TY - CONF A1 - You, Zengchao A1 - Akkus, A. A1 - Weisheit, W. A1 - Recknagel, Sebastian A1 - Abad Andrade, Carlos Enrique T1 - Multi element analysis in soil using nitrogen microwave inductively coupled plasma mass spectrometry (MICAP MS) N2 - Due to the fast growth of industry and the use of metal-containing compounds such as sewage sludge in agricultural fields, soil pollution associated with heavy metals presents a terrifying threat to the environment. Throughout the world, there are already 5 million sites of soil contaminated by heavy metals1. Some heavy metals pollutants can influence food chain safety and food quality, which in turn affects human health. According to the German Federal Soil Protection and Contaminated Site Ordinance (BBodSchV) 13 heavy metals such as arsenic (As), lead (Pb) and cadmium (Cd) are classified as heavily toxic to human health2. Therefore, elemental analysis and precise quantification of the heavy metals in soil are of great importance. Inductively coupled plasma mass spectrometry (ICP-MS) emerged as a powerful technique for trace analysis of soil due to its multi-element capability, high sensitivity and low sample consumption. However, despite its success and widespread use, ICP-MS has several persistent drawbacks, such as high argon gas consumption, argon-based polyatomic interferences and the need for complicated RF-power generators. Unlike argon-based ICP, the nitrogen microwave inductively coupled atmospheric pressure mass spectrometry (MICAP-MS) uses nitrogen as plasma gas, which eliminates high operating costs associated with argon-gas consumption as well as the argon-based interferences3. For the first time, the applicability of MICAP-MS for elemental analysis of environmental soils is investigated in this work. For this purpose, 7 reference- and 3 random soil samples containing vanadium (V), cobalt (Co), zink (Zn), copper (Cu), chrome (Cr), mercury (Hg), As, Pb and Cd are digested with aqua regia and used for analysis. Concentrations of selected elements are determined using MICAP-MS and validated using ICP-MS. Sensitivities, limits of detection and gas consumption for both methods are compared and discussed in detail. Moreover, the performance of MICAP-MS under different nitrogen plasma gas concentrations is investigated and compared. T2 - BAM Adlershofer Kolloquium CY - Online meeting DA - 21.06.2022 KW - Microwave inductively coupled atmospheric pressure mass spectrometry (MICAP-MS) KW - Multi-element analysis KW - Soil KW - Nitrogen plasma PY - 2022 AN - OPUS4-55182 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Strangfeld, Christoph A1 - Bühling, Benjamin A1 - Maack, Stefan T1 - OsciCheck - A novel fluidic transducer for air coupled ultrasonic measurements N2 - Ultrasonic measurement technology has become indispensable in NDT-CE. Air-coupled ultrasonic (ACU) measurement techniques promise to reduce measurement time. However, the signal quality suffers from large specific impedance mismatch at the transducer-air and air-specimen interface. Additionally, large pressure amplitudes are necessary for the penetration depth required in NDT-CE applications. To address the specific requirements of ultrasonic testing in NDT-CE, a robust ACU transducer was developed, that generates ultrasound by quickly switching a pressurized air flow. The simple design of the fluidic transducer makes the device maintenance free and resilient against harsh environmental conditions. Since the signal is generated by aeroacoustics, there is no specific impedance mismatch between the transducer and the surrounding air. The ultrasonic signal exhibits frequencies in the 30-60 kHz range and is therefore well suited to penetrate heterogenous materials such as concrete. This contribution gives an introduction in the working principle and signal characteristics of the fluidic transducer. A detailed outlook is given to discuss the future potential of fluidic ultrasonic actuators. T2 - International Symposium Non-Destructive Testing in Civil Engineering CY - Zurich, Switzerland DA - 16.08.2022 KW - Air-coupled ultrasound KW - Nondestructive testing KW - Fluidics KW - Bistable amplifier KW - Aeroacoustics PY - 2022 AN - OPUS4-55529 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vogl, Jochen T1 - Plan for comparison on absolute Cu isotope ratios by applying the isotope mixture approach N2 - Based on a previously circulated questionnaire, the plan for a key comparison is presented which focuses on the determination of absolute copper isotope ratios by the means of synthetic isotope mixtures. T2 - IRWG Meeting CY - Online meeting DA - 12.05.2022 KW - Absolute isotope ratio KW - Traceability KW - CCQM PY - 2022 AN - OPUS4-55161 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Xiao, J. A1 - Vogl, Jochen A1 - Rosner, M. A1 - Jin, Z. T1 - Boron isotope fractionation in soil-plant systems and its influence on biogeochemical cycling N2 - Boron (B) is an essential mineral nutrient for higher plants. Although B plant nutrition is well studied, the B isotope fractionation at the soil-plant interface, within plant metabolism, and its influence on biogeochemical cycling is not fully understood. Boron concentrations and isotope variations (δ11B) of the dicotyledonous plants of Chenopodium album and Brassica napus and their growing soils along a climatic gradient were analyzed to decipher these unresolved issues of the B behavior. The boron concentrations and δ11B values show an increasing trend from roots to leaves for both plants, while a decreasing trend from flower to shell and to seed for Brassica napus. A large boron isotope fractionation occurs within the plants with median Δ11Bleaf-root ≈ +20‰, which is related to different boron transporters and transportation ways. Formation of borate dimerized rhamnogalacturonan II in cell and B(OH)3 transportation in xylem lead to heavier δ11B values from root to stem and leaf while B(OH)4􀀀 transportation in phloem lead to lighter δ11B values from flower to shell and seed. Although samples cover a distinct transect with systematically different climatic conditions, Δδ11B within the individual plant compartments and between the bulk plants and the soil available B do not show any systematic variation. This suggests that B uptake from the soil into Chenopodium album and Brassica napus occurs without a distinct isotope fractionation at the soil-plant interface (median Δ11Bbulkplant-soil = 􀀀 0.2‰) and plants are able to regulate boron uptake. Both the observed large B fractionation within plant and low or absent B isotope fractionation at the soil-plant interface may have profound implications for the biological and geological B cycle. If this observed boron behavior also exists in other plants, their litters would be an important source for exporting 11B-rich biological material from continental ecosystems via rivers to the global oceans. This may be helpful for the explanation of ocean B cycle and the increasing δ11B values over the Cenozoic. KW - Boron isotopic composition KW - Boron isotope fractionation KW - Soil available boron KW - Biological boron recycling KW - Chenopodium album KW - Brassica napus PY - 2022 DO - https://doi.org/10.1016/j.chemgeo.2022.120972 SN - 0009-2541 VL - 606 SP - 1 EP - 8 PB - Elsevier B.V. CY - Amsterdam AN - OPUS4-55031 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Chakraborty, J. A1 - Wang, Xin A1 - Stolinski, M. T1 - Analysis of Sensitivity of Distance between Embedded Ultrasonic Sensors and Signal Processing on Damage Detectability in Concrete Structures N2 - Damage detection of reinforced concrete (RC) structures is becoming a more attractive domain due to the safety issues arising in the last few decades. The damage in concrete can be caused by excessive exploitation of the structure or environmental effects. The cracks in concrete can be detected by different nondestructive testing methods. However, the available methods used for this purpose have numerous limitations. The technologies available in the market nowadays have difficulties detecting slowly progressive, locally limited damage. In addition, some of These methods cannot be applied, especially in hard-to-reach areas in the superstructures. In order to avoid these deficiencies, an embedded ultrasonic methodology can be used to detect cracks in RC structures. In this study, the methodology of crack detection supported with the advanced Signal processing algorithm was proposed and verified on RC structures of various types, and cracks occurring between embedded sensors can be detected. Moreover, different pairs of ultrasonic sensors located in the considered structures are used for the analysis of the sensitivity of distance between them. It is shown that the ultrasonic sensors placed in the range of 1.5–2 m can detect cracks, even when the other methods failed to detect changes in the structure. The obtained results confirmed that diffuse ultrasonic sensor methodology is able to monitor real structures more effectively than traditional techniques. KW - Ultrasound KW - Coda wave interferometry KW - Structural health monitoring PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-543624 DO - https://doi.org/10.3390/acoustics4010007 VL - 4 IS - 1 SP - 89 EP - 110 PB - MDPI CY - Basel, Schweiz AN - OPUS4-54362 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bühling, Benjamin A1 - Maack, Stefan A1 - Strangfeld, Christoph T1 - Using sonic crystals to separate the acoustic from the flow field of a fluidic transducer N2 - Ultrasonic testing is a widely applied measurement method in materials research and medicine. Commonly, a transducer is coupled to the specimen directly or via a liquid coupling agent. While reducing acoustic transmission losses significantly, this procedure is time-consuming and cannot be used for sensitive specimens. Air-coupled ultrasound is a viable alternative in such cases, although suffering from very high acoustic transmission losses between transducer, air and specimen. The recently introduced fluidic transducer (FT) generates ultrasound by utilizing the instability of a supersonic air jet switched inside a fluidic amplifier. Since only air is used as the working medium and no vibrating surfaces are used for ultrasound generation, the transducer is able to efficiently generate large acoustic pressure amplitudes. The resulting acoustic field shares its directivity with the ejected high-velocity air jet. Thus, the acoustic energy needs to be redirected from the jet axis in order to make the fluidic transducer applicable to sensitive specimens. In this study, the effectivity of using sonic crystals (SCs) for this redirection is investigated using acoustic and flow measurements. SCs are air-permeable while being reflective to large acoustic frequency bands. It was shown that both a defect waveguide and a mirroring strategy successfully redirected the acoustic field from the air jet. Furthermore, the interaction of flow and SC showed strong acoustic quenching if the SC was placed too close to the FT outlet. Blockage of the jet entrainment due to the SC may result in slightly higher off-axis flow velocities locally, which should be considered in sensitive applications. KW - Air-coupled ultrasound KW - Sonic crystal KW - Fluidics KW - Non-destructive testing KW - Metamaterial KW - Bandgap quenching PY - 2022 DO - https://doi.org/10.1016/j.apacoust.2021.108608 SN - 0003-682X VL - 189 SP - 1 EP - 7 PB - Elsevier CY - Amsterdam AN - OPUS4-54205 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Meyer, Klas A1 - Kern, S. A1 - Guhl, Svetlana A1 - Bornemann-Pfeiffer, Martin A1 - Wander, Lukas A1 - Maiwald, Michael T1 - Compact NMR Spectroscopy in the field: A Versatile Tool for Automated Continuous-Flow Production N2 - Chemical companies must find new paths to successfully survive in a changing environment. The potential of digital technologies belongs to these. Flexible and modular chemical plants can produce various high-quality products using multi-purpose equipment with short downtimes between campaigns and reduce time to market for new products. Intensified continuous production plants allow for difficult to produce compounds. Therefore, fully automated “chemical” process control along with real-time quality control are prerequisites to such concepts and thus should be based on “chemical” information. A commercially available benchtop NMR spectrometer was integrated to the full requirements of an automated chemical production environment such as, e.g., explosion safety, field communication, and robust evaluation of sensor data. It was thereof used for direct loop advanced process control and real-time optimization of the process. Field studies in modular and conventional production plant setups show promising results gaining process knowledge for further optimization. NMR appeared as preeminent online analytical method and allow using a modular data analysis tool, which even served as reliable reference method for further PAT applications (e.g. NIR spectroscopy). In the future, such fully integrated and intelligently interconnecting “smart” systems and processes can speed up the high-quality production of specialty chemicals and pharmaceuticals. T2 - DECHEMA Workshop "Sensorik für die Digitalisierung chemischer Produktionsanlagen" CY - Frankfurt am Main, Germany DA - 13.06.2022 KW - Compact NMR KW - Process Control KW - Modular Production KW - Process Analytical Technology PY - 2022 AN - OPUS4-55037 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Meyer, Klas T1 - Flexible Prozessanalytik für die pharmazeutische Produktion - Benchtop-NMR-Spektroskopie im industriellen Einsatz N2 - Im Rahmen des EU-Projekts „CONSENS – Integrated Control and Sensing“ wurde ein vollautomatisiertes, gemäß Atmosphère-Explosibles(ATEX)-Regeln zertifiziertes Analysatormodul auf Basis eines kommerziellen Benchtop-Kernspinresonanzspektrometers (Engl. nuclear magnetic resonance, NMR) entwickelt und im Umfeld einer modularen containerbasierten Produktionsanlage validiert. Auf Basis der gewonnenen Daten konnten sowohl eine iterative Optimierung der Prozessparameter erfolgen als auch Referenzdaten für die Kalibrierung eines Nahinfrarot-Spektrometers gewonnen werden. KW - Prozessanalytik KW - NMR-Spektroskopie KW - Modulare Produktion KW - Kalibriertransfer PY - 2022 VL - 12 IS - 3 SP - 122 EP - 129 PB - Editio Cantor Verlag CY - Aulendorf AN - OPUS4-55402 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maiwald, Michael A1 - Meyer, Klas A1 - Kern, S. A1 - Guhl, Svetlana A1 - Bornemann-Pfeiffer, Martin A1 - Wander, L. T1 - Modular process control with compact NMR spectroscopy – From Field Integration to Automated Data Analysis N2 - Chemical and pharmaceutical companies have to find new paths to survive successfully in a changing environment, while also finding more flexible ways of product and process development to bring their products to market more quickly – especially high-quality high-end products like fine chemicals or pharmaceuticals. A current approach uses flexible and modular chemical production units, which can produce different high-quality products using multi-purpose equipment with short downtimes between campaigns and reduce the time to market of new products. NMR spectroscopy appeared as excellent online analytical tool and allowed a modular data analysis approach, which even served as reliable reference method for further Process Analytical Technology (PAT) applications. Using the available datasets, a second data analysis approach based on artificial neural networks (ANN) was evaluated. Therefore, amount of data was augmented to be sufficient for training. The results show comparable performance, while improving the calculation time tremendously. In future, such fully integrated and interconnecting “smart” systems and processes can increase the efficiency of the production of specialty chemicals and pharmaceuticals. At the end of the article, ideas for solutions are discussed in order to speed up the implementation of new special products from the point of view of process analytics and to network the existing process chains more closely. T2 - PATriCK 2022 – Merck conference on PAT technology CY - Darmstadt, Germany DA - 19.10.2022 KW - Process Analytical Technology KW - Digitalisation KW - Process Industry KW - Online NMR Spectroscopy KW - Modular Production PY - 2022 AN - OPUS4-56089 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maiwald, Michael A1 - Meyer, Klas A1 - Kern, Simon A1 - Guhl, Svetlana A1 - Bornemann-Pfeiffer, Martin A1 - Wander, Lukas A1 - Kowarik, Stefan A1 - Liehr, Sascha A1 - Abele, M. A1 - Falkenstein, S. T1 - Modular process control with compact NMR spectroscopy – From field integration to automated data analysis N2 - Chemical and pharmaceutical companies have to find new paths to survive successfully in a changing environment, while also finding more flexible ways of product and process development to bring their products to market more quickly – especially high-quality high-end products like fine chemicals or pharmaceuticals. A current approach uses flexible and modular chemical production units, which can produce different high-quality products using multi-purpose equipment with short downtimes between campaigns and reduce the time to market of new products. NMR spectroscopy appeared as excellent online analytical tool and allowed a modular data analysis approach, which even served as reliable reference method for further Process Analytical Technology (PAT) applications. Using the available datasets, a second data analysis approach based on artificial neural networks (ANN) was evaluated. Therefore, amount of data was augmented to be sufficient for training. The results show comparable performance, while improving the calculation time tremendously. In future, such fully integrated and interconnecting “smart” systems and processes can increase the efficiency of the production of specialty chemicals and pharmaceuticals. T2 - GIDRM Day (Gruppo Italiano Discussione Risonanze Magnetiche) - Data analysis and NMR: from fundamental aspects to health and material applications CY - Online meeting DA - 14.10.2022 KW - Process Control KW - Online NMR Spectroscopy KW - Industry 4.0 KW - Process Analytical Technology KW - Data Analysis KW - Machine-Assisted Workflows PY - 2022 DO - https://doi.org/http://www.gidrm.org/index.php/activities/workshops/2022-workshops/gidrm-day-data-analysis-and-nmr-from-fundamental-aspects-to-health-and-material-applications AN - OPUS4-56002 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maiwald, Michael A1 - Bornemann-Pfeiffer, Martin A1 - Guhl, Svetlana A1 - Kern, Simon A1 - Meyer, Klas A1 - Wander, Lukas T1 - Integrated and Networked Systems and Processes - How NMR Spectroscopy Can Transform our Chemical and Pharmaceutical Production N2 - Chemical and pharmaceutical companies need to find new ways to survive successfully in a changing environment, while finding more flexible ways of product and process development to bring their products to market faster - especially high-value, high-end products such as fine chemicals or pharmaceuticals. This is complicated by changes in value chains along a potential circular economy. One current approach is flexible and modular chemical production units that use multi-purpose equipment to produce various high-value products with short downtimes between campaigns and can shorten time-to-market for new products. Online NMR spectroscopy will play an important role for plant automation and quality control, as the method brings very high linearity, matrix independence and thus works almost calibration-free. Moreover, these properties ideally enable automated and machine-aided data analysis for the above-mentioned applications. Using examples, this presentation will outline a possible more holistic approach to digitalization and the use of machine-based processes in the production of specialty chemicals and pharmaceuticals through the introduction of integrated and networked systems and processes. T2 - 43rd FGMR Annual Discussion Meeting CY - Karlsruhe, Germany DA - 12.09.2022 KW - Digital Transformatioin KW - Process Industry KW - Pharmaceuticals KW - Specialty Chemicals KW - Automation KW - Online NMR Spectroscopy KW - Industry 4.0 PY - 2022 AN - OPUS4-55715 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bornemann-Pfeiffer, Martin A1 - Kern, S. A1 - Wander, L. A1 - Meyer, Klas A1 - Maiwald, Michael T1 - Modular production involving benchtop NMR Current Application Examples Driven by Digitalization N2 - The demand for increasing product diversity in the chemical and pharmaceutical industry calls for new production processes that enable greater flexibility. Therefore, plants are needed which can be adapted to new processes in a fast manner and be scaled up and down easily to volatile market demands. Modular production techniques in combination with advanced process analytical technology (PAT) are considered as a promising solution able to fulfil these requirements. The success and acceptance of modular concepts in both new and existing plants is dependent of its reliability, easy applicability, and standardization. In recent past, enormous efforts were made to overcome existing barriers in a superordinate level, e.g. DEXPI, ENPRO, or MTP naming just a few. Here, we’d like to present a few, more hands-on, application examples which are shown in Figure 1 aiming to increase process flexibility and applicability. T2 - ProcessNET Jahrestagung 2022 Aachen CY - Aachen, Germany DA - 12.09.2022 KW - Process analytical technology KW - NMR spectroscopy KW - Digitization KW - Additive manufacturing PY - 2022 AN - OPUS4-55975 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bornemann-Pfeiffer, Martin A1 - Kern, S. A1 - Wander, L. A1 - Meyer, Klas A1 - Maiwald, Michael T1 - Modular production involving benchtop NMR Current Application Examples Driven by Digitalization N2 - The demand for increasing product diversity in the chemical and pharmaceutical industry calls for new production processes that enable greater flexibility. Therefore, plants are needed which can be adapted to new processes in a fast manner and be scaled up and down easily to volatile market demands. Modular production techniques in combination with advanced process analytical technology (PAT) are considered as a promising solution able to fulfil these requirements. The success and acceptance of modular concepts in both new and existing plants is dependent of its reliability, easy applicability, and standardization. In recent past, enormous efforts were made to overcome existing barriers in a superordinate level, e.g. DEXPI, ENPRO, or MTP naming just a few. Here, we’d like to present a few, more hands-on, application examples which are shown in Figure 1 aiming to increase process flexibility and applicability. T2 - Achema 2022 CY - Frankfurt a.M., Germany DA - 22.08.2022 KW - Process analytical technology KW - NMR spectroscopy KW - Digitization PY - 2022 AN - OPUS4-55974 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Meyer, Klas A1 - Bornemann-Pfeiffer, Martin A1 - Kern, S. A1 - Guhl, Svetlana A1 - Wander, Lukas A1 - Döring, T. A1 - Falkenstein, S. A1 - Abele, M. A1 - Maiwald, Michael T1 - Compact NMR Spectroscopy in the field: A Versatile PAT Tool for Production of Specialty Chemicals N2 - Companies of chemical industry find themselves more often in a rapidly changing environment, e.g., due to variability of raw material quality or energy costs and efficiency. Process optimization and new process concepts become more and more important. For example, flexible and modular chemical plants can produce various high-quality products using multi-purpose equipment with short downtimes between campaigns and reduce time to market for new products. Intensified continuous production plants allow for difficult to produce compounds like exothermic reactions with high heat dissipation. Therefore, fully automated “chemical” process control along with real-time quality control are prerequisites to such concepts and thus should be based on “chemical” information. A commercially available benchtop NMR spectrometer was integrated to the full requirements of an automated chemical production environment such as explosion safety, field communication, and robust evaluation of sensor data. Field studies in modular and conventional production plant setups show promising results gaining process knowledge for further optimization. NMR appeared as preeminent online analytical method and allow using a modular data analysis approach, which can even serve as reliable reference method for further calibration-dependent PAT applications (e.g., NIR spectroscopy). Based on experiences from these field studies an improved analyzer enclosure setup was developed and built, including the option of a secondary method besides NMR spectroscopy. Integrated control systems allow for a flexible implementation based on the available automation infrastructure at the chemical plant or pilot plant setup. In the future, fully integrated and intelligently interconnecting “smart” PAT systems and processes have the potential speed up the setup of production equipment for chemicals and pharmaceuticals and therefore help to reduce the time-to-market. T2 - Practical Applications of NMR in Industry Conference (PANIC) 2022 CY - La Jolla, CA, USA DA - 16.10.2022 KW - Process Analytical Technology KW - Benchtop NMR KW - Modular production PY - 2022 AN - OPUS4-56090 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Meyer, Klas A1 - Bornemann-Pfeiffer, Martin A1 - Kern, S. A1 - Guhl, Svetlana A1 - Wander, Lukas A1 - Döring, T. A1 - Falkenstein, S. A1 - Abele, M. A1 - Maiwald, Michael T1 - Compact NMR Spectroscopy in the field: A Versatile PAT Tool for Production of Specialty Chemicals N2 - Chemical companies must find new paths to successfully survive in a changing environment, especially by utilizing the potential of digital technologies. Flexible and modular chemical plants can produce various high-quality products using multi-purpose equipment with short downtimes between campaigns and reduce time to market for new products. Therefore, fully automated process control along with real-time quality control are prerequisites to such concepts and thus should be based on “chemical” information. A commercially available benchtop NMR spectrometer was integrated to the full requirements of chemical production environment such as explosion safety, field communication, and robust evaluation of sensor data. It was used for direct loop advanced process control and real-time optimization of the process. Field studies in modular and conventional production plants show promising results gaining process knowledge. NMR appeared as preeminent online analytical method and allow using a modular data analysis tool, which even served as reliable reference method for further PAT applications (e.g. NIR spectroscopy). In the future, fully integrated and interconnecting “smart” systems and processes can speed up the high-quality production of specialty chemicals and pharmaceuticals. T2 - ProcessNet and DECHEMA-BioTechNet Jahrestagungen 2022 with 13th ESBES Symposium CY - Aachen, Germany DA - 12.09.2022 KW - Process Analytical Technology KW - Benchtop NMR KW - Modular production PY - 2022 AN - OPUS4-55918 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Meyer, Klas A1 - Bornemann-Pfeiffer, Martin A1 - Kern, S. A1 - Guhl, Svetlana A1 - Wander, Lukas A1 - Döring, T. A1 - Falkenstein, S. A1 - Abele, M. A1 - Maiwald, Michael T1 - Compact NMR Spectroscopy in the field: A Versatile PAT Tool for Production of Specialty Chemicals N2 - Chemical companies must find new paths to successfully survive in a changing environment, especially by utilizing the potential of digital technologies. Flexible and modular chemical plants can produce various high-quality products using multi-purpose equipment with short downtimes between campaigns and reduce time to market for new products. Therefore, fully automated process control along with real-time quality control are prerequisites to such concepts and thus should be based on “chemical” information. A commercially available benchtop NMR spectrometer was integrated to the full requirements of chemical production environment such as explosion safety, field communication, and robust evaluation of sensor data. It was used for direct loop advanced process control and real-time optimization of the process. Field studies in modular and conventional production plants show promising results gaining process knowledge. NMR appeared as preeminent online analytical method and allow using a modular data analysis tool, which even served as reliable reference method for further PAT applications (e.g. NIR spectroscopy). In the future, fully integrated and interconnecting “smart” systems and processes can speed up the high-quality production of specialty chemicals and pharmaceuticals. T2 - 17. AKPAT Kolloquium 2022 CY - Amersfoort, Netherlands DA - 19.09.2022 KW - Process Analytical Technology KW - Benchtop NMR KW - Modular production PY - 2022 AN - OPUS4-55919 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wilke, Olaf A1 - Seeger, Stefan A1 - Brödner, Doris A1 - Erdmann, Kerstin A1 - Rasch, Fabian T1 - Chemical characterization of ultra-fine particles released from laser printers N2 - 11 laser printers from 5 manufacturers were purchased in 2017 and tested for their UFP emissions. Size resolved sampling of the emitted particles was done with a 13 stage (30 nm to 10 µm) low pressure cascade impactor. The sampled particles were analysed for their chemical composition by thermal extraction (vaporization at 290°C) followed by GC-MS analysis. High boiling cyclic siloxanes (D10 to D16) were detected as constituents of UFP from laser printers. In comparison to measurements in 2008, aliphatic long-chain alkanes (C22 to C34) were detected additionally as chemical constituents of UFP from most of the tested printers and their amounts were higher than for cyclic siloxanes. Printers of one manufacturer showed very low UPF emissions compared to the other manufacturers. T2 - Indoor Air Conference 2022 CY - Kuopio, Finland DA - 12.06.2022 KW - UFP KW - Thermal extraction KW - Cascade impactor PY - 2022 AN - OPUS4-55107 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - RPRT A1 - Ladu, Luana A1 - Koch, Claudia A1 - Asna Ashari, Parsa A1 - Blind, K. A1 - Castka, P. T1 - Digitalization in conformity assessment in Mexico - A QI-FoKuS study N2 - This report summarizes findings from the first comprehensive study on digitalization in conformity assessment in Mexico. The reults are based on data from a survey among conformity assessment bodies (CABs) conducted in 2022. It highlights the digital maturity of the organizations, the motives, benefits and obstacles of digital transformation as well as the actual technology trends. This study is part of a global project that covers various other countries (see www.qi-fokus.de). KW - COVID-19 KW - Calibration KW - Certification KW - Conformity assessment KW - Conformity assessment body KW - Digital transformation KW - Digitalization KW - Laboratory KW - Quality infrastructure KW - TIC KW - Testing PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-563645 UR - https://www.qi-fokus.de SP - 1 EP - 44 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-56364 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - RPRT A1 - Ladu, Luana A1 - Koch, Claudia A1 - Asna Ashari, Parsa A1 - Blind, K. A1 - Castka, P. T1 - Digitalization in conformity assessment in the United Kingdom - A QI-FoKuS study N2 - This report summarizes findings from the first comprehensive study on digitalization in conformity assessment in the United Kingdom. The reults are based on data from a survey among conformity assessment bodies (CABs) conducted in 2022. It highlights the digital maturity of the organizations, the motives, benefits and obstacles of digital transformation as well as the actual technology trends. This study is part of a global project that covers various other countries (see www.qi-fokus.de). KW - COVID-19 KW - Calibration KW - Certification KW - Conformity assessment KW - Conformity assessment body KW - Digital transformation KW - Digitalization KW - Laboratory KW - Quality infrastructure KW - TIC KW - Testing PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-565346 UR - https://www.qi-fokus.de SP - 1 EP - 44 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-56534 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - RPRT A1 - Koch, Claudia A1 - Ladu, Luana A1 - Asna Ashari, Parsa A1 - Blind, K. A1 - Castka, P. T1 - Digitalization in conformity assessment in Croatia - A QI-FoKuS study N2 - This report summarizes findings from the first comprehensive study on digitalization in conformity assessment in Croatia. The reults are based on data from a survey among conformity assessment bodies (CABs) conducted in 2022. It highlights the digital maturity of the organizations, the motives, benefits and obstacles of digital transformation as well as the actual technology trends. This study is part of a global project that covers various other countries (see www.qi-fokus.de). KW - COVID-19 KW - Calibration KW - Certification KW - Conformity assessment KW - Conformity assessment body KW - Digital transformation KW - Digitalization KW - Laboratory KW - Quality infrastructure KW - TIC KW - Testing PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-565380 UR - https://www.qi-fokus.de SP - 1 EP - 44 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-56538 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -