TY - JOUR A1 - Dietrich, Paul A1 - Unger, Wolfgang T1 - Summary of ISO/TC 201 technical report: ISO/TR 19693 surface chemical analysis—characterization of functional glass substrates for biosensing applications N2 - ISO/TR 19693:2018—Surface chemical analysis—Characterization of functional glass substrates for biosensing applications gives an overview of methods, strategies, and guidance to identify possible sources of problems related to substrates, device production steps (cleaning, activation, and chemical modification), and shelf life (storage conditions and aging). It is particularly relevant for surface chemical analysts characterizing glass‐based biosensors, and developers or quality managers in the biosensing device production community. Based on quantitative and qualitative surface chemical analysis, strategies for identifying the cause of poor Performance during device manufacturing can be developed and implemented. A review of measurement capabilities of surface analytical methods is given to assist readers from the biosensing community. KW - Bio sensing device KW - Surface chemical analysis KW - XPS KW - SIMS KW - Standardization PY - 2018 DO - https://doi.org/10.1002/sia.6481 SN - 0142-2421 SN - 1096-9918 VL - 50 IS - 8 SP - 835 EP - 838 PB - John Wiley & Sons, Ltd. AN - OPUS4-45829 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Park, J. A1 - Kim, G. B. A1 - Lippitz, Andreas A1 - Kim, Y. M. A1 - Jung, D. A1 - Unger, Wolfgang A1 - Kim, Y.-P. A1 - Lee, T. G. T1 - Plasma-polymerized antifouling biochips for label-free measurement of protease activity in cell culture media N2 - We report polyethylene glycol (PEG)-grafting antifouling surfaces using a plasma copolymerized (PcP) technique to monitor protease activity in complex media. By varying the mixing ratio of the PEG and ethylenediamine (EDA) precursors, the PcP-PEG-EDA (PcP-PE) film was able to easily control surface amine density with good preservation of the internal PEG structure. We found that nonspecific protein adsorption was dramatically reduced in serum-containing media on the PcP-PE films, as opposed to that on plasma polymerized-EDA (PP-E) films without PEG. When SPR sensor chips coated with PcP-PE film were employed to detect protease activity, biotinylated luciferase probes (luciferase-peptide-biotin) on streptavidin-conjugated SPR chips enabled real-time and label-free measurement of matrix metalloproteinase activity in cell culture media. Owing to its excellent antifouling ability, this newly developed method boasts minimal nonspecific binding and can serve as a biochip platform to promote a wide range of applications in the biological field. KW - Polyethylene glycol (PEG)-grafting antifouling surface KW - Biochip KW - ATR-FTIR spectroscopy KW - XPS KW - NEXAFS KW - Plasma PY - 2019 DO - https://doi.org/10.1016/j.snb.2018.10.123 SN - 0925-4005 VL - 281 SP - 527 EP - 534 PB - Elsevier B.V. AN - OPUS4-46463 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Passiu, Cristiana A1 - Rossi, Antonella A1 - Bernard, Laetitia A1 - Paul, Dennis A1 - Hammond, John A1 - Unger, Wolfgang A1 - Venkataraman, Nagaiyanallur V. A1 - Spencer, Nicholas D. T1 - Fabrication and Microscopic and Spectroscopic Characterization of Planar, Bimetallic, Micro- and Nanopatterned Surfaces N2 - Micropatterns and nanopatterns of gold embedded in silver and titanium embedded in gold have been prepared by combining either photolithography or electron-beam lithography with a glue-free template-stripping procedure. The obtained patterned surfaces have been topographically characterized using atomic force microscopy and scanning electron microscopy, showing a very low root-mean-square roughness (<0.5 nm), high coplanarity between the two metals (maximum height difference ≈ 2 nm), and topographical continuity at the bimetallic interface. Spectroscopic characterization using X-ray photoelectron spectroscopy (XPS), time-of-flight secondary-ion mass spectrometry (ToF-SIMS), and Auger electron spectroscopy (AES) has shown a sharp chemical contrast between the two metals at the interface for titanium patterns embedded in gold, whereas diffusion of silver into gold was observed for gold patterns embedded in silver. Surface flatness combined with a high chemical contrast makes the obtained surfaces suitable for applications involving functionalization with molecules by orthogonal adsorption chemistries or for instrumental calibration. The latter possibility has been tested by determining the image sharpness and the analyzed area on circular patterns of different sizes for each of the spectroscopic techniques applied for characterization.This is the first study in which the analyzed area has been determined using XPS and AES on a flat surface, and the first example of a method for determining the analyzed area using ToF-SIMS. KW - XPS KW - AES KW - SIMS KW - Lateral resolution KW - Test pattern PY - 2017 UR - http://pubs.acs.org/doi/abs/10.1021/acs.langmuir.7b00942 DO - https://doi.org/10.1021/acs.langmuir.7b00942 SN - 0743-7463 VL - 33 IS - 23 SP - 5657 EP - 5665 PB - ACS AN - OPUS4-40929 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Vlajića, M. A1 - Unger, Wolfgang A1 - Bruns, J. A1 - Rueck-Braun, K. T1 - Photoswitching of fulgimides in different environments on silicon surfaces N2 - Reversible light-modulation of fulgimide based monolayers on Si(1 1 1) and Si(1 0 0) was investigated using ATR-FTIR spectroscopy. Fulgimide monolayers were prepared from neat COOH-terminated SAMs on Si(1 1 1) obtained from methyl undec-10-enoate, (1:1)-diluted COOH-terminated monolayers on Si(1 1 1), and GPTMS monolayers on Si(1 0 0). The epoxy-terminated monolayer on oxidized Si(1 0 0) was characterized with ellipsometry, XPS, as well as contact angle measurements, and ATR-FTIR spectroscopy revealed a strong influence of toluene water content on reproducible high-quality monolayer formation. The results of this study show that environmental polarity has a strong influence on fulgimide imide IR band locations and read-out options for the two photostationary states PSS(365 nm), containing E/Z- and C-isomers, and PSS(545 nm), with solely the E/Zisomers. Neat COOH-terminated monolayers on flat Si(1 1 1) have the Advantage of high functional Group concentration, orientation and stability, and an upright arrangement of fulgimide head groups. KW - Surface functionalization KW - Photoswitchable monolayers KW - ATR-FTIR spectroscopy KW - XPS PY - 2019 DO - https://doi.org/10.1016/j.apsusc.2018.09.159 SN - 0169-4332 SN - 1873-5584 VL - 465 SP - 686 EP - 692 PB - Elsevier B.V. AN - OPUS4-46276 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nietzold, Carolin A1 - Dietrich, Paul A1 - Lippitz, Andreas A1 - Panne, Ulrich A1 - Unger, Wolfgang T1 - Cyclodextrin – ferrocene host – guest complexes on silicon oxide surfaces N2 - Research on carbohydrate based interactions with proteins, nucleic acids or antibodies has gained increased interest in the last years especially in clinical diagnosis or drug development. The efficiency of diagnostic interfaces depends upon the number of probe molecules, e.g. carbohydrates. The control of surface parameters as density and distribution of immobilized carbohydrates is essential for a reliable interaction with protein analytes. A controlled production of biomolecular interfaces can be reached by a stepwise quality control during buildup of these biointerfaces. Here, ß-amino-cyclodextrin molecules were attached to amine-reactive silicon oxide surfaces via click chemistry to construct a model biosensor surface. The amount of surface bound carbohydrates was determined indirectly after chemical derivatization with 4-(trifluoromethyl)-benzylamine (TFMBA). Moreover, these surfaces were used to form host-guest complexes of ferrocene (guest) and β-cyclodextrin (host) moieties to mimic the target binding (sensing) of the model biosensor. Surface chemical analysis of all steps during biosensor construction was performed using X-ray photoelectron spectroscopy (XPS) and near-edge X-ray absorption fine structure spectroscopy (NEXAFS). Our approach widens the possibilities to generate switchable surfaces based on ß-Cyclodextrin surfaces for biosensor applications. KW - ß-amino-cyclodextrin KW - Ferrocene KW - Guest complexe KW - XPS KW - NEXAFS PY - 2016 DO - https://doi.org/10.1002/sia.5958 SN - 0142-2421 SN - 1096-9918 VL - 48 IS - 7 SP - 606 EP - 610 PB - Wiley AN - OPUS4-36856 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hahn, Marc Benjamin A1 - Dietrich, P. M. A1 - Radnik, Jörg T1 - In situ monitoring of the influence of water on DNA radiation damage by near-ambient pressure X-ray photoelectron spectroscopy N2 - Ionizing radiation damage to DNA plays a fundamental role in cancer therapy. X-ray photoelectron-spectroscopy (XPS) allows simultaneous irradiation and damage monitoring. Although water radiolysis is essential for radiation damage, all previous XPS studies were performed in vacuum. Here we present near-ambient-pressure XPS xperiments to directly measure DNA damage under water atmosphere. They permit in-situ monitoring of the effects of radicals on fully hydrated double-stranded DNA. The results allow us to distinguish direct damage, by photons and secondary low-energy electrons (LEE), from damage by hydroxyl radicals or hydration induced modifications of damage pathways. The exposure of dry DNA to x-rays leads to strand-breaks at the sugar-phosphate backbone, while deoxyribose and nucleobases are less affected. In contrast, a strong increase of DNA damage is observed in water, where OH-radicals are produced. In consequence, base damage and base release become predominant, even though the number of strand-breaks increases further. KW - DNA KW - XPS KW - NAP-XPS KW - Radiation damage KW - Single-strand break (SSB) KW - Double-strand break (DSB) KW - Xray KW - OH radical KW - Hydroxyl radical KW - LEE KW - Low energy electrons KW - Dosimetry KW - Geant4 KW - Geant4-DNA KW - TOPAS KW - TOPAS-nbio KW - Microdosimetry KW - DNA radiation damage KW - Direct damage KW - Indirect damage KW - Quasi-direct damage KW - Hydration shell KW - Dry DNA KW - Hydrated DNA KW - ROS KW - Radical KW - Reactive oxygen species KW - Net-ionization reaction KW - Radiation therapy KW - Cancer therapy KW - Xray photo electron spectrocopy KW - Near ambient pressure xray photo electron spectroscopy KW - Base damage KW - Base loss KW - Dissociative electron transfer (DET) KW - Dissociative electron attachment (DEA) KW - Hydrated electron KW - Prehydrated electron KW - Ionization KW - PES PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-524060 DO - https://doi.org/10.1038/s42004-021-00487-1 SN - 2399-3669 VL - 4 IS - 1 SP - 50 PB - Springer Nature CY - London AN - OPUS4-52406 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pu, Y. A1 - Celorrio, V. A1 - Stockmann, Jörg M. A1 - Sobol, Oded A1 - Sun, Z. A1 - Wang, W. A1 - Lawrence, M. J. A1 - Radnik, Jörg A1 - Russel, A. E. A1 - Hodoroaba, Vasile-Dan A1 - Huang, L. A1 - Rodriguez, P. T1 - Surface galvanic formation of Co-OH on Birnessite and its catalytic activity for the oxygen evolution reaction N2 - Low-cost, high-efficient catalysts for water splitting can be potentially fulfilled by developing earthabundant metal oxides. In this work, surface galvanic formation of Co-OH on K0.45MnO2 (KMO) was achieved via the redox reaction of hydrated Co2+ with crystalline Mn4+. The synthesis method takes place at ambient temperature without using any surfactant agent or organic solvent, providing a clean, green route for the design of highly efficient catalysts. The redox reaction resulted in the formation of ultrathin Co-OH nanoflakes with high electrochemical surface area. X-ray absorption spectroscopy (XAS) and X-ray photoelectron spectroscopy (XPS) analysis confirmed the changes in the oxidation state of the bulk and surface species on the Co-OH nanoflakes supported on the KMO. The effect of the anions, such as chloride, nitrate and sulfate, on the preparation of the catalyst was evaluated by electrochemical and spectrochemical means. XPS and Time of flight secondary ion mass spectrometry (ToF-SIMS) analysis demonstrated that the layer of CoOxHy deposited on the KMO and its electronic structure strongly depend on the anion of the precursor used during the synthesis of the catalyst. In particular, it was found that Cl- favors the formation of Co-OH, changing the rate-determining step of the reaction, which enhances the catalytic activity towards the OER, producing the most active OER catalyst in alkaline media. KW - Nanoparticles KW - Oxygen evolution reaction (OER) KW - Catalysis KW - ToF-SIMS KW - XPS KW - K-rich Birnessite (K0.45MnO2) PY - 2021 DO - https://doi.org/10.1016/j.jcat.2021.02.025 VL - 396 SP - 304 EP - 314 PB - Elsevier Inc. AN - OPUS4-52328 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Müller, Anja A1 - Heinrich, Thomas A1 - Tougaard, S. A1 - Werner, W. S. M. A1 - Hronek, M. A1 - Kunz, Valentin A1 - Radnik, Jörg A1 - Stockmann, Jörg M. A1 - Hodoroaba, Vasile-Dan A1 - Benemann, Sigrid A1 - Nirmalananthan-Budau, Nithiya A1 - Geißler, Daniel A1 - Sparnacci, K. A1 - Unger, Wolfgang T1 - Determining the thickness and completeness of the shell of polymer core-shell nanoparticles by X-ray photoelectron spectroscopy, secondary ion mass spectrometry, and transmission scanning electron microscopy N2 - Core–shell nanoparticles (CSNPs) have become indispensable in various industrial applications. However, their real internal structure usually deviates from an ideal core–shell structure. To control how the particles perform with regard to their specific applications, characterization techniques are required that can distinguish an ideal from a nonideal morphology. In this work, we investigated poly(tetrafluoroethylene)–poly(methyl methacrylate) (PTFE–PMMA) and poly(tetrafluoroethylene)–polystyrene (PTFE–PS) polymer CSNPs with a constant core diameter (45 nm) but varying shell thicknesses (4–50 nm). As confirmed by transmission scanning electron microscopy (T-SEM), the shell completely covers the core for the PTFE–PMMA nanoparticles, while the encapsulation of the core by the shell material is incomplete for the PTFE–PS nanoparticles. X-ray photoelectron spectroscopy (XPS) was applied to determine the shell thickness of the nanoparticles. The software SESSA v2.0 was used to analyze the intensities of the elastic peaks, and the QUASES software package was employed to evaluate the shape of the inelastic background in the XPS survey spectra. For the first time, nanoparticle shell thicknesses are presented, which are exclusively based on the analysis of the XPS inelastic background. Furthermore, principal component analysis (PCA)-assisted time-of-flight secondary-ion mass spectrometry (ToF-SIMS) of the PTFE–PS nanoparticle sample set revealed a systematic variation among the samples and, thus, confirmed the incomplete encapsulation of the core by the shell material. As opposed to that, no variation is observed in the PCA score plots of the PTFE–PMMA nanoparticle sample set. Consequently, the complete coverage of the core by the shell material is proved by ToF-SIMS with a certainty that cannot be achieved by XPS and T-SEM. KW - XPS KW - T-SEM KW - ToF-SIMS KW - Core-shell nanoparticles PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-499165 DO - https://doi.org/10.1021/acs.jpcc.9b09258 VL - 123 IS - 49 SP - 29765 EP - 29775 PB - American Chemical Society CY - Washington, DC AN - OPUS4-49916 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rades, Steffi A1 - Oswald, F. A1 - Narbey, S. A1 - Radnik, Jörg A1 - Hodoroaba, Vasile-Dan T1 - Analytical approach for characterization of morphology and chemistry of a CH3NH3PbI3/TiO2 solar cell layered system N2 - Manufacturing of new perovskite layered solar cells with constant high light conversion Efficiency over time may be hampered by the loss of efficiency caused by structural and/or chemical alterations of the complex layered system. SEM/EDX combined with XPS were chosen as an appropriate methodical approach to characterize perovskite laboratory cells in depth and at surface, before and after light exposure. The layered perovskite system investigated here is based on glass covered with fluorine doped tin oxide, followed by thin films of TiO2, ZrO2, and a thick monolithic carbon. TiO2 film is subdivided into a dense layer covered by porous one constituted of nanoparticles of truncated bipyramidal shape. This layered system serves as the matrix for the perovskite. EDX spectral maps on cross sections of specimen have shown that Pb and I are distributed homogeneously throughout the porous layers C, ZrO2, and TiO2. SEM/EDX data show that 20 weeks of ambient daylight did not change significantly the in‐depth distribution of the elemental composition of Pb and I throughout the entire solar cell system. It was confirmed with EDX that nanoparticles identified in high‐resolution SEM micrographs contain mainly Pb and I, indicating these to be the perovskite crystals. However, a compositional and chemical altering began in the near‐surface region of the outermost ~10 nm after 2 months of illumination which was observed with XPS. T2 - ECASIA 2017 CY - Montpellier, France DA - 24.09.2017 KW - Solar Cell KW - SEM KW - EDX KW - XPS KW - layered system PY - 2018 DO - https://doi.org/10.1002/sia.6410 SN - 0142-2421 SN - 1096-9918 VL - 50 IS - 11 SP - 1234 EP - 1238 PB - John Wiley & Sons, Ltd. AN - OPUS4-46394 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Perez, Jeffey Paulo H. A1 - Tobler, Dominique J. A1 - Thomas, Andrew N. A1 - Freeman, Helen M. A1 - Dideriksen, Knud A1 - Radnik, Jörg A1 - Benning, Liane G. T1 - Adsorption and reduction of arsenate during the Fe2+-induced transformation of ferrihydrite N2 - Iron (oxyhydr)oxides play an important role in controlling the mobility and toxicity of arsenic (As) in contaminated soils and groundwaters. However, dynamic subsurface geochemical conditions can potentially impact As sequestration since this is highly dependent on the dominant iron mineral phases present and the pathways through which they form. In this study, we investigated the Fe2+-induced transformation of As(V)-bearing ferrihydrite (As-FH) to more crystalline phases under relevant anoxic subsurface conditions. Specifically, we examined the influence of varying Fe2+(aq)/Fe(III)solid¬ ratios on the behavior and speciation of the mineral-bound As species during the mineralogical transformation of As-FH at pH 6.5 for 24 h. At lower Fe2+(aq)/Fe(III)solid¬ ratios (0.5 to 1), goethite, green rust sulfate (GR¬SO4) and lepidocrocite formed within the first 2 hours of the reaction, but only goethite and some unreacted FH remained after 24 h. At Fe2+(aq)/Fe(III)solid¬ ratio = 2, GRSO4 remained stable throughout the 24 h reaction, alongside goethite and unreacted FH. Despite >82% of the As-FH being transformed to goethite  GRSO4 in these reactions, no significant As release (>99.9% removal) was observed. However, while As remained mineral-bound, partial oxidation of the initially added As(V) was reduced to As(III), most likely, by the goethite-Fe2+(aq) redox couple. The extent of As(V) reduction increased from ~40% to ~50%, as the Fe2+(aq)/Fe(III)solid¬ ratio increased from 0.5 to 2. Overall, these results provide important insights into transformation pathways of iron (oxyhydr)oxide minerals in As contaminated, anoxic soils and sediments, and also demonstrate the great impact these can have on As oxidation state and, hence, toxicity and mobility in these environments. KW - Ferrihydrite KW - Mineral tranformation KW - XPS KW - Green rust KW - Goethite KW - XAS PY - 2019 DO - https://doi.org/10.1021/acsearthspacechem.9b00031 SN - 2472-3452 VL - 3 IS - 6 SP - 884 EP - 894 PB - ACS AN - OPUS4-48436 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hahn, Marc Benjamin T1 - Accessing radiation damage to biomolecules on the nanoscale by particle-scattering simulations N2 - Radiation damage to DNA plays a central role in radiation therapy to cure cancer. The physico-chemical and biological processes involved encompass huge time and spatial scales. To obtain a comprehensive understanding on the nano and the macro scale is a very challenging tasks for experimental techniques alone. Therefore particle-scattering simulations are often applied to complement measurements and aide their interpretation, to help in the planning of experiments, to predict their outcome and to test damage models. In the last years, powerful multipurpose particle-scattering framework based on the Monte-Carlo simulation (MCS) method, such as Geant4 and Geant4-DNA, were extended by user friendly interfaces such as TOPAS and TOPAS-nBio. This shifts their applicability from the realm of dedicated specialists to a broader range of scientists. In the present review we aim to give an overview over MCS based approaches to understand radiation interaction on a broad scale, ranging from cancerous tissue, cells and their organelles including the nucleus, mitochondria and membranes, over radiosensitizer such as metallic nanoparticles, and water with additional radical scavenger, down to isolated biomolecules in the form of DNA, RNA, proteins and DNA-protein complexes. Hereby the degradation of biomolecules by direct damage from inelastic scattering processes during the physical stage, and the indirect damage caused by radicals during the chemical stage as well as some parts of the early biological response is covered. Due to their high abundance the action of hydroxyl radicals (•OH) and secondary low energy electrons (LEE) as well as prehydrated electrons are covered in additional detail. Applications in the prediction of DNA damage, DNA repair processes, cell survival and apoptosis, influence of radiosensitizer on the dose distribution within cells and their organelles, the study of linear energy transfer (LET), the relative biological effectiveness (RBE), ion beam cancer therapy, microbeam radiation therapy (MRT), the FLASH effect, and the radiation induced bystander effect are reviewed. KW - DNA KW - Protein KW - G5P KW - OH KW - Au KW - AuNP KW - Radiation KW - SSB KW - DSB KW - Beta decay KW - Brachytherapy KW - Cancer treatment KW - Clustered nanoparticles KW - DNA damage KW - Dosimetry KW - Energy deposit KW - Geant4 KW - Geant4-DNA KW - Gold Nanoparticles KW - Livermore model KW - Low energy electrons KW - MCS KW - Microdosimetry KW - Monte-Carlo simulation KW - NP KW - OH radical KW - Particle scattering KW - Penelope model KW - Proteins KW - Radiation damage KW - Radiation therapy KW - Radiationtherapy KW - Radioactive decay KW - Radiolysis KW - Radiotherapy KW - Simulation KW - TOPAS KW - TOPAS-nbio KW - Base damage KW - Base loss KW - DNA radiation damage KW - Direct damage KW - Dissociative electron attachment (DEA) KW - Dissociative electron transfer (DET) KW - Double-strand break (DSB) KW - ESCA KW - Hydrated DNA KW - Hydrated electron KW - Hydration shell KW - Hydroxyl radical KW - Indirect damage KW - Ionization KW - Ionisation KW - NAP-XPS KW - Near ambient pressure xray photo electron spectroscopy KW - Net-ionization reaction KW - Prehydrated electron KW - Presolvated electron KW - Quasi-direct damage KW - ROS KW - Radical KW - Reactive oxygen species KW - Single-strand break (SSB) KW - XPS KW - Xray KW - Xray photo electron spectrocopy KW - Cosolute KW - Ectoin KW - Ectoine KW - GVP KW - Gene five protein KW - Hydroxyectoine KW - Ionizing radiation damage KW - OH radical scavenger KW - Monte-Carlo simulations KW - Nanodosimetry KW - Osmolyte KW - Particle scattering simulations KW - Protein unfolding KW - Radical Scavenge KW - Radical scavenger KW - Single-stranded DNA-binding proteins KW - SAXS KW - Bio-SAXS KW - X-ray scattering KW - ssDNA KW - dsDNA KW - FLASH effect KW - Bystander effect KW - Ion beam therapy KW - Bragg peak KW - LET KW - MCNP KW - Photons KW - Electrons KW - Carbon ions KW - MRT KW - RNA KW - RBE KW - base loss KW - abasic side KW - DMSO KW - Cells PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-573240 DO - https://doi.org/10.1088/2399-6528/accb3f SN - 2399-6528 VL - 7 IS - 4 SP - 042001 PB - Institute of Physics (IOP) Publishing CY - London AN - OPUS4-57324 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nietzold, Carolin A1 - Dietrich, Paul A1 - Holzweber, M. A1 - Lippitz, Andreas A1 - Kamalakumar, A. A1 - Blanchard, V. A1 - Ivanov-Pankov, S. A1 - Weigel, W. A1 - Panne, Ulrich A1 - Unger, Wolfgang T1 - Surface chemical characterization of model glycan surfaces and shelf life studies of glycan microarrays using XPS, NEXAFS spectroscopy, ToF-SIMS and fluorescence scanning N2 - Biomedical applications, including functional biomaterials, carbohydrate-arrays, and glycan-based biosensors. The chemistry of glycan immobilization plays an essential role in the bioavailability and function of surface bound carbohydrate moieties. For biomedical applications the stability over time (shelf life) of glycan arrays is a crucial factor. Herein we report on approaches for surface and interface characterization relevant to the needs of production of glycan microarrays which were tested using model carbohydrate surfaces. For detailed characterization of glycan model surfaces we used a combination of X-ray photoelectron spectroscopy (XPS), near edge X-ray absorption fine structure spectroscopy (NEXAFS) and ToF SIMS which are complementary techniques of surface chemical analysis. Links to fluorescence spectroscopy often used for characterization in the microarray community were established as well. In detail, amine-reactive silicon oxide and glass surfaces were used for anchoring oligosaccharides with an amino linker. The amount of surface bound carbohydrates was estimated by X-ray photoelectron spectroscopy (XPS). Glycan immobilization was investigated using lectins, which are glycan-binding molecules. A shelf life study of model glycan microarrays on epoxy-coated glass surfaces was done over a period of 160 days under different storage conditions utilizing fluorescence, ToF-SIMS and XPS analysis. It was shown that glycan activity of the models used can be maintained at least for half a year of storage at 4 °C. KW - Glycan microarray KW - XPS KW - NEXAFS KW - ToF-SIMS KW - Fluorescence PY - 2018 UR - https://www.sciencedirect.com/science/article/pii/S0169433218320300?via%3Dihub DO - https://doi.org/10.1016/j.apsusc.2018.07.133 SN - 0169-4332 SN - 1873-5584 VL - 459 SP - 860 EP - 873 PB - Elsevier B.V. AN - OPUS4-46212 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Saleh, Maysoon I. A1 - Rühle, Bastian A1 - Wang, Shu A1 - Radnik, Jörg A1 - You, Yi A1 - Resch-Genger, Ute T1 - Assessing the protective effects of different surface coatings on NaYF4:YB3+, Er3+, upconverting nanoparticles in buffer and DMEM N2 - We studied the dissolution behavior of β NaYF4:Yb(20%), Er(2%) UCNP of two different sizes in biologically relevant media i.e., water (neutral pH), phosphate buffered saline (PBS), and Dulbecco’s modified Eagle medium (DMEM) at different temperatures and particle concentrations. Special emphasis was dedicated to assess the influence of different surface functionalizations, particularly the potential of mesoporous and microporous silica shells of different thicknesses for UCNP stabilization and protection. Dissolution was quantified electrochemically using a fluoride ion selective electrode (ISE) and by inductively coupled plasma optical emission spectrometry (ICP OES). In addition, dissolution was monitored fluorometrically. These experiments revealed that a thick microporous silica shell drastically decreased dissolution. Our results also underline the critical influence of the chemical composition of the aqueous environment on UCNP dissolution. In DMEM, we observed the formation of a layer of adsorbed molecules on the UCNP surface that protected the UCNP from dissolution and enhanced their fluorescence. Examination of this layer by X ray photoelectron spectroscopy (XPS) and mass spectrometry (MS) suggested that mainly phenylalanine, lysine, and glucose are adsorbed from DMEM. These findings should be considered in the future for cellular toxicity studies with UCNP and other nanoparticles and the design of new biocompatible surface coatings. KW - Fluorescence KW - Lifetime KW - Method KW - Quantification KW - Stability KW - Coating KW - Surface chemistry KW - Lanthanide KW - Fluoride KW - Electrochemistry KW - ICP-OES KW - Upconversion KW - Nano KW - Particle KW - Aging KW - Quality assurance KW - Mass spectrometry KW - XPS PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-515984 DO - https://doi.org/10.1038/s41598-020-76116-z SN - 2045-2322 VL - 10 IS - 1 SP - 19318-1 EP - 19318-11 PB - Springer Nature CY - London AN - OPUS4-51598 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Weigert, Florian A1 - Müller, A. A1 - Häusler, I. A1 - Geißler, Daniel A1 - Skroblin, D. A1 - Unger, Wolfgang A1 - Radnik, Jörg A1 - Resch-Genger, Ute T1 - Combining HR‑TEM and XPS to elucidate the core–shell structure of ultrabright CdSe/CdS semiconductor quantum dots N2 - Controlling thickness and tightness of surface passivation shells is crucial for many applications of core–shell nanoparticles (NP). Usually, to determine shell thickness, core and core/shell particle are measured individually requiring the availability of both nanoobjects. This is often not fulfilled for functional nanomaterials such as many photoluminescent semiconductor quantum dots (QD) used for bioimaging, solid state lighting, and display technologies as the core does not show the applicationrelevant functionality like a high photoluminescence (PL) quantum yield, calling for a whole nanoobject approach. By combining high-resolution transmission electron microscopy (HR-TEM) and X-ray photoelectron spectroscopy (XPS), a novel whole nanoobject approach is developed representatively for an ultrabright oleic acid-stabilized, thick shell CdSe/CdS QD with a PL quantum yield close to unity. The size of this spectroscopically assessed QD, is in the range of the information depth of usual laboratory XPS. Information on particle size and monodispersity were validated with dynamic light scattering (DLS) and small angle X-ray scattering (SAXS) and compared to data derived from optical measurements. In addition to demonstrating the potential of this novel whole nanoobject approach for determining architectures of small nanoparticles, the presented results also highlight challenges faced by different sizing and structural analysis methods and method-inherent uncertainties. KW - Photoluminescence KW - Single particle KW - Microscopy KW - Particle architecture KW - Thickness KW - SAXS KW - Shell KW - XPS KW - TEM KW - Semiconductor KW - Quantum dot KW - Photophysics KW - Quantum yield PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-517911 DO - https://doi.org/10.1038/s41598-020-77530-z VL - 10 IS - 1 SP - 20712 PB - Springer Nature AN - OPUS4-51791 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -