TY - CONF A1 - Hahn, Marc Benjamin A1 - Dietrich, P. M. A1 - Radnik, Jörg A1 - Solomun, Tihomir A1 - Hallier, Dorothea C. A1 - Seitz, H. T1 - The change of dna and protein radiation damage upon hydration: in-situ observations by near-ambient-pressure xps N2 - X-ray photoelectron-spectroscopy (XPS) allows simultaneous irradiation and damage monitoring. Although water radiolysis is essential for radiation damage, all previous XPS studies were performed in vacuum. Here we present near-ambient-pressure XPS experiments to directly measure DNA damage under water atmosphere. They permit in-situ monitoring of the effects of radicals on fully hydrated double-stranded DNA. Our results allow us to distinguish direct damage, by photons and secondary low-energy electrons (LEE), from damage by hydroxyl radicals or hydration induced modifications of damage pathways. The exposure of dry DNA to x-rays leads to strand-breaks at the sugar-phosphate backbone, while deoxyribose and nucleobases are less affected. In contrast, a strong increase of DNA damage is observed in water, where OH-radicals are produced. In consequence, base damage and base release become predominant, even though the number of strand-breaks increases further. Furthermore, first data about the degradation of single-stranded DNA binding-proteins (G5P / GV5 and hmtSSB) under vacuum and NAP-XPS conditions are presented. T2 - AVS69 CY - Portland, USA DA - 05.11.2023 KW - Base damage KW - Base loss KW - Cancer treatment KW - DNA KW - Protein KW - Proteins KW - Geant4 KW - Dosimetry KW - Microdosimetry KW - NAP-XPS KW - Xray photo electron spectrocopy KW - Radiation damage KW - Geant4-DNA KW - G5P KW - GVP KW - Hydroxyl radical KW - LEE KW - DEA KW - DET KW - ROS KW - Prehydrated electron KW - TOPAS KW - Near ambient pressure xray photo electron spectroscopy KW - SSB KW - DSB KW - Single-strand break (SSB) KW - ESCA KW - Single-stranded DNA-binding proteins KW - Reactive oxygen species PY - 2023 AN - OPUS4-58761 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radnik, Jörg T1 - How to measure the chemical composition of industrial graphene - New insights from an interlaboratory comparison N2 - International standards describing reliable protocols will facilitate the commercialization of graphene and related 2D materials. One physico-chemical key property next to flake size and thickness is the chemical composition of the material. Therefore, an ISO standard is under development with X-ray photoelectron spectroscopy having a prominent role. With its information depth of around 10 nm which is the similar length scale as the thickness as of particles of 2D materials consisting of a few monolayer XPS seems to be highly suitable for this purpose. Different sample preparation methods like pressing the powders onto adhesive tapes, into recesses, or into solid pellets result in inconsistencies in the quantification. For the validation of the quantification with XPS an interlaboratory comparison was initiated under the auspice of the “Versailles Project on Advanced Materials and Standards” (VAMAS). First results confirm that the sample preparation method (pellet vs. powder) influences the quantification results clearly. T2 - Characterization of Nanomaterials Colloquium CY - Berlin, Germany DA - 04.07.2023 KW - X-ray photoelectron spectroscopy KW - Functionalized graphene KW - Interlaboratory comparison PY - 2023 AN - OPUS4-57897 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hahn, Marc Benjamin T1 - Radiation biophysics: a journey N2 - We give an overview about recent work concerning ionizing radiation damage to Oligonucleotides, plasmid DNA, DNA binding proteins (G5P), and DNA-protein complexes. We focus on combining new experimental setups with Geant4/TOPAS particle scattering simulations to understand the effets of ionizing radiation. T2 - Project update CY - Online meeting DA - 09.10.2023 KW - DNA KW - Proteins KW - G5P KW - Geant4 KW - Geant4-DNA KW - TOPAS KW - TOPAS-nBio KW - LEE KW - Dosimetry KW - Microdosimetry KW - Magnetism KW - Protein PY - 2023 AN - OPUS4-58744 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radnik, Jörg A1 - Chemello, Giovanni A1 - Knigge, Xenia A1 - Hodoroaba, Vasile-Dan T1 - Characterization of functionalized graphene particles with comparative XPS/HAXPES investigations N2 - The different chmemistry of graphitic nanoplatelets between the outermost surface and the bulk of the samples was investigated with comparative XPS/HAXPES measurements. T2 - PHI User Meeting CY - Grenoble, France DA - 18.04.2023 KW - X-ray photoelectron spectroscopy KW - Hard-energy X-ray photoelectron spectroscopy KW - graphene related 2D materials PY - 2023 AN - OPUS4-57649 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hahn, Marc Benjamin T1 - Combined experimental and simulational approaches to access radiation damage to DNA-Protein complexes N2 - We combine irradiation experiments at DNA, proteins and their complexes with Geant4 based particle-scattering simulations to understand the degradation mechanisms on a molecular level. T2 - High performance computing workshop CY - Allan, Jordan DA - 26.06.2023 KW - DNA KW - Protein KW - Radiadion damage KW - Geant4 KW - Geant4-DNA KW - MCS KW - Particle scattering simulations KW - gold nanoparticles PY - 2023 AN - OPUS4-57645 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radnik, Jörg A1 - Chemello, Giovanni A1 - Hodoroaba, Vasile-Dan A1 - Reed, B. P. A1 - Pollard, A. A1 - Clifford, C. T1 - VAMAS Project A33: Chemical composition of functionalized graphene with X ray photoelectron spectroscopy (XPS) N2 - The results of the interlaboratory comparison about the chemical composition of functionalized graphene are presented. T2 - DIN Meeting NA 062-08-16 AA CY - Berlin, Germany DA - 25.05.2023 KW - X-ray photoelectron spectroscopy KW - Functionalized graphene KW - Interlaboratory comparison KW - VAMAS PY - 2023 AN - OPUS4-57650 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hahn, Marc Benjamin A1 - Dietrich, Paul M. A1 - Radnik, Jörg T1 - The change of DNA AND PROTEIN radiation damage upon hydration: In-situ observations by near-ambient-pressure XPS N2 - X-ray photoelectron-spectroscopy (XPS) allows simultaneous irradiation and damage monitoring. Although water radiolysis is essential for radiation damage, all previous XPS studies were performed in vacuum. Here we present near-ambient-pressure XPS experiments to directly measure DNA damage under water atmosphere. They permit in-situ monitoring of the effects of radicals on fully hydrated double-stranded DNA. Our results allow us to distinguish direct damage, by photons and secondary low-energy electrons (LEE), from damage by hydroxyl radicals or hydration induced modifications of damage pathways. The exposure of dry DNA to x-rays leads to strand-breaks at the sugar-phosphate backbone, while deoxyribose and nucleobases are less affected. In contrast, a strong increase of DNA damage is observed in water, where OH-radicals are produced. In consequence, base damage and base release become predominant, even though the number of strand-breaks increases further. T2 - Dyson Conference 2023 CY - Prague, Czech Republic DA - 24.04.2023 KW - Base damage KW - Base loss KW - Cancer treatment KW - DNA KW - DNA radiation damage KW - Direct damage KW - Dissociative electron attachment (DEA) KW - Dissociative electron transfer (DET) KW - Dosimetry KW - Double-strand break (DSB) KW - ESCA KW - Energy deposit KW - Geant4 KW - Geant4-DNA KW - Hydrated DNA KW - Hydrated electron KW - Hydration shell KW - Hydroxyl radical KW - Indirect damage KW - Ionization KW - Ionisation KW - LEE KW - Low energy electrons KW - MCS KW - Microdosimetry KW - NAP-XPS KW - Near ambient pressure xray photo electron spectroscopy KW - Net-ionization reaction KW - OH radical KW - PES KW - Particle scattering KW - Prehydrated electron KW - Presolvated electron KW - Quasi-direct damage KW - ROS KW - Radiation damage KW - Radiation therapy KW - Radical KW - Radiolysis KW - Radiotherapy KW - Reactive oxygen species KW - Simulation KW - Single-strand break (SSB) KW - TOPAS KW - TOPAS-nbio KW - XPS KW - Xray KW - Xray photo electron spectrocopy KW - G5P KW - Protein KW - Single-stranded DNA-binding proteins PY - 2023 AN - OPUS4-57406 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radnik, Jörg A1 - Chemello, Giovanni A1 - Hodoroaba, Vasile-Dan A1 - Howe, T. A1 - Vyas, N. A1 - Reed, B. P. A1 - Pollard, A. J. A1 - Clifford, C. A. T1 - Reliable Chemical Characterization Protocols for Industrial Graphene-Related Materials N2 - Since its isolation, graphene has received growing attention from academia and industry due to its unique properties. Promising opportunities for applications are discussed in different field like electronics and optoelectronics, detection, and sensing devices, biosystems or chemical and environmental corrosion inhibition. Here, functionalization with elements like oxygen, nitrogen or fluorine can broaden the application, for example in composite materials. However, lack of generally accepted operation procedures hinders the commercialization, the so-called “what is my material” barrier. Therefore, first efforts were done to develop common, reliable, and reproducible ways to characterize the morphological and chemical properties of the industrially produced material. In this contribution, our efforts in the development of reliable chemical characterizations protocols for functionalized graphene are presented. An ISO standard for the chemical characterization of graphene-related (GRM) is under development with X-ray photoelectron spectroscopy (XPS) having a prominent role. With its information depth of around 10 nm, which is the similar length scale as the thickness of particles of 2D materials consisting of a few monolayers, XPS seems to be highly suitable for the quantitative analysis of (functionalized) GRM. Thereby, different sample preparation methods like pressing the powders onto adhesive tapes, into recesses, or into solid pellets result in inconsistencies in the quantification. Furthermore, different morphologies like stacks of graphene layers (left figure) or irregular particles (right figure) lead to different analysis results for the chemical composition. For the validation of the quantification with XPS and the further development of standards an international interlaboratory comparison was initiated under the head of the “Versailles Project on Advanced Materials and Standards” (VAMAS). First results are reported showing the suitability of the protocols. Finally, the XPS results are compared with the elemental composition results obtained after quantification with energy-dispersive X-ray spectroscopy (EDS) as a fast analytical method which is usually combined with electron microscopy. T2 - nanoSAFE 2023 CY - Grenoble, France DA - 05.06.2023 KW - X-ray photoelectron spectroscopy KW - Functionalized graphene KW - Interlaboratory comparison KW - VAMAS PY - 2023 AN - OPUS4-57652 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radnik, Jörg A1 - Chemello, Giovanni A1 - Hodoroaba, Vasile-Dan A1 - Howe, T. A1 - Vyas, N. A1 - Reed, B.P. A1 - Pollard, A.J. A1 - Clifford, C.A. T1 - Reliable chemical characterization of industrial graphene related materials N2 - International standards describing reliable protocols will facilitate the commercialization of graphene and related 2D materials. One physico-chemical key property next to flake size and thickness is the chemical composition of the material. Therefore, an ISO standard is under development with X-ray photoelectron spectroscopy having a prominent role. With its information depth of around 10 nm which is the similar length scale as the thickness as of particles of 2D materials consisting of a few monolayer XPS seems to be highly suitable for this purpose. Different sample preparation methods like pressing the powders onto adhesive tapes, into recesses, or into solid pellets result in inconsistencies in the quantification. For the validation of the quantification with XPS an interlaboratory comparison was initiated under the auspice of the “Versailles Project on Advanced Materials and Standards” (VAMAS). First results confirm that the sample preparation method (pellet vs. powder) influences the quantification results clearly. Considering this effect, a good agreement of the results from the different participants were observed. Similar results were observed for raw, N- and F-functionalized graphene. T2 - Graphene CY - Manchester, England, UK DA - 27.06.2023 KW - X-ray photoelectron spectroscopy KW - Functionalized graphene KW - Interlaboratory comparison KW - VAMAS PY - 2023 AN - OPUS4-57895 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pauw, Brian Richard A1 - Laskina, Sofya A1 - Naik, Aakash Ashok A1 - Smales, Glen Jacob A1 - George, Janine T1 - “Ultima Ratio”: Multi-scale, high-resolution 3D-FFT scattering pattern simulations N2 - This talk highlights a proof-of-concept that demonstrates the ability to calculate high-resolution Fourier transforms. These can be combined with multi-scale modeling to simulate scattering over a wide range, from small-angle scattering to XRD and PDF. T2 - Shapespyer/MuSSIC launch workshop CY - Didcot, UK DA - 20.02.2023 KW - X-ray scattering KW - Simulation KW - Fourier Transform KW - 3D KW - High resolution KW - Multi-scale PY - 2023 AN - OPUS4-57031 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -