOF-MS KW - Fluoreszenz KW - Chip KW - Sequenzierung KW - Peptid-Synthese PY - 2022 SP - 1 EP - 81 PB - Humboldt-Universität zu Berlin CY - Berlin AN - OPUS4-54501 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Steglich, P. A1 - Rabus, D. G. A1 - Sada, C. A1 - Paul, Martin A1 - Weller, Michael G. A1 - Mai, C. A1 - Mai, A. T1 - Silicon Photonic Micro-Ring Resonators for Chemical and Biological Sensing: A Tutorial N2 - Silicon photonic micro-ring resonators (MRR) developed on the silicon-on-insulator (SOI) platform, owing to their high sensitivity and small footprint, show great potential for many chemical and biological sensing applications such as label-free detection in environmental monitoring, biomedical engineering, and food analysis. In this tutorial,we provide the theoretical background and give design guidelines for SOI-based MRR as well as examples of surface functionalization procedures for label-free detection of molecules. After introducing the advantages and perspectives of MRR, fundamentals of MRR are described in detail, followed by an introduction to the fabrication methods, which are based on a complementary metal-oxide semiconductor (CMOS) technology. Optimization of MRR for chemical and biological sensing is provided, with special emphasis on the optimization of waveguide geometry. At this point, the difference between chemical bulk sensing and label-free surface sensing is explained, and definitions like waveguide sensitivity, ring sensitivity, overall sensitivity as well as the limit of detection (LoD) of MRR are introduced. Further, we show and explain chemical bulk sensing of sodium chloride (NaCl) in water and provide a recipe for label-free surface sensing. KW - Biosensors KW - Biophotonics KW - Chemosensor KW - Biosensor KW - Microresonator KW - Nanophotonics KW - Optical sensors KW - Photonic sensors KW - Optoelectronic KW - Ring resonator KW - Silicon photonics KW - Miniaturization KW - Lab-on-a-chip KW - Lab-on-chip KW - Waveguide KW - Surface chemistry KW - Silanization KW - Glutaraldehyde KW - Affinity immobilization KW - Antibody KW - Oriented immobilization KW - Real-time measurement PY - 2022 DO - https://doi.org/10.1109/JSEN.2021.3119547 SN - 1530-437X VL - 22 IS - 11 SP - 10089 EP - 10105 PB - IEEE AN - OPUS4-55147 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tscheuschner, Georg A1 - Kaiser, Melanie N. A1 - Lisec, Jan A1 - Beslic, D. A1 - Muth, Thilo A1 - Krüger, M. A1 - Mages, H. W. A1 - Dorner, B. G. A1 - Knospe, J. A1 - Schenk, J. A. A1 - Sellrie, F. A1 - Weller, Michael G. T1 - MALDI-TOF-MS-Based Identification of Monoclonal Murine Anti-SARS-CoV-2 Antibodies within One Hour N2 - During the SARS-CoV-2 pandemic, many virus-binding monoclonal antibodies have been developed for clinical and diagnostic purposes. This underlines the importance of antibodies as universal bioanalytical reagents. However, little attention is given to the reproducibility crisis that scientific studies are still facing to date. In a recent study, not even half of all research antibodies mentioned in publications could be identified at all. This should spark more efforts in the search for practical solutions for the traceability of antibodies. For this purpose, we used 35 monoclonal antibodies against SARS-CoV-2 to demonstrate how sequence-independent antibody identification can be achieved by simple means applied to the protein. First, we examined the intact and light chain masses of the antibodies relative to the reference material NIST-mAb 8671. Already half of the antibodies could be identified based solely on these two parameters. In addition, we developed two complementary peptide mass fingerprinting methods with MALDI-TOF-MS that can be performed in 60 min and had a combined sequence coverage of over 80%. One method is based on the partial acidic hydrolysis of the protein by 5 mM of sulfuric acid at 99 degrees C. Furthermore, we established a fast way for a tryptic digest without an alkylation step. We were able to show that the distinction of clones is possible simply by a brief visual comparison of the mass spectra. In this work, two clones originating from the same immunization gave the same fingerprints. Later, a hybridoma sequencing confirmed the sequence identity of these sister clones. In order to automate the spectral comparison for larger libraries of antibodies, we developed the online software ABID 2.0. This open-source software determines the number of matching peptides in the fingerprint spectra. We propose that publications and other documents critically relying on monoclonal antibodies with unknown amino acid sequences should include at least one antibody fingerprint. By fingerprinting an antibody in question, its identity can be confirmed by comparison with a library spectrum at any time and context. KW - Reproducibility KW - Quality control KW - Traceability KW - Peptides KW - Peptide mass fingerprinting KW - Monoclonal antibody KW - Recombinant antibody KW - Identity KW - Antibody identification KW - Sequencing KW - Light chain KW - Mass spectrometry KW - Software KW - Open science KW - Library KW - COVID-19 KW - Corona virus KW - Sequence coverage KW - NIST-mAb 8671 KW - Reference material KW - RBD KW - Spike protein KW - Nucleocapsid KW - Cleavage KW - Tryptic digest KW - MALDI KW - DHAP KW - 2,5-dihydroxyacetophenone KW - Github KW - Zenodo KW - ABID PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-547347 DO - https://doi.org/10.3390/antib11020027 VL - 11 IS - 2 SP - 1 EP - 22 PB - MDPI CY - Basel AN - OPUS4-54734 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Reinmuth-Selzle, K. A1 - Tchipilov, Teodor A1 - Backes, A. T. A1 - Tscheuschner, Georg A1 - Tang, K. A1 - Ziegler, K. A1 - Lucas, K. A1 - Pöschl, U. A1 - Fröhlich-Nowoisky, J. A1 - Weller, Michael G. T1 - Determination of the protein content of complex samples by aromatic amino acid analysis, liquid chromatography-UV absorbance, and colorimetry N2 - Fast and accurate determination of the protein content of a sample is an important and non-trivial task of many biochemical, biomedical, food chemical, pharmaceutical, and environmental research activities. Different methods of total protein determination are used for a wide range of proteins with highly variable properties in complex matrices. These methods usually work reasonably well for proteins under controlled conditions, but the results for non-standard and complex samples are often questionable. Here, we compare new and well-established methods, including traditional amino acid analysis (AAA), aromatic amino acid analysis (AAAA) based on the amino acids phenylalanine and tyrosine, reversed-phase liquid chromatography of intact proteins with UV absorbance measurements at 220 and 280 nm (LC-220, LC-280), and colorimetric assays like Coomassie Blue G-250 dye-binding assay (Bradford) and bicinchoninic acid (BCA) assay. We investigated different samples, including proteins with challenging properties, chemical modifications, mixtures, and complex matrices like air particulate matter and pollen extracts. All methods yielded accurate and precise results for the protein and matrix used for calibration. AAA, AAAA with fluorescence detection, and the LC-220 method yielded robust results even under more challenging conditions (variable analytes and matrices). These methods turned out to be well-suited for reliable determination of the protein content in a wide range of samples, such as air particulate matter and pollen. KW - Air particulate matter KW - Aromatic amino acid analysis KW - Atmospheric aerosol KW - Chemical protein modification KW - Derivatization KW - Nitration KW - Nitrotyrosine KW - LC-UV absorbance KW - Pollen extract KW - Protein quantification KW - Protein test KW - Kjeldahl KW - Tyrosine KW - Phenylalanine KW - Hydrolysis KW - Bradford KW - BCA test KW - 280 nm KW - Air filter samples KW - Fluorescence KW - HPLC KW - Chromatography KW - Protein content KW - 150th anniversary of BAM KW - Topical collection: Analytical Methods and Applications in the Materials and Life Sciences PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-545924 UR - https://pubmed.ncbi.nlm.nih.gov/35320366/ DO - https://doi.org/10.1007/s00216-022-03910-1 SP - 1 EP - 14 PB - Springer Nature Limited CY - New York, Heidelberg AN - OPUS4-54592 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Tchipilov, Teodor A1 - Raysyan, Anna A1 - Weller, Michael G. T1 - Methods for the quantification of particle-bound protein – Application to reagents for lateral-flow immunoassays (LFIA) N2 - Protein immobilization for the functionalization of particles is used in various applications, including biosensors, lateral-flow immunoassays (LFIA), bead-based assays, and others. Common methods for the quantification of bound protein are measuring protein in the supernatant before and after coating and calculating the difference. This popular approach has the potential for a significant overestimation of the amount of immobilized protein since layers not directly bound to the surface (soft protein corona) are usually lost during washing and handling. Only the layer directly bound to the surface (hard corona) can be used in subsequent assays. A simplified amino acid analysis method based on acidic hydrolysis and RP-HPLC-FLD of tyrosine and phenylalanine (aromatic amino acid analysis, AAAA) is proposed to directly quantify protein bound to the surface of gold nano- and latex microparticles. The results are compared with indirect methods such as colorimetric protein assays, such as Bradford, bicinchoninic acid (BCA), as well as AAAA of the supernatant. For both particle types, these indirect quantification techniques show a protein overestimation of up to 1700% compared to the direct AAAA measurements. In addition, protein coating on latex particles was performed both passively through adsorption and covalently through EDC/sulfo-NHS chemistry. Our results showed no difference between the immobilization methodologies. This finding suggests that usual protein determination methods are no unambiguous proof of a covalent conjugation on particles or beads. KW - Soft protein corona KW - Hard protein corona KW - Gold particles KW - Nanoparticles KW - Mikroparticles KW - Antibody KW - Bioconjugation KW - Protein quantification KW - Supernatant KW - Sodium chloride method KW - Covalent conjugation KW - Latex particles KW - Lateral flow immunoassays PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-545365 DO - https://doi.org/10.20944/preprints202203.0332.v1 SP - 1 EP - 8 PB - MDPI CY - Basel AN - OPUS4-54536 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kaufmann, Jan Ole A1 - Brangsch, J. A1 - Mangarova, D. B. A1 - Kader, A. A1 - Zacharias, M. A1 - Makowski, M. R. A1 - Weller, Michael G. T1 - Finding the Ticking Timebomb - MRI probe for the detection of aneurysms N2 - Screening against ADAMTS4 reveals a specific peptide, which was turned into an MRI probe. The aneurysm in a mouse modal was visualized via MRI. A differentiation between stable and unstable aneurysm in an early state was performed. Using the probe as tool for an easy and non-invasive rupture assessment is possible. T2 - Adlershofer Forschungsforum 2022 CY - Berlin, Germany DA - 11.11.2022 KW - Magnetic resonance imaging KW - Peptide library KW - OBOC library KW - Synthetic peptides KW - Contrast agent KW - Imaging KW - ADAMTS4 KW - MALDI-TOF mass spectrometry KW - Cardiovascular diseases KW - Medicine KW - Diagnostic KW - Screening KW - Risk assessment KW - Aorta PY - 2022 AN - OPUS4-56313 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Fischer, Janina T1 - Suspensionsarray-Fluoreszenzimmunoassay zur Multiplexbestimmung von SARS-CoV-2-Antikörpern N2 - Übergeordnetes Ziel der Arbeit war die Entwicklung und Optimierung eines Suspensionsarray-Fluoreszenzimmunoassays (SAFIA) für die simultane Bestimmung verschiedener gegen SARS-CoV-2-Proteine gerichtete Antikörper mittels Multiplexdetektion in komplexen Matrices wie humanen Blutserumproben. KW - SARS-CoV-2 KW - Corona KW - COVID-19 KW - Coronavirus KW - Virus KW - Spike-Protein KW - Nucleocapsid-Protein KW - RBD KW - SAFIA KW - LFIA KW - ELISA KW - Partikel KW - Mutationen KW - Neutralisierende Antikörper KW - Durchflusszytometrie KW - ACE2 PY - 2022 SP - 1 EP - 99 PB - Humboldt-Universität zu Berlin CY - Berlin AN - OPUS4-54722 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radnik, Jörg T1 - Colours, nano and surface N2 - The basic ideas of colours and pigments are presented. The correlation between nanomaterials and colours are explained. Different methods are presented for investigating nanoparticles and their surface. At the end a case study is presented explaining the importance of coating for the properties of nanoparticles. T2 - Eingeladener Vortrag im Deutschen Lackmuseum (Münster) CY - Online meeting DA - 11.02.2022 KW - Pigments KW - Surface Analytics KW - Coatings PY - 2022 AN - OPUS4-54376 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Cordsmeier, Leo A1 - Hahn, Marc Benjamin T1 - DNA Stability in Biodosimetry, Pharmacy and DNA Based Data-Storage: Optimal Storage and Handling Conditions N2 - DNA long-term stability and integrity is of importance for applications in DNA based bio-dosimetry, data-storage, pharmaceutical quality-control, donor insemination and DNA based functional nanomaterials. Standard protocols for these applications involve repeated freeze-thaw cycles of the DNA, which can cause detrimental damage to the nucleobases, as well as the sugar-phosphate backbone and therefore the whole molecule. Throughout the literature three hypotheses can be found about the underlying mechanisms occurring during freeze-thaw cycles. It is hypothesized that DNA single-strand breaks during freezing can be induced by mechanical stress leading to shearing of the DNA molecule, by acidic pH causing damage through depurination and beta elimination or by the presence of metal ions catalyzing oxidative damage via reactive oxygen species (ROS). Here we test these hypotheses under well defined conditions with plasmid DNA pUC19 in high-purity buffer (1xPBS) at physiological salt and pH 7.4 conditions, under pH 6 and in the presence of metal ions in combination with the radical scavengers DMSO and Ectoine. The results show for the 2686 bp long plasmid DNA, that neither mechanical stress, nor pH 6 lead to degradation during repeated freeze-thaw cycles. In contrast, the presence of metal ions (Fe2+) leads to degradation of DNA via the production of radical species. KW - DNA KW - DNA stability KW - Pharmacy KW - Reference material KW - pUC19 KW - Strand break KW - SSB KW - Dosimetry KW - Biodosimetry KW - Biologisches Dosimeter KW - DNA Dosimeter KW - Quality control KW - Plasmid DNA KW - DNA data storage KW - Nucleobase KW - Base damage KW - Base loss KW - DNA degradation KW - Metal ions KW - ROS KW - OH radical KW - Fenton Reaction KW - H2O2 KW - DNA based data storage KW - Freezing KW - Thawing KW - Mechanical stress KW - pH KW - Beta elimination KW - Ectoine KW - Ectoin KW - THP(B) KW - Radical scavenger KW - DMSO KW - Buffer KW - lN2 KW - DNA vortexing KW - AGE KW - SYBR Gold KW - Gel electrophoresis KW - DNA long term storage KW - DNA reference material PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-557148 DO - https://doi.org/10.1002/cbic.202200391 SP - 1 EP - 9 PB - Wiley-VCH GmbH AN - OPUS4-55714 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Hahn, Marc Benjamin T1 - BioSAXS models for TOPAS/Geant4 N2 - Models for TOPAS/Geant4 to estimate the microscopic dose received by biomolecules during bioSAXS experiments. The C++ classes in this repository extend the functionality of the TOPAS (http://www.topasmc.org/) Monte-Carlo program, which is itself a wrapper of the Geant4 MCS Toolkit (http://geant4.org). KW - TOPAS KW - TOPAS-nBio KW - Geant4 KW - Geant4-DNA KW - MCS KW - Microdosimetry KW - Protein KW - Proteins KW - Particle scattering KW - G5P KW - GV5 KW - SAXS KW - Monte-Carlo simulation KW - Dosimetry KW - Micorscopic dose-damage relation PY - 2022 UR - https://github.com/MarcBHahn/TOPAS-bioSAXS-dosimetry DO - https://doi.org/10.26272/opus4-55751 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-55751 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sachse, René A1 - Pflüger, Mika A1 - Velasco Vélez, Juan Jesús A1 - Sahre, Mario A1 - Radnik, Jörg A1 - Bernicke, Michael A1 - Bernsmeier, Denis A1 - Hodoroaba, Vasile-Dan A1 - Krumrey, Michael A1 - Strasser, Peter A1 - Kraehnert, Ralph A1 - Hertwig, Andreas T1 - Operando electrochemical spectroscopic ellipsometry: Material properties of highly active mesoporous IrO IrOxfilms revealed under realistic OER conditions N2 - In the face of rising energy demand and the impending climate change the development of a sustainable, fossil-free fuel and chemical production is of global importance. One possible goal is the development of electrochemical conversion processes using catalysts. Porous materials play an important role in such energy applications. The activity and stability of each catalyst is highly dependent on the properties of the coating, i.e., phase composition, crystallinity, accessible surface area, and many other factors. The key to the development of improved catalysts is a better understanding of the relations between their performance, stability and physico-chemical properties. However, the complex morphology of such catalysts constitutes a challenge even for modern analytical techniques. Spectroscopic ellipsometry (SE) is a versatile method for studying material properties by using appropriate models (e.g., film thickness, optical and electronic properties). Ellipsometric models need to be validated in order to produce accurate results. In a first step, the model for the ellipsometric fit studies of a calcination series of mesoporous iridium oxide films (300 – 600 °C) was investigated and validated with respect to their material properties.[4] The information on electronic structure of the catalysts shows a direct correlation with electrochemical activities. The development of an environmental electrochemical cell offers the possibility of investigations under operando conditions. Thus, changes in optical and electronic properties can be induced and monitored during the electrocatalytic oxygen evolution reaction. T2 - 9th International Conference on Spectroscopic Ellipsometry CY - Beijing, China DA - 22.05.2022 KW - Mesoporous iridium oxide films KW - Non-destructive operando analysis KW - Oxygen evolution reaction KW - Spectroscopic ellipsometry PY - 2022 AN - OPUS4-54915 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Heilmann, Maria A1 - Prinz, Carsten A1 - Bienert, Ralf A1 - Wendt, Robert A1 - Kunkel, Benny A1 - Radnik, Jörg A1 - Hoell, Armin A1 - Wohlrab, Sebastian A1 - de Oliveira Guilherme Buzanich, Ana A1 - Emmerling, Franziska T1 - Size-Tunable Ni-Cu Core-Shell Nanoparticles: Structure, Composition, and Catalytic Activity N2 - Nanoparticles (NPs) have become important materials for a variety of chemical technologies, including catalysis. One of the main challenges is the reduction of green house gases, such as CO2. One opportunity besides the capturing is the conversion to synthesis gas via the reverse water-gas shift reaction. A facile and efficient method is described for the solvothermal synthesis of size-tunable, stable, and uniform NiCu core-shell NPs. The diameter of the NPs can be tuned in a range from 6 nm to 30 nm and the Ni:Cu ratio from 30:1 to 1:1. The NPs are structurally characterized with combination of transmission electron microscopy, anomalous small-angle X-ray scattering, X-ray photoelectron spectroscopy, and X-ray absorption fine structure. Using these analytical methods, a core-shell-shell structure their chemical composition is elucidated. A depletion from the core to the shell is observed, with the core consisting of NiCu alloy, surrounded by an inner Ni-rich shell and an outer NiO shell. The SiO2-supported NiCu core-shell NPs show pronounced selectivity of >99% for CO in the catalytic reduction of CO2 to CO using hydrogen as reactant (reverse water–gas shift reaction). T2 - Nanoalloys: recent developments and future perspectives Faraday Discussion CY - London, UK DA - 21.09.2022 KW - Nanoparticles KW - Core-shell KW - Catalysis PY - 2022 AN - OPUS4-56831 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wilke, Olaf A1 - Seeger, Stefan A1 - Brödner, Doris A1 - Erdmann, Kerstin A1 - Rasch, Fabian T1 - Chemical characterization of ultra-fine particles released from laser printers N2 - 11 laser printers from 5 manufacturers were purchased in 2017 and tested for their UFP emissions. Size resolved sampling of the emitted particles was done with a 13 stage (30 nm to 10 µm) low pressure cascade impactor. The sampled particles were analysed for their chemical composition by thermal extraction (vaporization at 290°C) followed by GC-MS analysis. High boiling cyclic siloxanes (D10 to D16) were detected as constituents of UFP from laser printers. In comparison to measurements in 2008, aliphatic long-chain alkanes (C22 to C34) were detected additionally as chemical constituents of UFP from most of the tested printers and their amounts were higher than for cyclic siloxanes. Printers of one manufacturer showed very low UPF emissions compared to the other manufacturers. T2 - Indoor Air Conference 2022 CY - Kuopio, Finland DA - 12.06.2022 KW - UFP KW - Thermal extraction KW - Cascade impactor PY - 2022 SP - 1 EP - 4 AN - OPUS4-55106 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Climent Terol, Estela A1 - Weller, Michael G. A1 - Martínez-Mánez, R. A1 - Rurack, Knut T1 - Immunochemical design of antibody-gated indicator delivery (gAID) systems based on mesoporous silica nanoparticles N2 - In this work, the optimization of the immunochemical response of antibody-gated indicator delivery (gAID) systems prepared with mesoporous silica nanoparticles has been studied along various lines of system tailoring, targeting the peroxide-type explosive TATP as an exemplary analyte. The mechanism of detection of these gAID systems relies on a displacement of an antibody “cap” bound to hapten derivatives anchored to the surface of a porous hybrid material, allowing the indicator cargo stored in the mesopores to escape and massively amplify the analyte-related signal. Since our aim was to obtain gAID systems with the best possible response in terms of sensitivity, selectivity, and assay time, sera obtained from different immunization boosts were screened, the influence of auxiliary reagents was assessed, structural hapten modification (hapten heterology) was investigated, and various indicator dyes and host materials were tested. Considering that highly selective and sensitive immunological responses are best obtained with high-affinity antibodies which, however, could possess rather slow dissociation constants, leading to slow responses, the main challenge was to optimize the immunochemical recognition system for a rapid response while maintaining a high sensitivity and selectivity. The best performance was observed by grafting a slightly mismatching (heterologous) hapten to the surface of the nanoparticles in combination with high-affinity antibodies as “caps”, yielding for the first time gAID nanomaterials for which the response time could be improved from hours to <5 min. The materials showed favorable detection limits in the lower ppb range and discriminated TATP well against H2O2 and other explosives. Further optimization led to straightforward integration of the materials into a lateral flow assay without further treatment or conditioning of the test strips while still guaranteeing remarkably fast overall assay times. KW - Antibody-gated indicator delivery systems KW - Signal amplification KW - Immunochemical response optimization KW - Test strip analysis KW - TATP KW - Explosives detection KW - Heterologous hapten PY - 2022 DO - https://doi.org/10.1021/acsanm.1c03417 SN - 2574-0970 VL - 5 IS - 1 SP - 626 EP - 641 PB - American Chemical Society CY - Washington, DC AN - OPUS4-54176 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR ED - Resch-Genger, Ute ED - Koch, Matthias ED - Meermann, Björn ED - Weller, Michael G. T1 - Topical collection: Analytical methods and applications in the materials and life sciences N2 - Current trends in materials and life sciences are flanked by the need to push detection limits to single molecules or single cells, enable the characterization of increasingly complex matrices or sophisticated nanostructures, speed up the time of analysis, reduce instrument complexity and costs, and improve the reliability of data. This requires suitable analytical tools such as spectroscopic, separation and imaging techniques, mass spectrometry, and hyphenated techniques as well as sensors and their adaptation to application-specific challenges in the environmental, food, consumer product, health sector, nanotechnology, and bioanalysis. Increasing concerns about health threatening known or emerging pollutants in drinking water, consumer products, and food and about the safety of nanomaterials led to a new awareness of the importance of analytical sciences. Another important driver in this direction is the increasing demand by legislation, particularly in view of the 17 sustainable development goals by the United Nations addressing clean energy, industry, and innovation, sustainable cities, clean water, and responsible consumption and production. In this respect, also the development of analytical methods that enable the characterization of material flows in production processes and support recycling concepts of precious raw materials becomes more and more relevant. In the future, this will provide the basis for greener production in the chemical industry utilizing recycled or sustainable starting materials. This makes analytical chemistry an essential player in terms of the circular economy helping to increase the sustainability of production processes. In the life sciences sector, products based on proteins, such as therapeutic and diagnostic antibodies, increase in importance. These increasingly biotechnologically produced functional biomolecules pose a high level of complexity of matrix and structural features that can be met only by highly advanced methods for separation, characterization, and detection. In addition, metrological traceability and target definition are still significant challenges for the future, particularly in the life sciences. However, innovative reference materials as required for the health and food sector and the characterization of advanced materials can only be developed when suitable analytical protocols are available. The so-called reproducibility crisis in sciences underlines the importance of improved measures of quality control for all kinds of measurements and material characterization. This calls for thorough method validation concepts, suitable reference materials, and regular interlaboratory comparisons of measurements as well as better training of scientists in analytical sciences. The important contribution of analytical sciences to these developments is highlighted by a broad collection of research papers, trend articles, and critical reviews from these different application fields. Special emphasis is dedicated to often-overlooked quality assurance and reference materials. T2 - 150 years BAM: Science with impact CY - Berlin, Germany DA - 01.01.2021 KW - 150th anniversary KW - ABC KW - Analysis KW - Analytical sciences KW - BAM KW - Collection KW - Environment KW - Fluorescence KW - Life sciences KW - Limit of detection KW - Material sciences KW - Method KW - Nanoparticle KW - Pollutant KW - Quality assurance KW - Reference material KW - Sensor KW - Special issue KW - Bundesanstalt für Materialforschung und -prüfung KW - Jahrestag PY - 2022 UR - https://link.springer.com/journal/216/topicalCollection/AC_16a2ef9b81853377e321ef84d9c4a431 SN - 1618-2642 SN - 1618-2650 VL - 414 SP - 4267 EP - 4529 PB - Springer CY - Berlin AN - OPUS4-55670 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Strangfeld, Christoph A1 - Schönsee, Eric A1 - Jeyifous, Olubunmi Anthony A1 - Mezhov, Alexander A1 - Hüsken, Götz T1 - Introduction of a monitoring system for Bingham fluids in additive manufacturing with concrete N2 - Freeform additive manufacturing of concrete structures is a rising technology in civil engineering with several fascinating advantages. Nonetheless, to ensure reliability and structural integrity, standards and quality control are required in the future to bring this technology into the market. As the concrete is manufactured continuously, continuous quality control of the printing process is also required, i.e. comprehensive process monitoring. At BAM, a test rig will be installed, enabling the printing of concrete structures with a maximum size of 2 m x 1 m x 1 m (l x w x h). Here, process monitoring is the focus of the test rig. In this study, we show the results of the first pump tests, including the measurement of several parameters such as temperature and pressure along the supply system, i.e. from the concrete pump to the printer head. T2 - NDT-CE 2022 CY - Zurich, Switzerland DA - 16.08.2022 KW - Additive manufacturing of concrete KW - Process monitoring KW - Non-destructive testing KW - Bingham fluid PY - 2022 AN - OPUS4-55637 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Riedel, Soraya A1 - Hülagü, Deniz A1 - Bennet, Francesca A1 - Carl, Peter A1 - Flemig, Sabine A1 - Schmid, Thomas A1 - Schenk, Jörg A1 - Hodoroaba, Vasile-Dan A1 - Schneider, Rudolf T1 - Application of 3,3’,5,5’-Tetramethylbenzidine (TMB) in Amperometric Immunoassays for Mycotoxin Detection N2 - Electrochemical methods make great promise to meet the demand for user-friendly on-site devices for monitoring important parameters. Food industry often runs own lab procedures, e.g., for mycotoxin analysis, but it is a major goal to simplify analysis, linking analytical methods with miniaturized technologies. Enzyme-linked immunosorbent assays, with photometric detection of the horseradish peroxidase (HRP) substrate 3,3’,5,5’-tetramethylbenzidine (TMB), form a good basis for sensitive detection. To provide a straight-forward approach for the miniaturization of the detection step, we have studied the pitfalls of the electrochemical TMB detection. By cyclic voltammetry, it could be shown that TMB electrochemistry is strongly dependent on the pH and the electrode material. It was found that screen-printed gold electrodes and a very low pH value (pH 1) are well-suited to perform the electrochemical detection of TMB, due to the reversible character of the redox reaction under these conditions. Under these conditions, a good signal stability over several measuring cycles is achieved, providing the basis for analyzing multiple samples. In contrast to this, for carbon screen-printed electrodes, it was found that the signal response has changed after the electrochemical reaction with TMB at pH 1. At moderately acidic conditions (pH 4), neither with carbon nor with gold electrodes a reproducible electrochemical detection of TMB could be achieved. Based on these findings, we created a smartphone-based, electrochemical, immunomagnetic assay for the detection of ochratoxin A (OTA) and ergometrine in food samples. A competitive assay is performed on magnetic beads using HRP and TMB/H2O2 to generate the signal. Enzymatically oxidized TMB is quantified after addition of H2SO4 by amperometry with screen-printed gold electrodes in a custom-made wall-jet flow cell. The results are in good correlation with the established photometric detection method, providing a solid basis for sensing of further analytes in HRP-based assays using the newly developed miniaturized smartphone-based, electrochemical, immunomagnetic assay. T2 - 73rd Annual Meeting of the ISE CY - Online meeting DA - 12.09.2022 KW - Cylic Voltammetry KW - Immunoassay KW - Mycotoxins KW - Amperometry KW - Electrochemistry PY - 2022 N1 - Geburtsname von Riedel, Soraya: Höfs, S. - Birth name of Riedel, Soraya: Höfs, S. AN - OPUS4-55793 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Riedel, Soraya A1 - Hülagü, Deniz A1 - Bennet, Francesca A1 - Carl, Peter A1 - Flemig, Sabine A1 - Schmid, Thomas A1 - Schenk, Jörg A1 - Hodoroaba, Vasile-Dan A1 - Schneider, Rudolf T1 - Steps Forward in the Application of 3,3’,5,5’- Tetramethylbenzidine (TMB) in Amperometric Assays N2 - Electrochemical methods make great promise to meet the demand for user-friendly on-site devices for monitoring important parameters. Food industry often runs own lab procedures, e.g. for mycotoxin analysis, but it is a major goal to simplify analysis, linking analytical methods with miniaturized technologies. Enzyme-linked immunosorbent assays, with photometric detection of the horseradish peroxidase (HRP) substrate, 3,3’,5,5’-tetramethylbenzidine (TMB), form a good basis for sensitive detection. To provide a straight-forward approach for the miniaturization of the detection step, we have studied the pitfalls of the electrochemical TMB detection. By cyclic voltammetry it was found that the TMB electrochemistry is strongly dependent on the pH and the electrode material. It was found that screen-printed gold electrodes and a highly acidic pH value (pH 1) are well-suited to perform the electrochemical detection of TMB, due to the reversible character of the redox reaction under these conditions. This set-up provides a good signal stability over several measuring cycles, providing the basis for analysing multiple samples. In contrast to this, for carbon screen-printed electrodes, it was found that the signal response has changed after the electrochemical reaction with TMB at pH 1. At a weakly acidic pH value (pH 4), neither with carbon nor with gold electrodes a reproducible electrochemical detection of TMB could be achieved [1]. Based on these findings we created a smartphone-based, electrochemical, immunomagnetic assay for the detection of ochratoxin A and ergometrine in real samples. Therefore, a competitive assay was performed on magnetic beads using HRP and TMB/H2O2 to generate the signal. Enzymatically oxidized TMB was quantified after addition of H2SO4 by amperometry with screen-printed gold electrodes in a custom-made wall-jet flow cell. The results are in good correlation with the established photometric detection method, providing a solid basis for sensing of further analytes in HRP-based assays using the newly developed miniaturized smartphone-based, electrochemical, immunomagnetic assay. T2 - Electrochemistry 2022 CY - Berlin, Germany DA - 28.09.2022 KW - Cylic Voltammetry KW - Immunoassay KW - TMB KW - Amperometry PY - 2022 N1 - Geburtsname von Riedel, Soraya: Höfs, S. - Birth name of Riedel, Soraya: Höfs, S. AN - OPUS4-55876 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Morcillo, Dalia A1 - Winckelmann, Alexander A1 - Richter, Silke A1 - Recknagel, Sebastian A1 - Jacobsen, Lars A1 - Frick, Daniel A1 - Schmidt, Anita A1 - Leonhardt, Robert A1 - Panne, Ulrich A1 - Abad Andrade, Carlos Enrique T1 - High-resolution absorption isotopic spectrometry as a tool for aging studies of Li-ion batteries N2 - Lithium (Li) is the key element in the manufacturing of batteries. Isotopic study of Li may help to identify the causes of battery aging due to isotopic fractionation during charge/discharge cycles. Isotopic ratio determination is based on monitoring the isotopic components of lithium by their spin-orbit coupling and its isotopic shift of about 15 pm for the 22P←22S electronic transition around 670.788 nm. In this work, we propose improvements to our previous work [1] by using a higher-resolution double echelle modular spectrometer (HR-DEMON II) coupled to a continuum source graphite furnace atomic absorption spectrometer (HR-CS-GF-AAS) for the isotopic analysis of Li. The data analysis was carried out by using a decision-tree-based ensemble machine learning (ML) algorithm (XGBoost). A set of samples with 6Li isotope amount fractions ranging from 0.0004 to 0.99 mol mol-1 was used for the algorithm's training. Subsequently, the procedure was validated by a set of stock chemicals (Li2CO3, LiNO3, LiCl, and LiOH) and a BAM candidate reference material, a cathode material (NMC111). Finally, the ML model was applied to determine the isotope ratio of geological samples, including anorthosite, granite, soil, rhyolite, nepheline syenite, and basalt and battery samples. These samples were measured as digested without any further purification step. Improvements in the optical resolution resolve the lithium isotopic components of the atomic spectra. In the studied geological samples, were found δ7Li values between -0.5 and 4.5 ‰ with a precision range of 1 to 2 ‰. In addition, the proposed method was validated with multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS), and these results are comparable and compatible. T2 - Caltech-BAM Meeting CY - Online meeting DA - 10.08.2022 KW - Lithium isotope KW - Machine learning KW - Battery KW - High-resolution absorption isotopic spectrometry PY - 2022 AN - OPUS4-56380 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radnik, Jörg A1 - Ciornii, Dmitri A1 - Kersting, R. A1 - Hagenhoff, B. A1 - Hodoroaba, Vasile-Dan T1 - Reliable, and reproducible physico-chemical data of nanomaterials for risk assessment N2 - Nanoforms with at least one dimension below 100 nm have an important part to play in more and more areas of our daily life. Therefore, risk assessment of these materials is becoming increasingly important. In this context, the European Chemical Agency (ECHA) considered eleven physico-chemical properties as relevant, of which the following six are essential for the registration: chemical composition, crystallinity, particle size, particle shape, surface chemistry and specific surface area. Four of these priority properties can be obtained with electron microscopy and surface analytics like XPS and ToF-SIMS. The reliability of this data must be ensured, especially for their use for grouping and read across approaches. On the other hand, the “reproducibility” crisis has revealed major shortcomings in the reliability of published data. In a case study, we show how the quality of the data can be ensured by using existing standards and protocols of each step in the workflow of sample characterization. As exemplary samples, two Al-coated TiO2 samples as nanopowders were selected from the JRC repository, capped either with a hydrophilic or a hydrophobic organic ultrathin shell. SEM results provided the size and shape of the nanoparticles, a first overview about the composition was obtained with EDS. XPS and ToF-SIMS supplied the surface chemistry, especially information about the shell and the coating of the particles. Standards and protocols of all steps of the analytical workflow including preparation and data reduction are discussed regarding reliable and reproducible data. Additionally, uncertainties for the different steps are specified. Only such a detailed description of all these factors allows a comprehensive physico-chemical characterization of the nanoparticles with understanding of their potential risk assessment. T2 - ECASIA 2022 CY - Limerick, Ireland DA - 29.05.2022 KW - Reference data KW - Risk assessment KW - Nanomaterials KW - Titania PY - 2022 AN - OPUS4-54961 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radnik, Jörg A1 - Hodoroaba, Vasile-Dan A1 - Pellegrino, F. A1 - Maurino, V. T1 - Morpho-Chemical Characterisation of Me-TiO2 Nanoparticles for Enhanced Photocatalytical Activity N2 - The conversion of solar energy into electricity and solar fuels is of crucial importance for a green and sustainable future. Water splitting using semiconductor photo-catalysts is considered a sustainable method to produce clean hydrogen (H2) fuel. Nevertheless, H2 photo-production efficiency remains still low, although extensive research works to understand better the mechanisms of the Hydrogen Evolution Reaction (HER) and the Oxygen Evolution Reaction (OER) are being carried out. In this respect, TiO2 is a key photoactive material, usually employed with a co-catalyst deposited onto the surface to enhance charge carriers’ separation and catalyze surface charge transfer reactions. The deposition of a co-catalyst on the TiO2 nanoparticle surface represents one successful way to enhance the activity of the photocatalyst through a modification of its surface and redox properties. In this context, high-resolution scanning electron microscopy coupled with elemental analysis by energy-dispersive X-ray spectroscopy (EDS) is fundamental for studying and understanding the effect of the nanoparticle morphology on the functional properties of shape-controlled TiO2 crystals (bipyramides, platelets, and elongated particles). Different types of metal-semiconductor combinations, TiO2 shapes and dopant metals (Ag, Pt, etc) and metal concentrations will be discussed. T2 - ECASIA 2022 CY - Limerick, Ireland DA - 29.05.2022 KW - Titania nanoparticles KW - Photocatalysis KW - Scanning electron microscopy KW - Energy dispersive X-ray spectroscopy PY - 2022 AN - OPUS4-54977 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radnik, Jörg T1 - ISO-G-Scope Standardisation of structural and chemical properties of graphene N2 - The objectives and tasks of the EMPIR project ISO-G-Scope are presented. The last results was shown. Esspecially, the interlaboratory comparison about XPS of functionalized graphene is presented. T2 - DIN NA062-08-16 Oberflächenanalytik Frühjahrstreffen CY - Berlin, Germany DA - 11.05.2022 KW - Graphene KW - Standardization KW - Structural characterisation KW - Chemical composition PY - 2022 AN - OPUS4-54834 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radnik, Jörg A1 - Hesse, R. A1 - Denecke, R. T1 - Improved estimation of the transmission function with UNIFIT 2022 N2 - The recent development of x-ray photoelectron spectroscopy using excitation sources different from the usual lab-source Mg Kα and Al Kα and spectrometers with more sophisticated lens systems requires flexible approaches for determining the transmission function. Therefore, the approach using quantified peak areas (QPA) was refined.1 A new algorithm allows a more precise estimation of the transmission function which could be shown by comparing the results obtained with the new version with former calculations. Furthermore, next to the established reference materials Cu, Ag and Au, ionic liquids can be used for estimating the transmission function at beamlines with variable excitation energies. Comparison between the measured and stoichiometric composition shows that a transmission function was determined which allows a reasonable quantification. T2 - ECASIA 2022 CY - Limerick, Ireland DA - 29.05.2022 KW - X-ray photoelectron spectroscopy KW - Transmission function KW - Synchrotron radiation KW - Iionic liquid PY - 2022 AN - OPUS4-54962 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Morcillo, Dalia A1 - Abad Andrade, Carlos Enrique A1 - Winckelmann, Alexander A1 - Frick, D. A1 - Jacobsen, L. A1 - Richter, Silke A1 - Recknagel, Sebastian A1 - Vogl, Jochen A1 - Panne, Ulrich T1 - Atomic absorption spectroscopy and machine learning for lithium isotopic study N2 - The isotopic analysis of lithium is also relevant to the study of geological phenomena.1 In this work we propose improvements to the method for the isotopic analysis of lithium using a high-resolution continuum source atomic absorption spectrometer (HR-CS-AAS) coupled to a double echelle modular spectrometer (DEMON). 2 This tool for isotopic ratio determination is based on monitoring the isotopic components of lithium by their spin-orbit coupling and its isotopic shift of about 15 pm for the 22P←2 2S electronic transition around 670.788 nm. The data analysis was carried out by using a decision-tree-based ensemble machine learning (ML) algorithm. For the training of the algorithm (XGBoost), a set of samples with 6Li isotope amount fractions ranging from 0.06 to 0.99 mol-1 was used. Subsequently, the procedure was validated of a set of stock chemicals (Li2CO3, LiNO3, LiCl and LiOH) and a BAM candidate reference material, the cathode material LiNi1/3Mn1/3Co1/3O2 (NMC111). Finally, the ML model was applied to the set of geological samples, previously digested, for the determination of their isotope ratio. The optical resolution was improved from 140,000 to 790,000 to better deconvolution the lithium isotopic components in the atomic spectrum. And the method was compared with multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS). The results are metrologically comparable. T2 - Colloquium Spectroscopicum Internationale XLII (CSI XLII) CY - Gijón, Spain DA - 30.05.2022 KW - Lithium isotope KW - Atomic absorption spectroscopy PY - 2022 AN - OPUS4-56357 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radnik, Jörg T1 - ToF-SIMS at advanced materials - from nano to energy N2 - The basic principles of ToF-SIMS will be explained. Examples of the use of ToF-SIMS for the investigation of titania and core-shell nanoplastic will be given. Furhtermore, 3d reconstruction is explained for nanoparticle research and energy-related materials. T2 - BUA Summer School Mass Spectrometry CY - Berlin, Germany DA - 04.10.2022 KW - ToF-SIMS KW - Nanomaterials KW - Imaging PY - 2022 AN - OPUS4-55897 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radnik, Jörg A1 - Hodoroaba, Vasile-Dan A1 - Reed, B.P. A1 - Pollard, A. A1 - Clifford, C. A1 - Chemello, Giovanni T1 - XPS of GR2M N2 - The activities of ISO-G-Scope are presented. The influence of the sample preparation and the results of XPS/HAXPES measurements are discussed. T2 - Graphene Workshop @ ISO TC 229 Meeting CY - Teddington, UK DA - 16.11.2022 KW - Graphene related materials KW - X-ray photoelectron spectroscopy KW - Sample preparation KW - Hard X-ray photoelectron spectroscopy PY - 2022 AN - OPUS4-56434 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pelkner, Matthias A1 - Ehlers, Henrik A1 - Casperson, Ralf A1 - Thewes, R. A1 - Jutkuhn, D. T1 - Hochauflösende online Wirbelstromprüfung von PBF LB/M Bauteilen mit GMR Arrays N2 - In den letzten Jahren haben additive Fertigungstechnologien an Bedeutung gewonnen. Für komplexe Funktionsbauteile oder die Produktion von Werkstücken in kleinen Stückzahlen kann das Laser-Pulverbettschmelzen eingesetzt werden. Hohe Sicherheitsanforderungen, z. B. in der Luft- und Raumfahrt, erfordern eine umfassende Qualitätskontrolle. Daher werden nach der Fertigung zerstörungsfreie Offline-Prüfverfahren wie die Computertomographie eingesetzt. In jüngster Zeit wurden zur Verbesserung der Rentabilität und Praktikabilität zerstörungsfreie Online-Prüfverfahren wie die optische Tomographie entwickelt. In diesem Beitrag wird die Anwendbarkeit der Wirbelstromprüfung mit GMR Sensoren für die online Prüfung von PBF-LB/M Teilen demonstriert. Die Ergebnisse einer online Wirbelstromprüfung mit GMR Sensoren und einer Ein-Draht-Anregung werden gezeigt. Während des Produktionsprozesses wird für jede Lage eine Wirbelstromprüfung durchgeführt. Trotz hochauflösender Arrays mit 128 Elementen wird durch eine angepasste Hardware die Prüfdauer geringgehalten. So kann die Messung während des Beschichtungsvorgangs durchgeführt werden, ohne den Fertigungsprozess signifikant zu verlangsamen. Eine online Wirbelstromprüfung eines stufenförmigen Testkörpers aus Haynes282 über 184 Lagen zeigt, dass die Kanten nicht nur in der aktuellen Lage detektiert werden können, sondern auch in einer Tiefe von 400 µm, wenn eine Anregungsfrequenz von 1,2 MHz gewählt wird. T2 - 2. Fachseminar Wirbelstromprüfung CY - Schweinfurt, Germany DA - 14.09.2022 KW - Wirbelstromprüfung KW - Additive Fertigung KW - Online Monitoring KW - GMR Arrays PY - 2022 AN - OPUS4-55895 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Breese, Philipp Peter A1 - Becker, Tina A1 - Oster, Simon A1 - Altenburg, Simon A1 - Metz, C. A1 - Maierhofer, Christiane T1 - Aktive Laserthermografie im L-PBF-Prozess zur in-situ Detektion von Defekten N2 - Die zerstörungsfreie Prüfung von metallischen Bauteilen hergestellt mit additiver Fertigung (Additive Manufacturing - AM) gewinnt zunehmend an industrieller Bedeutung. Grund dafür ist die Feststellung von Qualität, Reproduzierbarkeit und damit auch Sicherheit für Bauteile, die mittels AM gefertigt wurden. Jedoch wird noch immer ex-situ geprüft, wobei Defekte (z.B. Poren, Risse etc.) erst nach Prozessabschluss entdeckt werden. Übersteigen Anzahl und/oder Abmessung die vorgegebenen Grenzwerte für diese Defekte, so kommt es zu Ausschuss, was angesichts sehr langer Bauprozessdauern äußerst unrentabel ist. Eine Schwierigkeit ist dabei, dass manche Defekte sich erst zeitverzögert zum eigentlichen Materialauftrag bilden, z.B. durch thermische Spannungen oder Schmelzbadaktivitäten. Dementsprechend sind reine Monitoringansätze zur Detektion ggf. nicht ausreichend. Daher wird in dieser Arbeit ein Verfahren zur aktiven Thermografie an dem AM-Prozess Laser Powder Bed Fusion (L-PBF) untersucht. Das Bauteil wird mit Hilfe des defokussierten Prozesslasers bei geringer Laserleistung zwischen den einzelnen gefertigten Lagen unabhängig vom eigentlichen Bauprozess erwärmt. Die entstehende Wärmesignatur wird ort- und zeitaufgelöst durch eine Infrarotkamera erfasst. Durch diese der Lagenfertigung nachgelagerte Prüfung werden auch zum Bauprozess zeitversetzte Defektbildungen nachweisbar. In dieser Arbeit finden die Untersuchungen als Proof-of-Concept, losgelöst vom AM-Prozess, an einem typischen metallischen Testkörper statt. Dieser besitzt eine Nut als oberflächlichen Defekt. Die durchgeführten Messungen finden an einer eigens entwickelten L-PBF-Forschungsanlage innerhalb der Prozesskammer statt. Damit wird ein neuartiger Ansatz zur aktiven Thermografie für L-PBF erforscht, der eine größere Bandbreite an Defektarten auffindbar macht. Der Ansatz wird validiert und Genauigkeit sowie Auflösungsvermögen geprüft. Eine Anwendung am AM-Prozess wird damit direkt forciert und die dafür benötigten Zusammenhänge werden präsentiert. T2 - DGZfP-Jahrestagung 2022 CY - Kassel, Germany DA - 23.05.2022 KW - Additive Manufacturing KW - Laser Powder Bed Fusion KW - Thermografie KW - Zerstörungsfreie Prüfung KW - Aktive Laserthermografie PY - 2022 AN - OPUS4-55040 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Casperson, Ralf T1 - Aktuelles aus der Normung N2 - Es wird ein Überblick über die aktuellen Aktivitäten im Bereich der Normung und Standardisierung der Wirbelstromprüfung und der ZfP im Allgemeinen bei DIN, ISO, IIW, ASTM und in den Fachausschüssen Wirbelstromprüfung und ZfP 4.0 der DGZfP gegeben. T2 - 2. Fachseminar Wirbelstromprüfung CY - Schweinfurt, Germany DA - 14.09.2022 KW - ZfP KW - Normung KW - Wirbelstrom PY - 2022 AN - OPUS4-55712 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mrkwitschka, Paul A1 - Abram, Sarah-Luise A1 - Thünemann, Andreas A1 - Rühle, Bastian A1 - Radnik, Jörg A1 - Bresch, Harald A1 - Resch-Genger, Ute A1 - Hodoroaba, Vasile-Dan T1 - The Role of Electron Microscopy in the Development of Monodisperse Cubic Iron Oxide Nanoparticles as CRM for Size and Shape N2 - Due to their unique physico-chemical properties, nanoparticles are well established in research and industrial applications. A reliable characterization of their size, shape, and size distribution is not only mandatory to fully understand and exploit their potential and develop reproducible syntheses, but also to manage environmental and health risks related to their exposure and for regulatory requirements. To validate and standardize methods for the accurate and reliable particle size determination nanoscale reference materials (nanoRMs) are necessary. However, there is only a very small number of nanoRMs for particle size offered by key distributors such as the National Institute of Standards and Technology (NIST) and the Joint Research Centre (JRC) and, moreover, few provide certified values. In addition, these materials are currently restricted to polymers, silica, titanium dioxide, gold and silver, which have a spherical shape except for titania nanorods. To expand this list with other relevant nanomaterials of different shapes and elemental composition, that can be used for more than one sizing technique, we are currently building up a platform of novel nanoRMs relying on iron oxide nanoparticles of different shape, size and surface chemistry. Iron oxide was chosen as a core material because of its relevance for the material and life sciences. T2 - Microscopy and Microanalysis 2022 CY - Online meeting DA - 31.07.2022 KW - Certified Referencematerial KW - Cubical Iron Oxide KW - Nanoparticles KW - Electron Microscopy KW - Small-Angle X-ray Scattering PY - 2022 AN - OPUS4-57035 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nordholt, Niclas A1 - O'Hara, Kate A1 - Resch-Genger, Ute A1 - Blaskovich, M. A1 - Rühle, Bastian A1 - Schreiber, Frank T1 - A fluorescently labelled quaternary ammonium compound (NBD-DDA) to study resistance mechanisms in bacteria N2 - Quaternary ammonium compounds (QACs) are widely used as active agents in disinfectants, antiseptics, and preservatives. Despite being in use since the 1940s, there remain multiple open questions regarding their detailed mode-of-action and the mechanisms, including phenotypic heterogeneity, that can make bacteria less susceptible to QACs. To facilitate studies on resistance mechanisms towards QACs, we synthesized a fluorescent quaternary ammonium compound, namely N-dodecyl-N,N-dimethyl-[2-[(4-nitro-2,1,3-benzoxadiazol-7-yl)amino]ethyl]azanium-iodide (NBD-DDA). NBD-DDA is readily detected by flow cytometry and fluorescence microscopy with standard GFP/FITC-settings, making it suitable for molecular and single-cell studies. As a proof-of-concept, NBD-DDA was then used to investigate resistance mechanisms which can be heterogeneous among individual bacterial cells. Our results reveal that the antimicrobial activity of NBD-DDA against Escherichia coli, Staphylococcus aureus and Pseudomonas aeruginosa is comparable to that of benzalkonium chloride (BAC), a widely used QAC, and benzyl-dimethyl-dodecylammonium chloride (BAC12), a mono-constituent BAC with alkyl-chain length of 12 and high structural similarity to NBD-DDA. Characteristic time-kill kinetics and increased tolerance of a BAC tolerant E. coli strain against NBD-DDA suggest that the mode of action of NBD-DDA is similar to that of BAC. As revealed by confocal laser scanning microscopy (CLSM), NBD-DDA is preferentially localized to the cell envelope of E. coli, which is a primary target of BAC and other QACs. Leveraging these findings and NBD-DDA‘s fluorescent properties, we show that reduced cellular accumulation is responsible for the evolved BAC tolerance in the BAC tolerant E. coli strain and that NBD-DDA is subject to efflux mediated by TolC. Overall, NBD-DDA’s antimicrobial activity, its fluorescent properties, and its ease of detection render it a powerful tool to study resistance mechanisms of QACs in bacteria and highlight its potential to gain detailed insights into its mode-of-action. KW - Antimicrobial resistance KW - Bacteria KW - Disinfection KW - Biocides PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-563811 DO - https://doi.org/10.3389/fmicb.2022.1023326 SN - 1664-302X IS - 13 SP - 1 EP - 13 PB - Frontiers Media CY - Lausanne AN - OPUS4-56381 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nickl, Philip A1 - Hilal, T. A1 - Olal, D. A1 - Donskyi, Ievgen A1 - Radnik, Jörg A1 - Ludwig, K. A1 - Haag, R. T1 - A New Support Film for Cryo Electron Microscopy Protein Structure Analysis Based on Covalently Functionalized Graphene N2 - Protein adsorption at the air–water interface is a serious problem in cryogenic electron microscopy (cryoEM) as it restricts particle orientations in the vitrified ice-film and promotes protein denaturation. To address this issue, the preparation of a graphene-based modified support film for coverage of conventional holey carbon transmission electron microscopy (TEM) grids is presented. The chemical modification of graphene sheets enables the universal covalent anchoring of unmodified proteins via inherent surface-exposed lysine or cysteine residues in a one-step reaction. Langmuir–Blodgett (LB) trough approach is applied for deposition of functionalized graphene sheets onto commercially available holey carbon TEM grids. The application of the modified TEM grids in single particle analysis (SPA) shows high protein binding to the surface of the graphene-based support film. Suitability for high resolution structure determination is confirmed by SPA of apoferritin. Prevention of protein denaturation at the air–water interface and improvement of particle orientations is shown using human 20S proteasome, demonstrating the potential of the support film for structural biology. KW - Functionalized graphene KW - Transmission electron microsocpy KW - Protein structure PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-566443 DO - https://doi.org/10.1002/smll.202205932 SN - 1613-6810 SP - 2205932 PB - Wiley VCH AN - OPUS4-56644 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hahn, Marc Benjamin T1 - Functionalized biopolymers - using nature’s toolbox N2 - Biopolymers are the building blocks of life. Their properties are exploited for material functionalization on the nanoscale in a flexible manner. An overview over current research activities in the field of sensing, nanostrcuturing, radiation damage measurements on DNA and proteins and microfluidics is given. T2 - Outreach talks CY - Online meeting DA - 24.11.2022 KW - DNA KW - Proteins KW - Biopolymers KW - Sensing KW - MPL KW - Nanostructuring KW - G5P KW - Functionalization KW - Polymers PY - 2022 AN - OPUS4-56813 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Radnik, Jörg A1 - Knigge, Xenia A1 - Andresen, Elina A1 - Resch-Genger, Ute A1 - Cant, D.J.H. A1 - Shard, A.G. A1 - Clifford, C.A. T1 - Composition, thickness, and homogeneity of the coating of core–shell nanoparticles—possibilities, limits, and challenges of X-ray photoelectron spectroscopy N2 - Core–shell nanoparticles have attracted much attention in recent years due to their unique properties and their increasing importance in many technological and consumer products. However, the chemistry of nanoparticles is still rarely investigated in comparison to their size and morphology. In this review, the possibilities, limits, and challenges of X-ray photoelectron spectroscopy (XPS) for obtaining more insights into the composition, thickness, and homogeneity of nanoparticle coatings are discussed with four examples: CdSe/CdS quantum dots with a thick coating and a small core; NaYF4-based upconverting nanoparticles with a large Yb-doped core and a thin Er-doped coating; and two types of polymer nanoparticles with a poly(tetrafluoroethylene) core with either a poly(methyl methacrylate) or polystyrene coating. Different approaches for calculating the thickness of the coating are presented, like a simple numerical modelling or a more complex simulation of the photoelectron peaks. Additionally, modelling of the XPS background for the investigation of coating is discussed. Furthermore, the new possibilities to measure with varying excitation energies or with hard-energy X-ray sources (hard-energy X-ray photoelectron spectroscopy) are described. A discussion about the sources of uncertainty for the determination of the thickness of the coating completes this review. KW - X-ray spectroscopy KW - Nanoparticles KW - Spectroscopy / Instrumentation KW - Spectroscopy / Theory PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-548305 DO - https://doi.org/10.1007/s00216-022-04057-9 VL - 414 IS - 15 SP - 4331 EP - 4345 PB - SpringerNature AN - OPUS4-54830 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radnik, Jörg T1 - VAMAS-Enabling international standardisation for increasing the take up of Emerging Materials N2 - VAMAS (Versailles Project on Advanced Materials and Standards) supports world trade in products dependent on advanced materials technologies by providing technical basis for harmonized measurements, testing, specification, reference materials and standards. The major tools for fulfilling this task are interlaboratory comparisons (ILC). The organisation structure of VAMAS is presented. It is discussed, how a new technical activity can initiate. T2 - DIN NA062-08-16 Oberflächenanalytik Frühjahrstreffen CY - Berlin, Germany DA - 11.05.2022 KW - Advanced Materials KW - Standards KW - Interlaboratory Comparisons PY - 2022 AN - OPUS4-54831 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Khanipour, Peyman T1 - Real time mass spectrometry - From Unravelling Electrochemical Reaction Mechanism to Trace Analysis of Impurities in Hydrogen Gas N2 - Climate change and related energy policies, exacerbated by unforeseen geopolitical developments, pose new challenges for gas analytics, such as the use of hydrogen, hydrogen-containing alternative gaseous fuels (NH3, etc.), the use of alternative methane-based energy gases (LNG, LPG, etc.) or decarbonisation via CCSU. In all topics, the quality, i.e. the actual chemical composition of the gases, naturally plays a decisive role. BAM is meeting this strategic importance with the further development of hydrogen analytics and is continuing to develop the methods used in order to support the German economy and research landscape with traceability, reference materials and analytical procedures as quickly as possible. Mass spectrometry plays an important role for trace analysis in hydrogen matrix. The presentation shows first experimental results from the application of PTR-TOF-MS (Proton Transfer Reaction Time-of-Flight Mass Spectrometry). T2 - 11th International GAS Analysis Symosium & Exhibition CY - Paris, France DA - 17.05.2022 KW - Gas Analysis KW - Hydrogen KW - Metrology KW - Mass Spectrometry KW - Trace Analysis PY - 2022 AN - OPUS4-56589 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -