TY - JOUR A1 - Kulla, Hannes A1 - Haferkamp, Sebastian A1 - Akhmetova, Irina A1 - Röllig, Mathias A1 - Maierhofer, Christiane A1 - Rademann, Klaus A1 - Emmerling, Franziska T1 - In situ investigations of mechanochemical one-pot syntheses N2 - We present an in situ triple coupling of synchrotron X-ray diffraction with Raman spectroscopy, and thermography to study milling reactions in real time. This combination of methods allows a correlation of the structural evolution with temperature information. The temperature information is crucial for understanding both the thermodynamics and reaction kinetics. The reaction mechanisms of three prototypical mechanochemical syntheses, a cocrystal formation, a C@C bond formation (Knoevenagel condensation), and the formation of a manganese-phosphonate, were elucidated. Trends in the temperature development during milling are identified. The heat of reaction and latent heat of crystallization of the product contribute to the overall temperature increase. A decrease in temperature occurs via release of, for example, water as a byproduct. Solid and liquid intermediates are detected. The influence of the mechanical impact could be separated from temperature effects caused by the reaction. KW - In situ studies KW - Mechanochemistry KW - Raman spectroscopy KW - Thermography KW - X-ray diffraction PY - 2018 DO - https://doi.org/10.1002/anie.201800147 SN - 1433-7851 SN - 1521-3773 VL - 57 IS - 20 SP - 5930 EP - 5933 PB - Wiley-VCH CY - Weinheim AN - OPUS4-44946 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Lauer, Franziska A1 - Diehn, Sabrina A1 - Weidner, Steffen A1 - Kneipp, Janina T1 - A graphical user interface for a fast multivariate classification of MALDI-TOF MS data of pollen grains N2 - The common characterization and identification of pollen is a time-consuming task that mainly relies on microscopic determination of the genus-specific pollen morphology. A variety of spectroscopic and spectrometric approaches have been proposed to develop a fast and reliable pollen identification using specific molecular information. Amongst them, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) shows a high potential for the successful investigation of such complex biological samples. Based on optimized MALDI sample preparation using conductive carbon tape, the application of multivariate statistics (e.g. principal components analysis, PCA) yields an enormous improvement concerning taxonomic classification of pollen species compared to common microscopic techniques. Since multivariate evaluation of the recorded mass spectra is of vital importance for classification, it’s helpful to implement the applied sequence of standard Matlab functions into a graphical user interface (GUI). In this presentation, a stand-alone application (GUI) is shown, which provides multiple functions to perform fast multivariate analysis on multiple datasets. The use of a GUI enables a first overview on the measured dataset, conducts spectral pretreatment and can give classification information based on HCA and PCA evaluation. Moreover, it can be used to improve fast spectral classification and supports the development of a simple routine method to identify pollen based on mass spectrometry. T2 - 12. Interdisziplinäres Doktorandenseminar, GDCh AK Prozessanalytik CY - BAM, AH, Berlin, Germany DA - 25.03.2018 KW - MALDI KW - GUI KW - Pollen PY - 2018 AN - OPUS4-44661 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Grunert, B. A1 - Saatz, Jessica A1 - Hoffmann, Katrin A1 - Appler, F. A1 - Lubjuhn, Dominik A1 - Jakubowski, Norbert A1 - Resch-Genger, Ute A1 - Emmerling, Franziska A1 - Briel, A. T1 - Multifunctional rare-earth element nanocrystals for cell labeling and multimodal imaging N2 - In this work, we describe a simple solvothermal route for the synthesis of Eu3+-doped gadolinium orthovanadate nanocrystals (Eu:GdVO4−PAA) functionalized with poly(acrylic)acid (PAA), that are applicable as cell labeling probes for multimodal cellular imaging. The Eu3+ doping of the vanadate matrix provides optical functionality, due to red photoluminescence after illumination with UV light. The Gd3+ ions of the nanocrystals reduce the T1 relaxation time of surrounding water protons, allowing these nanocrystals to act as a positive MRI contrast agent with a r1 relaxivity of 1.97 mM−1 s−1. Low background levels of Eu3+, Gd3+, and V5+ in biological systems make them an excellent label for elemental microscopy by Laser Ablation (LA)-ICP-MS. Synthesis resulted in polycrystalline nanocrystals with a hydrodynamic diameter of 55 nm and a crystal size of 36.7 nm, which were further characterized by X-ray diffraction (XRD), photoluminescence spectroscopy (PL) and transmission electron microscopy (TEM). The multifunctional nanocrystals were subsequently used for intracellular labeling of both human adipose-derived stem cells (MSCs) and A549 (adenocarcinomic human alveolar basal epithelial) cells. KW - Bioimaging KW - Nanoparticle KW - Multimodal KW - Lanthanide PY - 2018 DO - https://doi.org/10.1021/acsbiomaterials.8b00495 SN - 2373-9878 VL - 4 IS - 10 SP - 3578 EP - 3587 PB - ACS Publications CY - Washington, USA AN - OPUS4-46244 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Prinz, Carsten A1 - Zimathies, Annett A1 - Emmerling, Franziska T1 - Importance of stability studies on porous certified reference materials N2 - In the development of certified reference materials (CRM), it is necessary to examine appropriate materials in advance for homogeneity and stability to meet the criteria of a CRM. In this case, the materials properties are characterized at the actual time without being possible to give a prognosis for suitability in the following years. It is, therefore, necessary to follow the certified material parameters via a monitoring system over the years on sale. For the current development of CRMs, the gained experience from long-term stability studies about the first generation of porous CRMs is significant. This experience is useful to better assess the suitability of candidate materials and thus develop higher quality CRMs in the future. A comparison between the gas sorption CRM materials silica, activated carbons, alpha alumina and anatase titanium oxides will illustrate the importance of long-term stability studies on porous CRMs. T2 - BERM 2018 - 15th International Symposium on Biological and Environmental Reference Materials CY - Berlin, Germany DA - 23.09.2018 KW - Reference material KW - Monitoring KW - Long-term stability PY - 2018 AN - OPUS4-46257 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - You, Zengchao A1 - Weidner, Steffen A1 - Jakubowski, Norbert A1 - Panne, Ulrich T1 - Nanoparticles separation using capillary electrophoresis (CE) and asymmerical flow-field flow fractionation (AF4) N2 - Nowadays, different nanoparticles have been developed for commercial applications. However, since data on toxicity are barely available, their increasing application in cosmetic products, food and their release in the environment might cause severe problems. An accurate separation, identification and characterization of nanoparticles becomes increasingly important. A common method for nanoparticle separation, which was introduced in 1976 by Giddings, represents asymmetrical field-flow fractionation (AF4). It is a flow based separation method, which can be theoretically used to separate particles range from 1 nm to 50 µm. However, when the particles are smaller than 10 nm, separation with AF4 will become difficult to perform. Because in this case strong separation force, which induces aggregation of particles, should be applied. This will decrease recoveries of analytes and limit its application in accurate quantitative analysis. Capillary electrophoresis (CE) is another well-developed separation technique, in which samples will be separated in relation to their electrophoretic mobility. In recent years, CE has been used to separate different kinds of nanoparticles like, gold colloids or CdSe Quantum dots. However, till now only separation of particles smaller than 50 nm was reported. Because large size distribution of bigger particles will result in strong peak broadening and long separation time. A two-dimensional coupling of AF4 and CE might provide us a new separation method, which can extend the separation ranges of both methods and be a way to characterise particles with large size distributions. T2 - BAM PhD seminar CY - PhD seminar, Berlin, Germany DA - 22.06.2018 KW - Nanoparticles separation capillary electrophoresis asymmetrcial flow field flow fractionation PY - 2018 AN - OPUS4-47187 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - You, Zengchao A1 - Weidner, Steffen A1 - Jakubowski, Norbert A1 - Meermann, Björn A1 - Panne, Ulrich T1 - Nanoparticles separation using capillary electrophoresis N2 - Nowadays, different nanoparticles have been developed for commercial applications. However, since data on toxicity are barely available, their increasing application in cosmetic products, food and their release in the environment might cause severe problems. An accurate separation, identification and characterization of nanoparticles becomes increasingly important. A common method for nanoparticle separation, which was introduced in 1976 by Giddings, represents asymmetrical field-flow fractionation (AF4). It is a flow based separation method, which can be theoretically used to separate particles range from 1 nm to 50 µm. However, when the particles are smaller than 10 nm, separation with AF4 will become difficult to perform. Because in this case strong separation force, which induces aggregation of particles, should be applied. This will decrease recoveries of analytes and limit its application in accurate quantitative analysis. Capillary electrophoresis (CE) is another well-developed separation technique, in which samples will be separated in relation to their electrophoretic mobility. In recent years, CE has been used to separate different kinds of nanoparticles like, gold colloids or CdSe Quantum dots. However, till now only separation of particles smaller than 50 nm was reported. Because large size distribution of bigger particles will result in strong peak broadening and long separation time. A two-dimensional coupling of AF4 and CE might provide us a new separation method, which can extend the separation ranges of both methods and be a way to characterise particles with large size distributions. T2 - ESAS-CANAS Konferenz CY - Berlin, Germany DA - 21.03.2018 KW - Nanoparticles separation capillary electrophoresis asymmetrcial flow field flow fractionation PY - 2018 AN - OPUS4-47188 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - You, Zengchao A1 - Weidner, Steffen A1 - Jakubowski, Norbert A1 - Panne, Ulrich T1 - Separation of polystyrene nanoparticles with different coatings using 2D off-line coupling of asymmetrical flow field flow fractionation (AF4) and capillary electrophoresis (CE) N2 - Nowadays, different nanoparticles have been developed for commercial applications. However, since data on toxicity are barely available, their increasing application in cosmetic products, food and their release in the environment might cause severe problems. An accurate separation, identification and characterization of nanoparticles becomes increasingly important1,2. In this presentation, a two-dimensional separation approach based on AF4 and CE was showed and used to separate NPs with similar sizes but different coatings. Standard reference polystyrene NPs having comparable core sizes but different coatings were investigated. Different migration time and profiles were compared. Separation in either method resulted in non-baseline resolved or non-separated peaks. In contrast, two-dimensional coupling of AF4 and CE resulted in clearly separated regions in their 2 D plots in case of 20 and 50 nm particle mixtures, whereas the 100 nm NP mixture could not be separated. Various factors affecting the separation like hydrodynamic diameter or SDS concentration were discussed. Future investigations will be focussed on inorganic NPs with differently charged coatings. There, AF4-CE coupling can be coupled with inductively coupled plasma mass spectrometry (ICP-MS) to enhance the sensitivity of this method. T2 - 6th FFF-MS Tagung CY - Berlin, Germany DA - 22.11.2018 KW - Nanoparticles separation capillary electrophoresis asymmetrcial flow field flow fractionation PY - 2018 AN - OPUS4-47191 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wanner, C. A1 - Poethig, R. A1 - Carrero, S. A1 - Fernandez-Martinez, A. A1 - Jäger, Christian A1 - Furrer, G. T1 - Natural occurrence of nanocrystalline Al-hydroxysulfates: Insights on formation, Al solubility control and As retention N2 - Nanocrystalline basaluminite [Al4OH10(SO4)(H2O)3–5] and Aggregation of the e-Keggin polyoxocation [Al12(AlO4)(OH)24(H2O)12]7+, referred to as Al13, have both been described to form in acid mine Drainage environments. Although the chemical composition is quite similar, their crystalline varieties significantly differ, demonstrating that various types of Al-hydroxysulfates can form under similar conditions and that their respective formation is not fully understood yet. Here, we report the occurrence of nanocrystalline precipitates that form naturally in a small alpine catchment in Switzerland where an acidic mountainous stream (pH 4) is neutralized successively after mixing with several neutral tributaries. The stepwise neutralization in conjunction with the large amount of precipitates provide an ideal setting for obtaining new insights into (i) the structure of naturally forming Al-hydroxysulfates, (ii) their formation mechanism, (iii) their role in controlling the solubility of Al, and (iv) their ability to lower the mobility of As. Synchrotron-based high-energy X-ray diffraction and subsequent pair distribution function analyses demonstrate that these precipitates are structurally identical to basaluminite samples obtained from acid mine drainage sites. In contrast, only minor amounts of tetrahedrally coordinated Al, as present in Al13, were identified by nuclear magnetic resonance spectroscopy. The precipitates are further characterized by elevated As concentrations up to 600 lg/g, whereas other heavy metals are at background concentrations only. Given the low As concentrations in the stream from which precipitation occurs (<0.03 mg/L), high As concentrations confirm that basaluminite serves as a highly efficient As sink, which is attributed to its high anion-exchange capacity. Chemical analysis of streamwater samples in combination with geochemical modeling show that precipitation occurs instantaneously upon mixing with neutral streams. Moreover, our data reveal that the precipitation of basaluminite exerts a strong solubility control on dissolved Al concentrations as manifested by the quasi-constant basaluminite ion activity product observed during neutralization from pH 5 to pH 5.9. We hypothesize that in our field system, high fluoride and sulfate concentrations on the order of 100 and 1–2 mg/L, KW - Basaluminite KW - Al13 KW - Acid rock drainage KW - Arsenic retention KW - Aluminum KW - Anion exchange PY - 2018 DO - https://doi.org/10.1016/j.gca.2018.06.031 SN - 0016-7037 SN - 1872-9533 VL - 238 SP - 252 EP - 269 PB - Elsevier Ltd. AN - OPUS4-46164 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Emmerling, Franziska T1 - Mechanistic investigations of mechanosyntheses N2 - Mechanochemistry is a fast and efficient method applicable for the synthesis of new organic, metal-organic, and inorganic compounds. The direct monitoring of milling reactions is still challenging. The underlying reaction mechanisms often remain unclear. In the last years, we have established a tandem in situ approach for investigating mechanochemical reactions using time-resolved in situ XRD coupled with Raman spectroscopy. A further development is the in situ coupling of synchrotron XRD, Raman spectroscopy, and thermography allowing the observation of mechanochemical reactions in real time. [5] Information on the crystalline, molecular, and temperature state of the materials during grinding could be collected. The chemical composition of the reaction mixture was found to be directly correlated with changes in the temperature profile of the reaction. Furthermore, the presented setup allows the detection of crystalline, amorphous, eutectic as well as liquid intermediates. Based on these data, metastable polymorphs of cocrystals and coordination polymorphs could be isolated and struc-turally characterized. A multi-step diffusion mechanism was identified for most systems. Crystalline phases were obtained intermediately, suggesting that the synthesis is following Ostwald’s rules of stages. The resulting deeper kinetic and thermodynamic understanding of milling processes is the key for future optimization of mechanochemical syntheses. T2 - Beilstein Symposium MECHANOCHEMISTRY: MICROSCOPIC AND MACROSCOPIC ASPECTS CY - Rüdesheim, Germany DA - 13.11.2018 KW - Mechanochemistry KW - Phosphonates KW - In situ PY - 2018 AN - OPUS4-46758 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Piedade, M. F. M. A1 - Joseph, A. A1 - Alves, J. R. A1 - Bernardes, C. E. S. A1 - Emmerling, Franziska A1 - Minas da Piedade, M. E. T1 - Crystal Engineering through Solvent Mediated Control of Molecular Conformation: The Case of 5-Hydroxynicotinic Acid N2 - The importance of molecular conformation for polymorphism and its repercussions in terms of tight control over the industrial production of crystalline organic materials with highly reproducible physicochemical properties has long been recognized. Efforts to understand how a crystallization solvent can direct the formation of a polymorph containing a specific molecular conformation are, however, relatively scarce. Nicotinic acid (NA) and its hydroxyl derivatives (2-, 4-, 5-, and 6-hydroxynicotinic acids) are very good models for such studies. Indeed, regardless of the solvent, NA always crystallizes as a single polymorph with the molecule in the same neutral conformation. In contrast, the hydroxyl derivatives are prone to polymorphism and solvate formation and, depending on the crystallization conditions, the molecules in the crystal lattice can exhibit hydroxyl, oxo, or zwitterionic conformations. The present study focused on 5-hydroxynicotinicacid (5HNA) shows that by judicious selection of the solvent it is possible to obtain 1:1 solvates, where solvation memory is not completely lost and the tautomer preferred in solution persists in the crystalline state: zwitterionic in 5HNA·H2O and neutral in 5HNA·DMSO. Nevertheless, upon thermal desolvation the obtained materials evolve to the same unsolvated form where the molecule is in a zwitterionic conformation. The structures of 5HNA·H2O and 5HNA·DMSO obtained from single crystal-ray diffraction are discussed and compared with that of 5HNA solved from powder data. The energetics of the dehydration/desolvation process was also fully characterized by thermogravimetry (TG), differential scanning calorimetry (DSC) and Calvet microcalorimetry. T2 - BACG 2018 CY - Limerick, Ireland DA - 20.06.2018 KW - Crystal Engineering KW - 5-hydroxynicotinic acid KW - Molecular Conformation PY - 2018 AN - OPUS4-45519 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Emmerling, Franziska T1 - In-situ investigations of mechanochemical reactions N2 - Mechanochemistry is a fast and efficient method applicable for the synthesis of new organic[1], metal-organic[2], and inorganic[3] compounds. The direct monitoring of milling reactions is still challenging. The underlying reaction mechanisms remain often unclear. In the last years, have established a tandem in situ approach for investigating mechanochemical reactions using time-resolved in situ XRD coupled with Raman spectroscopy.[4] Here, we present an in situ coupling of synchrotron XRD, Raman spectroscopy, and thermography allowing the observation of mechanochemical reactions in real time.[5] Information on the crystalline, molecular, and temperature state of the materials during grinding could be collected. The chemical composition of the reaction mixture was found to be directly correlated with changes in the temperature profile of the reaction. Furthermore, the presented setup allows the detection of crystalline, amorphous, eutectic as well as liquid intermediates. The resulting deeper kinetic and thermodynamic understanding of milling processes is the key for future optimization of mechanochemical syntheses. T2 - ACS Conference Boston CY - Boston, USA DA - 19.08.2018 KW - Mechanochemistry KW - In situ KW - Kinetic PY - 2018 AN - OPUS4-46989 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Emmerling, Franziska T1 - New insights in mechanochemical processes using real-time in situ investigations N2 - Mechanochemistry is increasingly used for synthesizing various materials including metal organic compounds and cocrystals. Although this synthesis approach offers a fast and pure synthesis in high yields, there is a lack in understanding the mechanisms of milling reactions. The necessary data can only be obtained in in situ experiments, which were only recently established for milling reactions. Herein, we present a novel setup enabling a combined in situ investigation of mechanochemical reactions using synchrotron XRD and Raman spectroscopy. T2 - ECM31 CY - Oviedo, Spain DA - 18.08.2018 KW - Mechanochemistry KW - In situ PY - 2018 AN - OPUS4-46990 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Emmerling, Franziska T1 - In situ investigations of mechanochemical reactions N2 - Presentation of the recent results in the context of in situ investigations of reactions using X-ray diffraction. T2 - Germany Brazil Workshop: New light on mechanisms of chemical reactions CY - Kiel, Germany DA - 31.07.2018 KW - In situ KW - XRD PY - 2018 AN - OPUS4-46991 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Emmerling, Franziska T1 - In situ studies of mechanochemistry: a force of synthesis N2 - Recent results in the field of mechanisms and kinetics of mechanochemical reactions. T2 - Seminar GFZ Potsdam CY - Postdam, Germany DA - 28.03.2018 KW - In situ KW - XRD KW - Rietveld PY - 2018 AN - OPUS4-46992 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Emmerling, Franziska T1 - Synchrotron X-ray Investigations N2 - Summary of the techniques available at the BAMline and µspot BEamline. T2 - Workshop Humboldt University and Hebrew University of Jerusalem CY - Berlin, Germany DA - 09.10.2018 KW - In situ KW - XRD PY - 2018 AN - OPUS4-46993 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Emmerling, Franziska T1 - New insights in mechanochemical processes using real-time In situ investigations N2 - Mechanochemistry is a fast and efficient method applicable for the synthesis of new organic[1], metal-organic[2], and inorganic[3] compounds. The direct monitoring of milling reactions is still challenging. The underlying reaction mechanisms remain often unclear. In the last years, have established a tandem in situ approach for investigating mechanochemical reactions using time-resolved in situ XRD coupled with Raman spectroscopy.[4] Here, we present an in situ coupling of synchrotron XRD, Raman spectroscopy, and thermography allowing the observation of mechanochemical reactions in real time.[5] Information on the crystalline, molecular, and temperature state of the materials during grinding could be collected. The chemical composition of the reaction mixture was found to be directly correlated with changes in the temperature profile of the reaction. Furthermore, the presented setup allows the detection of crystalline, amorphous, eutectic as well as liquid intermediates. The resulting deeper kinetic and thermodynamic understanding of milling processes is the key for future optimization of mechanochemical syntheses. T2 - 5th International Conference "Fundamental Bases of Mechanochemical Technologies" CY - Novosibirsk, Russia DA - 25.06.2018 KW - Mechanochemistry KW - XRD KW - Kinetic KW - Coordination polymers PY - 2018 AN - OPUS4-46994 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Emmerling, Franziska T1 - In situ characterization of nucleation, growth, crystallization and dissolution of nanoscaled iron oxides N2 - Nucleation and growths of iorn oxide nanoparticles studied in situ using XRD, XRF, SAXS and XANES. T2 - International CRC meeting CY - Berlin, Germany DA - 10.10.2018 KW - XRD KW - XANES PY - 2018 AN - OPUS4-46995 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Akhmetova, Irina A1 - Schutjajew, Konstantin A1 - Roth, Christina A1 - Emmerling, Franziska T1 - Mechanochemical synthesis of metal phosphonates N2 - The exploration of metal phosphonates chemistry has gained great interest during the last decades, because of their structural diversity. Transition metal phosphonates are promising candidates for an application as electrocatalysts in oxygen evolution reactions (OER). Here, we present the in situ investigation of mechanochemical syntheses of different manganese phosphonates by synchrotron X-ray diffraction. Nitrilotri(methylenephosphonic acid) and N,N-Bis(phosphonomethyl)glycine were chosen as ligands. The liquid-assisted milling process can be divided into three steps, including an amorphous stage. One of the products has not been obtained by classical solution chemistry before. These metal phosphonates and/or their derivatives are considered to be active in electrochemical energy conversion. The verification of their applicability is one of the topics of our resent research. T2 - Fundamental Bases of Mechanochemical Technologies CY - Novosibirsk, Russia DA - 25.06.2018 KW - Metal phosphonates KW - Mechanochemistry KW - PXRD KW - Thermography PY - 2018 AN - OPUS4-46996 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Haferkamp, Sebastian A1 - Emmerling, Franziska A1 - Akhmetova, Irina A1 - Kulla, Hannes A1 - Rademann, Klaus T1 - In situ investigation of mechanochemical Knoevenagel condensations of benzaldehyde derivates N2 - Mechanochemistry is known for short reaction times, nearly quantitative conversions, and decreasing amount of solvents. Among organic syntheses, the Knoevenagel condensation is an important C-C bond forming reaction. We investigated the reaction of benzaldehyde derivates (nitro- and fluoro-derivates) with malononitrile syntheses by a combination of different in situ investigation techniques. T2 - BESSY II User Meeting CY - Berlin, Germany DA - 05.12.2018 KW - Mechanochemistry KW - In situ PY - 2018 AN - OPUS4-46997 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Akhmetova, Irina A1 - Emmerling, Franziska A1 - Schutjajew, Konstantin A1 - Roth, Christina T1 - In situ investigation of milling reactions and structure determination of the products using X-ray diffraction N2 - Mechanochemistry is a versatile approach for green and fast synthesis of pure substances. By milling the reactants, various organic, inorganic, and metal-organic compounds can be obtained in high yields. Although mechanochemistry is widely used, the underlying mechanisms are not fully understood making mechanochemical reactions difficult to predict. Metal phosphonates are metal-organic compounds accessible by grinding. Because of their structural diversity, the exploration of the chemistry of metal phosphonates has gained considerable interest during the last decades. Transition metal phosphonates are promising candidates for an application as electrocatalysts in oxygen evolution reaction (OER). Here, we present the in situ investigation of the mechanochemical synthesis of a manganese(II)-phosphonate by synchrotron X-ray diffraction and thermography. The product has not been obtained by classical solution chemistry before and its crystal structure was determined from PXRD data. The milling process can be divided into different steps, with the product crystallization corresponding with the highest temperature rise. The activity of this metal phosphonate towards OER was measured and is presented here. T2 - International School of Crystallography - 52nd Course: Quantum Crystallography CY - Erice, Italy DA - 1.06.2018 KW - Metal phosphonates KW - Mechanochemistry KW - PXRD KW - OER KW - Thermography PY - 2018 AN - OPUS4-46998 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -