TY - CONF A1 - Witte, Steffen A1 - Kulow, Anicó A1 - Seeberg, D. A1 - de Oliveira Guilherme Buzanich, Ana A1 - Radtke, Martin A1 - Reinholz, Uwe A1 - Grunewald, Christian A1 - Riesemeier, Heinrich A1 - Wohlrab, S. T1 - S2XAFS@work: Customization for the Characterization of VOx based Catalysts N2 - X-ray absorption fine structure spectroscopy (XAFS) is a frequently employed technique in order to investigate structural composition and change of chemical compounds such as catalytic species. These structural properties are essential (i) to understand underlying reaction mechanism and (ii) to further improve the design of efficient catalysts. This investigation is based on a newly developed XAFS setup comprising both time- and lateral-resolved XAFS information simultaneously in a single-shot (S2XAFS). The primary broadband beam is generated by a filter/X-ray-mirror combination (bandpass). The transmitted beam through the sample is diffracted by a convexly bent Si (111) crystal, producing a divergent beam. This, in turn, is collected by an area sensitive detector with a theta to 2 theta geometry. This facile, stable and scanningless setup was tested at the BAMline @ BESSY-II (Berlin, Germany). This contribution focuses on further experimental optimizations allowing the characterization of supported vanadium oxide (VOx) based catalysts at the lower hard X-ray regime (5 to 6 keV). First S2XAFS measurements of these catalysts are presented herein. Supported VOx catalysts show promising results in the oxidation of methane to formaldehyde. S2XAFS allows determining the structural composition of the metal (i.e. vanadium) based on a fast and smart setup. It is therefore an ideal tool to identify crucial roles of chemical compounds in catalytic reactions. T2 - XAFS 2018 CY - Cracow, Poland DA - 22.07.2018 KW - XANES KW - XAFS KW - BAMline KW - Synchrotron PY - 2018 AN - OPUS4-46362 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radtke, Martin A1 - de Oliveira Guilherme Buzanich, Ana A1 - Reinholz, Uwe A1 - Riesemeier, Heinrich A1 - Scharf, o T1 - The colour X-ray camera – Basics and applications of a 2D X-ray detector N2 - The Color X-ray Camera CXC or SLcam® is an energy-resolving X-ray camera capable of energy- and space-resolved measurements. It consists of a high-speed CCD detector coupled to a polycapil-lary optic that conducts the X-ray photons from the probe to distinct pixels onto the detector. The camera is capable of fast acquisition of spatially and energy resolved fluorescence images. A dedicated software enables the acquisition and the online processing of the spectral data for all 69696 pixels, leading to a real-time visualization of the elements distribution in a sample. It was developed in a joint project with BAM, IFG Berlin and PN Sensors. In this contribution we will mainly discuss the use of the CXC at our beamline, the BAMline at BESSY II and imaging applications of the CXC from different areas, like biology and archaeometry. Additionally new developments for the use of the detector without optics, like wavelength dispersive detection or 1shot-XANES, will be presented. T2 - Seminar Strahlenphysikalische Anwendungen in Technik und Medizin CY - ATi Wien, Austria DA - 24.01.2018 KW - XRF KW - Synchrotron KW - BAMline PY - 2018 AN - OPUS4-46365 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Beck, Uwe A1 - Hielscher, Stefan A1 - Lange, Thorid A1 - Rietz, U. A1 - Lerche, D. T1 - State-of-the-Art in Multiple-Sample Evaluation of Adhesive and Bonding Strength N2 - The paper addresses the “State-of-the-Art in Multiple-Sample Evaluation of Adhesive and Bonding Strength” and the following points are discussed in more detail: 1. Motivation (coatings, varnishes, tapes, laminates, CFRP, adhesive-bonded joints) 2. Conventional single-sample testing (evaluation of adhesive and bonding strength; failure pattern) 3. Multiple-sample handling (MSH), bonding (MSB), and testing: centrifugal adhesion testing (CAT) (multiple-sample approach, tensile test within a centrifuge) 4. Application examples of CAT-Technology™ (laminates, optical coatings, CFRP joints) Finally, a summary is given regarding status quo and benefits of CAT-technology under tensile stress conditions whereas examples of testing in a centrifuge under compressive stress conditions are mentioned in the outlook. T2 - The 5th International Conference Competitive Materials and Technology Processes CY - Miskolc-Lillafüred, Hungary DA - 08.10.2018 KW - Centrifugal Adhesion Testing KW - CAT KW - Multiple-sample handling (MSH) KW - Multiple-sample bonding (MSB) KW - Tensile strength of laminates KW - Tensile strength of coatings KW - Adhesive strength KW - Bonding strength PY - 2018 AN - OPUS4-46336 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kormunda, M. A1 - Hertwig, Andreas A1 - Rysanek, P. A1 - Ivanov, L. T1 - Optical and Electrical Properties of reactive/nonreactive Magnetron Deposited SnZnOxCoatings Annealed at Various Temperatures N2 - ZnSnOx coatings were deposited from two 2in magnetron targets made of ZnO and SnO2 connected to DC pulsed and RF power supplies, respectively. The pure Ar and reactive gas mixture Ar/O2 were used. DC pulsed power applied on ZnO target was kept constant 50W 50kHz, 20% d.c. and the RF power applied on SnO2 target was set to values from 0W (pure ZnO deposited) up to 150W (up to 8 at.% of Sn in films). The deposited films were investigated by multiple techniques as deposited at RT as well as after annealing at temperatures 200o C and 450o C. The lower annealing temperature is still compatible with many of common polymeric substrates. The amount of Sn in the films is proportional to applied RF power on SnO2 target. But there is also significant influence of the post Deposition annealing on the film compositions. The ratio Zn/Sn is reduced by the annealing process. Therefore the annealing is promoting the migration of Sn toward the surface and Zn to inside. Moreover the films deposited in oxygen rich reactive gas mixture does not reduces the resistivity with added Sn in contrary to films deposited in Ar where the resistivity was reduced by 5 orders of magnitudes. The plasma parameters were investigated and mean energies of dominant species were in DC pulsed only about 3eV and DC + RF powered plasma up to 15eV. The expected higher energetic particles in the RF influenced plasma deliver an additional energy to the growing film. Therefore, we observed systematic differences between refractive indexes in the films deposited with low RF powered SnO2 magnetron at RT and post-annealed at 200 ° and practically no difference between RT and post-annealed film at higher RF power above 50 W. The XRD results proved the transitions from an amorphous to more crystalline structure by post-annealing of the films. T2 - PSE 2018 - 16th Conference on Plasma Surface Engineering CY - Garmisch-Partenkirchen, Germany DA - 17.09.2018 KW - Reactive sputtering KW - Plasma diagnostics KW - Optical films KW - TCO PY - 2018 AN - OPUS4-46347 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Saloga, Patrick E. J. T1 - SAXS in Analysis of Ultra-small Size-adjustable Zinc Oxide Nanoparticles for Controlled Band Gap Engineering N2 - Zinc oxide (ZnO) as a wide-bandgap II-VI semiconductor finds application in areas like optoelectronics, photocatalysis as well as in detection systems. While band-gap engineering in macroscopic ZnO can be performed by alloying, the band-gap of ZnO nanoparticles is also dependent on their size. Since small-angle X-ray scattering (SAXS) provides a much higher resolution in terms of ultra-small nanoparticle size analysis compared to other techniques, it allows for a careful examination of the correlation between particle size and band-gap. We report on the microwave-assisted synthesis of oleate-capped, photoluminescent zinc oxide nanoparticles with adjustable size as dispersions in organic solvents. The spherical particles were obtained by hydrolysis of the metal precursor in presence of a strong base at temperatures above the solvent’s boiling point. Hence, the reaction is dramatically accelerated and within seconds – instead of hours at lower temperatures –, narrowly dispersed particle systems are yielded. The particles’ sizes as derived from SAXS strongly depend on the reaction temperature and time. Choosing the right reaction conditions, the particle size and thus their band gap can be finely tuned. A size increase can be achieved both by increasing the reaction temperature and the reaction time. See Figure 1 for an exemplary comparison of five-minute syntheses at different temperatures. Here, the yielded particles display diameters between 5.0 and 7.6 nm and corresponding band-gaps of 3.32 up to 3.41 eV. The size increase is accompanied by a red-shift of the UV/Vis absorption edges and fluorescence emission. Furthermore, these particles can be transferred into water by coating with polysorbates. T2 - SAS2018 XVII International Small Angle Scattering Conference CY - Traverse City, Michigan, USA DA - 07.10.2018 KW - SAXS KW - Zinc oxide nanoparticles KW - Microwave synthesis PY - 2018 AN - OPUS4-46348 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sobol, Oded T1 - Hydrogen assisted cracking phenomena in duplex stainless steels elucidated by in- and ex-situ ToF-SIMS experiments N2 - In the presented research, the high potential and abilities of secondary ion mass spectrometry (ToF-SIMS) to detect and locally map the hydrogen distribution in two types of duplex stainless steels are shown. The research validates certain proposed mechanisms by combining ToF-SIMS with high-resolution scanning electron microscopy and electron-backscattered diffraction. The combination of data from several techniques on the same region was conducted in this field for the first time by applying data treatment of the ToF-SIMS raw data and data fusion approach. This powerful combination of methods allows reviewing of the occurring processes related to hydrogen assisted cracking. The step beyond the state of the art in this field was gained here by developing permeation and mechanical loading experiments within the ToF-SIMS during chemometric imaging of the hydrogen distribution in the microstructure. The research presents the necessary correlation between the hydrogen distribution and the resulted structural changes, the diffusion behavior in a duplex microstructure and stress induced diffusion of hydrogen by applying external load at the microscale. T2 - 6th WMRIF Early Career Scientist Summit CY - NPL Teddington UK DA - 18.06.2018 KW - ToF-SIMS KW - Duplex stainless steel KW - LDX KW - EBSD KW - Data-fusion PY - 2018 AN - OPUS4-46865 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sobol, Oded A1 - Böllinghaus, Thomas T1 - BAM’s role in materials science and hydrogen in metals: TOF-SIMS imaging N2 - Due to its low mass and high diffusivity in presence of compositional, thermal and mechanical gradients, hydrogen within a metallic microstructure can result in severe loss in ductility even at low concentrations and might lead eventually to a catastrophic and unpredictable failure of structural components during service. In this context, hydrogen mapping at the microscale is still considered among the most important challenges on the pathway towards a better understanding of the hydrogen transport and assisted cracking phenomena in metals, specifically in structural components, e.g. steels. Among the very few available techniques to localize hydrogen at the microscale, Time-of-flight secondary ion mass spectrometry (ToF-SIMS) was proven to be a reliable tool. Based on the assumption that deuterium influence the microstructure similarly to hydrogen, in the following contribution ToF-SIMS was applied as the main technique to detect and locally map the deuterium distribution in several alloys: lean 2101 and standard 2205 duplex stainless steel (DSS), AISI 304L austenitic stainless steel and titanium 6Al-4V alloy. These alloys were selected as case studies in this work due to the wide use of them in many applications and environments which frequently provide critical conditions for hydrogen absorption and assisted degradation. The innovative design of in-situ and ex-situ experiments enabled us to elucidate the permeation, transport and trapping of deuterium in the microstructure in sub-micron resolution for the first time. In addition to the novel experimental setups, further progress was gained by applying computational multivariate data analysis (MVA) on the raw data and data fusion with high resolution structural characterization methods (scanning electron microscopy and electron back-scattered diffraction – SEM/EBSD). This combination allowed us to correlate the deuterium distribution and the influence on the microstructure. T2 - 4th Symposium on Innovative Measurement and Analysis for Structural Materials CY - Tokyo, Japan DA - 13.11.2018 KW - ToF-SIMS KW - Duplex stainless steel KW - Austenitic stainless steel KW - Principal Component Analysis KW - Data-fusion PY - 2018 UR - https://unit.aist.go.jp/tia-co/project/SIP-IMASM/sympo/2018/index.html AN - OPUS4-46867 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Breitfeld, Steffen A1 - Scholz, Gudrun A1 - Emmerling, Franziska A1 - Kemnitz, Erhard T1 - BaF-Coordination polymers: Mechanochemical syntheses of new coordination polymers with a direct Ba-F bond N2 - Metal organic frameworks (MOFs) and coordination polymers (CPs) Play an important role in different fields of applications like e.g. catalysis, separations, gas storages, sensors or optoelectronics. Moreover, particularly fluorinated metal-organic frameworks (FMOFs) are in the focus of interest during the last years. Due to the strong electronegativity of fluorine the FMOFs show beside an enhanced thermal stability excellent optical and electrical properties compared to non-fluorinated frameworks. In most cases fluorine is implemented using perfluorinated organic linkers at the synthesis, usually performed by solvothermal synthesis. However, only few examples are known so far where fluorine is coordinated directly to the metal cation. Recently we reported about successful mechanochemical syntheses and characterization of fluorine-containing coordination polymers of alkaline earth metals by milling M(OH)2 (M: Ca, Sr, Ba) with fluorinated benzene dicarboxylic acids. In the present study, it was shown that it is possible to connect fluorine directly to Barium using a mechanochemical synthesis route. A new phase pure barium coordination polymer, BaF-benzene-dicarboxylate (BaF(p-BDC)0.5), was synthesized by milling starting either from barium hydroxide or from barium acetate as sources for barium cations. In both cases the second reactant was 1,4-benzenedicarboxylic acid (H2(p-BDC)). Ammonium fluoride was used as fluorinating agent directly at milling. Although single crystals are not accessible so far and the structure was not solved yet, both the 19F MAS NMR spectrum and the FT IR spectrum give strong evidence that fluorine as well as 1,4-benzenedicarboxylate are connected to barium. This is the first mechanochemical synthesis of coordination polymers where fluorine is directly coordinated to the metal cation. The new compound BaF(p-BDC)0.5 was characterized by X-ray powder diffraction, FT IR- and 19F, 1H-13C CP MAS NMR spectroscopies, DTA-TG and elemental analysis. T2 - Konferenz CY - Oberjoch, Germany DA - 22.07.20108 KW - Mechanochemical syntheses KW - Coordination polymers KW - Direct fluorine-metal bond KW - Alkaline earth metal PY - 2018 AN - OPUS4-46897 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Emmerling, Franziska T1 - Mechanistic investigations of mechanosyntheses N2 - Mechanochemistry is a fast and efficient method applicable for the synthesis of new organic, metal-organic, and inorganic compounds. The direct monitoring of milling reactions is still challenging. The underlying reaction mechanisms often remain unclear. In the last years, we have established a tandem in situ approach for investigating mechanochemical reactions using time-resolved in situ XRD coupled with Raman spectroscopy. A further development is the in situ coupling of synchrotron XRD, Raman spectroscopy, and thermography allowing the observation of mechanochemical reactions in real time. [5] Information on the crystalline, molecular, and temperature state of the materials during grinding could be collected. The chemical composition of the reaction mixture was found to be directly correlated with changes in the temperature profile of the reaction. Furthermore, the presented setup allows the detection of crystalline, amorphous, eutectic as well as liquid intermediates. Based on these data, metastable polymorphs of cocrystals and coordination polymorphs could be isolated and struc-turally characterized. A multi-step diffusion mechanism was identified for most systems. Crystalline phases were obtained intermediately, suggesting that the synthesis is following Ostwald’s rules of stages. The resulting deeper kinetic and thermodynamic understanding of milling processes is the key for future optimization of mechanochemical syntheses. T2 - Beilstein Symposium MECHANOCHEMISTRY: MICROSCOPIC AND MACROSCOPIC ASPECTS CY - Rüdesheim, Germany DA - 13.11.2018 KW - Mechanochemistry KW - Phosphonates KW - In situ PY - 2018 AN - OPUS4-46758 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Heinrich, Thomas T1 - BAM and Division 6.1 N2 - This is a short overview of BAM and Division 6.1. We have insight into BAM's roles and responsibilities and the work we are doing in Division 6.1. T2 - Visit at CSEM Landquart CY - Landquart, Switzerland DA - 13.08.2018 KW - ToF-SIMS KW - AES KW - XPS KW - SEM PY - 2018 AN - OPUS4-46765 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schönhals, Andreas T1 - Broadband dielectric spectroscopy to study soft matter systems N2 - The basics of broadband dielectric spectroscopy were introduced in detail. The analysis of the data was discussed. As application of broadband dielectric spectroscopy the alpha-relaxation (dynamic glass transition) and the chain dynamics of polymers were ilustrated. Further the application of dielectric spectroscopy to polymerbased nanocomposites and high preformance polymers was discussed in detail. T2 - Kolloquiumsvotrag am Karlsruher Instiut of Technology CY - Karlsruhe, Germany DA - 05.12.2018 KW - Broadband dielectric spectroscopy PY - 2018 AN - OPUS4-46910 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Emmerling, Franziska T1 - In-situ investigations of mechanochemical reactions N2 - Mechanochemistry is a fast and efficient method applicable for the synthesis of new organic[1], metal-organic[2], and inorganic[3] compounds. The direct monitoring of milling reactions is still challenging. The underlying reaction mechanisms remain often unclear. In the last years, have established a tandem in situ approach for investigating mechanochemical reactions using time-resolved in situ XRD coupled with Raman spectroscopy.[4] Here, we present an in situ coupling of synchrotron XRD, Raman spectroscopy, and thermography allowing the observation of mechanochemical reactions in real time.[5] Information on the crystalline, molecular, and temperature state of the materials during grinding could be collected. The chemical composition of the reaction mixture was found to be directly correlated with changes in the temperature profile of the reaction. Furthermore, the presented setup allows the detection of crystalline, amorphous, eutectic as well as liquid intermediates. The resulting deeper kinetic and thermodynamic understanding of milling processes is the key for future optimization of mechanochemical syntheses. T2 - ACS Conference Boston CY - Boston, USA DA - 19.08.2018 KW - Mechanochemistry KW - In situ KW - Kinetic PY - 2018 AN - OPUS4-46989 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Emmerling, Franziska T1 - New insights in mechanochemical processes using real-time in situ investigations N2 - Mechanochemistry is increasingly used for synthesizing various materials including metal organic compounds and cocrystals. Although this synthesis approach offers a fast and pure synthesis in high yields, there is a lack in understanding the mechanisms of milling reactions. The necessary data can only be obtained in in situ experiments, which were only recently established for milling reactions. Herein, we present a novel setup enabling a combined in situ investigation of mechanochemical reactions using synchrotron XRD and Raman spectroscopy. T2 - ECM31 CY - Oviedo, Spain DA - 18.08.2018 KW - Mechanochemistry KW - In situ PY - 2018 AN - OPUS4-46990 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Emmerling, Franziska T1 - In situ investigations of mechanochemical reactions N2 - Presentation of the recent results in the context of in situ investigations of reactions using X-ray diffraction. T2 - Germany Brazil Workshop: New light on mechanisms of chemical reactions CY - Kiel, Germany DA - 31.07.2018 KW - In situ KW - XRD PY - 2018 AN - OPUS4-46991 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Unger, Wolfgang A1 - Kjaervik, Marit T1 - New work item proposal for a technical report for ISO/TC 201 WG 4 “Surface characterization of biomaterials”: Surface chemical analysis – Surface chemical analysis of cells and biofilms N2 - The proposed ISO Technical Report provides a description of a variety of physical methods of analytical chemistry by which bacteria and biofilms can be analysed. The state of the art, sample requirements and strengths associated with each method are identified. T2 - 27th Plenary Meeting of ISO/TC 201 CY - Cancun, Mexico DA - 2018-09-20 KW - Surface chemical analysis of biofilms KW - XPS KW - Fourier-Transform Infrared Spectroscopy KW - 3D nano SIMS KW - Raman-spectroscopy PY - 2018 AN - OPUS4-46214 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kjaervik, Marit A1 - Dietrich, P. A1 - Thissen, A. A1 - Schwibbert, Karin A1 - Unger, Wolfgang T1 - Investigations of biofilms in various conditions by near-ambient pressure XPS N2 - X-ray photoelectron spectroscopy (XPS) provides elemental and chemical information from the outermost ~10 nm of the sample surface. This is in the same order of magnitude as the thickness of the outer bacterial membrane of gram-negative bacteria, as well as outer membrane molecules as exopolysaccharides and lipopolysaccharides, commonly attached to the cell surface. With the development of near-ambient pressure (NAP)-XPS, bacteria can be analysed with minimal sample preparation. EnviroESCA is a laboratory based NAP-XPS instrument, equipped with a monochromated Al Kα radiation source and a differentially pumped energy analyser connected to an exchangeable sample environment. It allows for measurements in various gas-atmospheres, including water vapor, which makes it possible to characterise bacteria and other biological samples close to their natural, hydrated state. Artificial model-biofilms of exopolysaccharides, planktonic Pseudomonas Fluorescens and biofilms of Escherichia Coli have been characterised in hydrated and dried state. High-resolution XPS-spectra from carbon, oxygen, nitrogen and phosphorous can be assigned to carbohydrates, lipids and proteins in general agreement with literature. Especially the carbon 1s peak is of interest. A series of measurements of an E. coli biofilm from 11 mbar in humid environment to 1 mbar air reveal changes in the C1s peak, which suggests that the bacterial surface undergo substantial Change. T2 - BAM PhD-retreat CY - Warnemünde, Germany DA - 28.09.2018 KW - Biofilms KW - E. coli KW - NAP-XPS PY - 2018 AN - OPUS4-46132 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Müller, Anja A1 - Saleh, Maysoon I. A1 - Unger, Wolfgang T1 - Investigation of core-shell nanoparticles using a combination of scanning Auger microscopy (SAM) and scanning electron microscopy (SEM) N2 - Products containing engineered nanoparticles already encounter us in most areas of our daily life including cosmetics, clothing, detergents, paints, batteries and displays. In most cases the particles exhibit a core-shell morphology either voluntarily or involuntarily. The properties of the nanoparticle shell determine the interaction with their environment and, thus, reliable control over these properties means reliable control over the particles performance and their toxicity. Therefore, sophisticated techniques to measure thickness and elemental composition of the nanoparticle shell are urgently required. Scanning Auger microscopy (SAM) is a powerful technique with a lateral resolution below 10 nm and a chemical contrast based on the characteristic kinetic energy of Auger electrons related to specific atomic levels and, thus, to a specific element. This work explores the potential of SAM for characterizing the core-shell structure of nanoparticles. A sample system of upconversion NaYF4:Yb,Er cores coated with SiO2 is investigated. Auger spectra, line scans and elemental maps of single nanoparticles will be presented. Challenges encountered will be highlighted, such as damage to the sample by electron beam irradiation. Scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX) are performed on the same samples, in order to verify the SAM results. T2 - BAM PhD Retreat CY - Warnemünde, Germany DA - 28.09.2018 KW - Core-shell nanoparticles KW - SAM KW - SEM KW - Surface analysis PY - 2018 AN - OPUS4-46270 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Cant, D. A1 - Shard, A. A1 - Müller, Anja A1 - Clifford, C. A1 - Wirth, Thomas A1 - Unger, Wolfgang T1 - Surface chemical analysis – Electron spectroscopies – Measurement of the thickness and nature of nanoparticle coatings N2 - Recent years have seen increasing development of nanoparticles for applications in a wide range of fields, including but not limited to areas of great impact such as catalysis, medicine, energy, optoelectronics, cosmetics, and many others. In particular, nanoparticles bearing some form of coating layer, whether by design or due to incidental processes such as contamination or oxidation, are among the most commonly studied and utilised. In the characterisation of nanoparticles, the surface properties are of great importance, because a large proportion of the particle forms a part of the surface or interface. In the case of coated nanoparticles, the thickness of the coating is significant in determining the properties of the nanoparticle, and defines its interactions with its environment. Measurement of surface chemistry and coating thickness of nanoparticles is a challenge to which electron spectroscopies are well suited, due to high surface sensitivity, well-understood physical principles and accessibility. T2 - Annual Meeting of ISO/TC 201/SC7 CY - Cancun, Mexico DA - 21.09.2018 KW - Nanoparticle characterization KW - X-ray Photoelectron Spectroscopy (XPS) KW - Auger Electron Spectroscopy (AES) KW - Core-shell nanoparticles PY - 2018 AN - OPUS4-46259 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Haferkamp, Sebastian A1 - Emmerling, Franziska T1 - Mechanochemie N2 - In 3 Minuten sollte das Thema der Dissertation ohne zusätzliche Materialien vorgestellt werden. T2 - FameLab Germany 2018 CY - Potsdam, Germany DA - 15.03.2018 KW - Mechanochemie PY - 2018 AN - OPUS4-46319 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Heinrich, Thomas A1 - Müller, Anja A1 - Unger, Wolfgang T1 - Chemical characterisation of (core-shell) nanoparticles using PCA assisted ToF-SIMS and XPS N2 - The analysis of nanomaterials is currently an important task - especially in case of risk assessment – as the properties of these material class are not well understood. The rather high surface area of these objects renders their interactions significantly different to their corresponding bulk. Thus, the surface’s chemical composition must be investigated to get a better understanding and prediction of the nanomaterials’ behavior. ToF-SIMS and XPS have proven to be powerful tools to determine the general chemical composition. The superior surface sensitivity of ToF-SIMS furthermore allows us to study mainly the utmost atomic layers and thus gives us an idea of the interactions involved. Here, we present initial data on the analysis of Hyflon®-polystyrene core-shell nanoparticles which can be used as a model system due to the known preparation and a rather good chemical as well as physical separation of core and shell. Furthermore, results on Au nanoparticles with and without an antibody shell are presented. Principle component analysis (PCA) will be used to detect the influence of sample preparation and for a better separation of different samples. ToF-SIMS imaging is desired to be implemented for single particle detection as well. T2 - 3rd NanoSafety Forum for Young Scientists CY - Valetta, Malta DA - 08.09.2018 KW - Nanoparticles KW - ToF-SIMS KW - XPS PY - 2018 AN - OPUS4-46248 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -