TY - JOUR A1 - Schneider, Rudolf A1 - Almeida, Â. A1 - Calisto, V. A1 - Esteves, V. I. A1 - Soares, A. M. V. M. A1 - Freitas, R. T1 - Salinity-dependent impacts on the effects of antiepileptic and antihistaminic drugs in Ruditapes philippinarum N2 - In Coastal Systems, pollutants as pharmaceutical drugs exert changes from the molecular to the organism level in marine bivalves. Besides pollutants, Coastal Systems are prone to changes in environmental Parameters, as the alteration of salinity values because of Climate Change. Together, these Stressors (pharmaceutical drugs and salinity changes) can exert different threats than each Stressor acting individually; for example, salinity can change the physical-chemical properties of the drugs and/or the sensitivity of the organisms to them. However, limited Information is available on this subject, with variable results, and for this reason, this study aimed to evaluate the impacts of salinity changes (15,25 and 35) on the effects of the antiepileptic carbamazepine (CBZ, 1 (ig/L) and the antihistamine cetirizine (CTZ, 0.6 pg/L), when acting individually and combined (CBZ + CTZ), in the edible clam Ruditapes philippinarum. After 28 days ofexposure, drugs concentrations, bioconcentration factors and biochemical parameters, related to clam's metabolic caparity and oxidative stress were evaluated. The results showed that dams under low salinity suffered more changes in metabolic, antioxidant and biotransformation activities, in comparison with the remaining salinities under study. However, limited impacts were observed when comparing drug effects at low salinity. Indeed, it seemed that CTZ and CBZ + CTZ, under high salinity (salinity 35) were the worst exposure conditions for the dams, since they caused higher leveis of cellular damage. It Stands out that salinity changes altered the impact of pharmaceutical drugs on marine bivalves. KW - Muscheln KW - Salinität KW - Carbamazepin KW - Cetirizin KW - ELISA KW - Immunoassay KW - Antiepileptikum PY - 2022 DO - https://doi.org/10.1016/j.scitotenv.2021.150369 SN - 1879-1026 VL - 806 SP - 1 EP - 13 PB - Elsevier Science CY - Amsterdam AN - OPUS4-55561 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Almeida, Â. A1 - Calisto, V. A1 - Esteves, V. I. A1 - Schneider, Rudolf A1 - Soares, A. M. V. M. A1 - Freitas, R. T1 - Responses of Ruditapes philippinarum to contamination by pharmaceutical drugs under ocean acidification scenario N2 - In coastal systems, organisms are exposed to amultitude of stressors whose interactions and effects are poorly studied. Pharmaceutical drugs and Climate Change consequences, such as lowered pH, are examples of stressors affecting marine organisms, as bivalves. Although a vast literature is available for the effects of these stressors when acting individually, very limited information exists on the impacts that the combination of both can have on marine bivalves. For this reason, this study aimed to evaluate the impacts of a simulated ocean acidification scenario (control pH, 8.0; lowered pH, pH 7.6) on the effects of the antiepileptic carbamazepine (CBZ, 1 μg/L) and the antihistamine cetirizine (CTZ, 0.6 μg/L), when acting individually and combined (CBZ + CTZ), on the edible clam Ruditapes philippinarum. After 28 days of exposure, drug concentrations, bioconcentration factors and biochemical parameters related to the clams' metabolic capacity and oxidative stress were evaluated. The results showed that R. philippinarum clams responded differently to pharmaceutical drugs depending on the pH tested, influencing both bioconcentration and biological responses. In general, drug combined treatments showed fewer impacts than drugs acting alone, and acidification seemed to activate at a higher extension the elimination processes that were not activated under control pH. Also, lowered pH per se exerted negative impacts (e.g., cellular damage) on R. philippinarum and the combination with pharmaceutical drugs did not enhance the toxicity. KW - Biosensoren KW - Immunoassay KW - ELISA KW - Vor-Ort-Analytik KW - Toxikologie KW - Pharmaceutical drugs KW - Bivalves KW - Ocean acidification KW - Biomarkers KW - Climate change PY - 2022 DO - https://doi.org/10.1016/j.scitotenv.2022.153591 SN - 1879-1026 VL - 824 SP - 1 EP - 11 PB - Elsevier Science CY - Amsterdam AN - OPUS4-55590 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Ferreira Camoes Liestmann, Zoe T1 - Development of an electrochemiluminescence immunoassay for selected pathogens in wastewater N2 - The outbreak of SARS-CoV-2 in December of 2019, led to a worldwide still on-going pandemic. Since then, several so-called waves of SARS-CoV-2 infections, a time period with a high and fast rising number of new infections, have occurred all over the world. Classic surveillance approaches are hardly applicable, and further, non-detected cases cannot be covered by them. Wastewater-based Epidemiology (WBE) was proven to be a reliable tool for the prediction of new SARS-CoV-2 infection waves, due to the discharge of virus particles in fecal shedding of infectious people. Until now, for the monitoring of SARS-CoV-2 in wastewater, Polymerase Chain Reaction (PCR) is used as analytical tool. Even though PCR is a highly sensitive analytical tool, is presents several disadvantages, such as the need for trained personnel, specific technical equipment, as well as a difficult performance. An analytical tool, to which these disadvantaged do not apply, are immunoassays. In this work, a sandwich Enzyme-Linked Immunosorbent Assay (ELISA), with the immobilization of the capture antibodies on the surface of a Microtiter Plate (MTP), as well as a sandwich Magnetic Bead-Based Assay (MBBA), with immobilization of the capture antibodies on the surface of Magnetic Beads (MBs), targeting the SARS-CoV-2 N-protein, were developed and optimized. Both assay formats were performed with a colorimetric and chemiluminescent detection. The developed assay is composed of the two monoclonal antibodies (mAb) AH2 and DE6 - which was biotinylated in the course of the work - which bind to two different epitops of the antigen N-protein. As tracer, Neutravidin-HRP was used, which binds, through interaction of the Neutravidin with the biotin, to the mAb DE6-Biotin. The assay development and optimization procedure included the investigation of the surface saturation with the mAb AH2, the concentration and dilution of the mAb DE6-Biotin and Neutravidin-HRP, the ideal MBs, the ideal coating as well as dilution buffers, and the colorimetric and chemiluminescent substrates. For the developed and fully optimized colorimetric ELISA, a test midpoint x0 of 388 μg/L, for the chemiluminsecent ELISA of 371 μg/L, for the colorimetric MBBA of 251 μg/L and for the chemiluminescent MBBA of 243 μg/L was obtained. Validation of the colorimetric MBBA was done by measurement of three wastewater samples collected at the Wastewater Treatment Plant (WWTP) Potsdam. Whilst no N-protein could be detected in the samples, by spiking of the wastewater samples with certain concentrations of the N-protein, 10- to 18-times lower concentrations could be back-calculated, which can be attributed to matrix-effects of the wastewater sample. Next to the matrix-effects, also several other reason exist, why no N-protein could be determined in the samples. Because of that, further investigation of the handling, and the measurement of the wastewater samples, as well as the improvement of the assay sensitivity through further optimization steps or exchange of the antibodies, is still necessary. KW - SARS-CoV-2 KW - ELISA KW - Antibody KW - N-capsid PY - 2022 SP - 1 EP - 102 PB - Technischen Universität München CY - München AN - OPUS4-57744 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schneider, Rudolf A1 - He, Y. A1 - Zhu, R. A1 - Cai, Y. A1 - Zhang, Y. A1 - Zhang, Y. A1 - Pan, S. A1 - Zhang, Y. T1 - Transcriptomics and protein biomarkers reveal the detoxifying mechanisms of UV radiation for nebivolol toward zebrafish (Danio rerio) embryos/larvae N2 - Nebivolol (NEB), a β-blocker frequently used to treat cardiovascular diseases, has been widely detected in aquatic environments, and can be degraded under exposure to UV radiation, leading to the formation of certain transformation products (UV-TPs). Thus, the toxic effects of NEB and its UV-TPs on aquatic organisms are of great importance for aquatic ecosystems. In the present study, the degradation pathway of NEB under UV radiation was investigated. Subsequently, zebrafish embryos/larvae were used to assess the median lethal concentration (LC50) of NEB, and to clarify the sub-lethal effects of NEB and its UV-TPs for the first time. It was found that UV radiation could reduce the toxic effects of NEB on the early development of zebrafish. Transcriptomic analysis identified the top 20 enriched Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways in zebrafish larvae exposed to NEB, most of which were associated with the antioxidant, nervous, and immune systems. The number of differentially expressed genes (DEGs) in the pathways were reduced after UV radiation. Furthermore, the analysis of protein biomarkers, including CAT and GST (antioxidant response), AChE and ACh (neurotoxicity), CRP and LYS (immune response), revealed that NEB exposure reduced the activity of these biomarkers, whereas UV radiation could alleviate the effects. The present study provides initial insights into the mechanisms underlying toxic effects of NEB and the detoxification effects of UV radiation on the early development of zebrafish. It highlights the necessity of considering the toxicity of UV-TPs when evaluating the toxicity of emerging pollutants in aquatic systems. KW - Biomarker KW - Pharmazeutika KW - Toxikologie KW - UV Bestrahlung KW - Zebrafisch KW - Transformationsprodukte PY - 2022 DO - https://doi.org/10.1016/j.aquatox.2022.106241 SN - 0166-445X VL - 249 SP - 1 EP - 10 PB - Elsevier CY - Amsterdam AN - OPUS4-55559 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kaufmann, Jan Ole A1 - Brangsch, J. A1 - Kader, A. A1 - Saatz, Jessica A1 - Mangarova, D. B. A1 - Zacharias, M. A1 - Kempf, W. E. A1 - Schwaar, T. A1 - Wilke, Marco A1 - Adams, L. C. A1 - Möckel, J. A1 - Botnar, R. M. A1 - Taupitz, M. A1 - Mägdefessel, L. A1 - Traub, Heike A1 - Hamm, B. A1 - Weller, Michael G. A1 - Makowski, M. R. T1 - ADAMTS4-specific MR-probe to assess aortic aneurysms in vivo using synthetic peptide libraries N2 - The incidence of abdominal aortic aneurysms (AAAs) has substantially increased during the last 20 years and their rupture remains the third most common cause of sudden death in the cardiovascular field after myocardial infarction and stroke. The only established clinical parameter to assess AAAs is based on the aneurysm size. Novel biomarkers are needed to improve the assessment of the risk of rupture. ADAMTS4 (A Disintegrin And Metalloproteinase with ThromboSpondin motifs 4) is a strongly upregulated proteoglycan cleaving enzyme in the unstable course of AAAs. In the screening of a one-bead-one-compound library against ADAMTS4, a low-molecular-weight cyclic peptide is discovered with favorable properties for in vivo molecular magnetic resonance imaging applications. After identification and characterization, it’s potential is evaluated in an AAA mouse model. The ADAMTS4-specific probe enables the in vivo imaging-based prediction of aneurysm expansion and rupture. KW - Peptide KW - Peptide library KW - OBOC library KW - Combinatorial chemistry KW - Peptide aptamers KW - Binding molecule KW - Affinity KW - Synthetic peptides KW - Contrast agent KW - Magnetic resonance imaging KW - One-bead-one-compound library KW - On-chip screening KW - Lab-on-a-chip KW - MALDI-TOF MS KW - SPR KW - Surface plasmon resonance KW - Alanine scan KW - Fluorescence label KW - MST KW - Docking KW - Chelate PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-560930 DO - https://doi.org/10.1038/s41467-022-30464-8 VL - 13 IS - 1 SP - 1 EP - 18 PB - Springer Nature Limited CY - Heidelberg AN - OPUS4-56093 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kazlagic, Anera A1 - Russo, Francesco A1 - Vogl, Jochen A1 - Sturm, Patrick A1 - Stephan, D. A1 - Gluth, Gregor ED - Resch-Genger, Ute ED - Koch, Matthias ED - Meermann, Björn ED - Weller, Michael G. T1 - Development of a sample preparation procedure for Sr isotope analysis of Portland cements N2 - The 87Sr/86Sr isotope ratio can, in principle, be used for provenancing of cement. However, while commercial cements consist of multiple components, no detailed investigation into their individual 87Sr/86Sr isotope ratios or their influence on the integral 87Sr/86Sr isotope ratio of the resulting cement was conducted previously. Therefore, the present study aimed at determining and comparing the conventional 87Sr/86Sr isotope ratios of a diverse set of Portland cements and their corresponding Portland clinkers, the major component of these cements. Two approaches to remove the additives from the cements, i.e. to measure the conventional 87Sr/86Sr isotopic fingerprint of the clinker only, were tested, namely, treatment with a potassium hydroxide/sucrose solution and sieving on a 11-µm sieve. Dissolution in concentrated hydrochloric acid/nitric acid and in diluted nitric acid was employed to determine the 87Sr/86Sr isotope ratios of the cements and the individual clinkers. The aim was to find the most appropriate sample preparation procedure for cement provenancing, and the selection was realised by comparing the 87Sr/86Sr isotope ratios of differently treated cements with those of the corresponding clinkers. None of the methods to separate the clinkers from the cements proved to be satisfactory. However, it was found that the 87Sr/86Sr isotope ratios of clinker and cement generally corresponded, meaning that the latter can be used as a proxy for the clinker 87Sr/86Sr isotope ratio. Finally, the concentrated hydrochloric acid/nitric acid dissolution method was found to be the most suitable sample preparation method for the cements; it is thus recommended for 87Sr/86Sr isotope analyses for cement provenancing. KW - Cement KW - Provenancing KW - Sr isotopes KW - Portland clinker KW - Dissolution PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-542239 DO - https://doi.org/10.1007/s00216-021-03821-7 SN - 1618-2642 SN - 1618-2650 VL - 414 IS - 15 (Topical collection: Analytical methods and applications in the materials and life sciences) SP - 4379 EP - 4389 PB - Springer CY - Berlin AN - OPUS4-54223 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gornushkin, Igor B. T1 - Multifaceted laser induced plasma: spectroscopy and beyond N2 - In this presentation, I will give a brief overview of my personal experience with laser induced plasma (LIP). I will start from my and colleagues’ early works, where we used LIP as an atomic reservoir for laser induced fluorescence (LIP). We applied LIP-LIF for a sensitive detection of trace elements in various materials and demonstrated that under certain conditions the technique can even be used for isotope analysis. Next, I will discuss the application of LIP spectroscopy, i.e., LIBS, to material identification that nowadays constitutes one of the best applications of this technique. In those early days, we used correlation analysis for spectra processing; it is now replaced by more powerful chemometric methods. Further, I will stop on our efforts in modeling LIP that we first intended for the improved quality of spectroscopic analysis and later extended to non-spectroscopic fields such as chemical vapor deposition and surface structuring. We developed a version of calibration-free LIBS, in which we iterated model-generated spectra until a close match was achieved between experimental and synthetic spectra to determine concentrations. Next, I will briefly overview our recent developments in plasma modeling that include plasma chemistry. This was important in view of widening application of LIBS as a molecular technique. I will also address several plasma diagnostics, e.g., Radon transform tomography that we developed to get more insight about LIP that was helpful for both analytic spectroscopy and modeling. Finally, I will mention several exotic applications of LIP such as LIP-based lasers and chemical reactors to illustrate a real multifaceted character of laser induced plasma and usefulness of its study for many science fields. T2 - SciX 2022, The Federation of Analytical Chemistry and Spectroscopy Societies (FACSS) CY - Cincinnati, OH, USA DA - 02.10.2022 KW - Emission spectroscopy KW - Laser ablation KW - Laser induced plasma deposition KW - Surface coating KW - Hydrodynamic model KW - Plasma chemistry PY - 2022 AN - OPUS4-55968 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gornushkin, Igor B. T1 - Optical Detection of Defects during Laser Metal Deposition N2 - Laser metal deposition is a rapidly evolving method for additive manufacturing that combines high performance and simplified production routine. Quality of production depends on an instrumental design and operational parameters, which require constant control during the process. In this work, feasibility of using optical spectroscopy as a control method is studied via modeling and experimentally. A simplified thermal model is developed based on the time-dependent diffusion-conduction heat equation and geometrical light collection into detection optics. Intense light emitted by a laser-heated spot moving across a sample surface is collected and processed to yield the temperature and other temperature-related parameters. In the presence of surface defects, the temperature field is distorted in a specific manner that depends on shape and size of the defect. Optical signals produced by such the distorted temperature fields are simulated and verified experimentally using a 3D metal printer and a sample with artificially carved defects. Three quantities are tested as possible metrics for monitoring the process: temperature, integral intensity, and correlation coefficient. The shapes of the simulated signals qualitatively agree with the experimental signals; this allows for a cautious inference that optical spectroscopy can detect surface defects and, possibly, predict their characters, e.g., inner or protruding. T2 - Colloquium Spectroscopicum Internationale XLII (CSI XLII) CY - Gijon, Spain DA - 30 May 2022 KW - Additive manufacturing KW - Laser metal deposition KW - Optical sensor KW - Optical emission spectroscopy KW - Process control PY - 2022 AN - OPUS4-55063 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gornushkin, Igor B. A1 - Veiko, V. A1 - Karlagina, J. A1 - Samokhvalov, A. A1 - Polyakov, D. T1 - Back Deposition of Titanium Oxides under Laser Ablation of Titanium: Simulation and Experiment N2 - Titanium is widely used in medicine for implants and prostheses, thanks to its high biocompatibility, good mechanical properties, and high corrosion resistance. Pure titanium, however, has low wear resistance and may release metallic titanium into surrounding tissues. Structuring and coating its surface with oxide layers are necessary for high wear resistance and improved biocompatibility. In this work, a combination of theoretical and experimental methods was used to study processes responsible for deposition of titanium oxides during ablation of titanium in air. The deposition process was modeled via the Navier-Stokes equations that accounted for the material removal and accumulation of the deposit on the ablation surface. The chemical part was based on the equilibrium model embedded into the hydrodynamic code. Simulations showed that the most active zone of production of condensed titanium oxides were at plasma periphery whereas a zone of strong condensation of titanium metal was above the molten pool. In experiment, a pulsed Yb fiber laser was scanned across a titanium surface. The temperature and composition of the plasma were inferred from plasma emission spectra. The post-ablation surface was analyzed by SEM, TEM, STEM, AFM, and XRD. The developed model well reproduced the main features of experimental data. It was concluded that the deposition of condensed metal oxides from the plasma is a principal mechanism of formation of nanoporous oxide layer on the metal surface. The method of surface structuring and modification by nanosecond laser ablation can be developed into a useful technology that may find applications in medicine, photonics, and other areas. T2 - SciX 2022, The Federation of Analytical Chemistry and Spectroscopy Societies (FACSS) CY - Cincinnati, OH, USA DA - 02.10.2022 KW - Surface coating KW - Laser ablation KW - Plasma modeling PY - 2022 AN - OPUS4-55969 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Völker, Tobias A1 - Wilsch, Gerd A1 - Gornushkin, Igor B. A1 - Millar, S. A1 - Licht, M. T1 - Interlaboratory comparison for quantitative chlorine analysis in cement pastes with LIBS N2 - Concrete structures often show severe damage during their lifetime. One such damage is pitting corrosion of the steel reinforcement caused by chloride ingress into the porous concrete structure. Laser-induced breakdown spectroscopy (LIBS) is a promising method in civil engineering, which is used for detection of chlorine in concrete structures in addition to conventional methods of wet chemistry. To assess LIBS as a trustful analytical technique, its accuracy and robustness is carefully tested. The presentation will outline the results of the interlaboratory comparison of chlorine quantification in cement paste samples, which was carried out by 12 laboratories in 10 countries. Two sets of samples with chloride content ranging from 0.06-1.95 wt.% in the training set and 0.23-1.51 wt.% in the test sample set (“unknowns”), with additional variations in the type of cement and chlorine source (salt type) were sent to the laboratories. The overall result demonstrates that LIBS is suitable for the quantification of the investigated sample compositions: average relative bias was mostly below 15 %. Considering that the laboratories did not receive instructions on how to perform the analysis or how to process the data, the results can be evaluated as a true status quo of the LIBS technique for this type of analysis. T2 - XII Laser Induced Breakdown Spectroscopy (LIBS 2022) CY - Bari, Italy DA - 04.09.2022 KW - LIBS KW - Chlorine KW - Cement pastes KW - Interlaboratory comparison PY - 2022 AN - OPUS4-55680 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gornushkin, Igor B. T1 - Deposition of Titanium Oxides by Nanosecond Laser Ablation: Simulation and Experiment N2 - Surface modification of titanium by laser ablation is investigated theoretically and experimentally. The modification consists in texturing the surface and redeposition of chemically transformed material from the ablation plasma. The redeposition is driven by the hydrodynamic flow in the plasma. Such surface modification improves the biocompatibility of titanium implants. T2 - 2022 Winter Conference on Plasma Spectrochemistry CY - Tucson, Arizona, USA DA - 17.01.2022 KW - Laser ablation KW - Laser induced plasma deposition KW - Surface coating KW - Titanium dioxide KW - Emission spectroscopy KW - Hydrodynamic model KW - Plasma chemistry PY - 2022 AN - OPUS4-54289 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kornev, R. A1 - Gornushkin, Igor B. A1 - Nazarov, V. A1 - Shkrunin, V. A1 - Ermakov, A. T1 - Features of hydrogen reduction of SiF4 in ICP plasma N2 - Probe diagnostics is used to determine the electron temperature and electron number density in a low pressure inductively coupled plasma (ICP) ignited in the mixture of SiF4, Ar and H2. Emission spectra of mixtures with different stoichiometry of components are investigated and the electron density distribution function (EDDF) is estimated. The optimal conditions for high conversion of SiF4 into Si are found by studying the dependence of the yield of silicon upon the ratio of reagents. The maximum achieved yield of silicon is 85% under the optimal conditions. Based on the analysis of IR and MS spectra of exhaust gases, 5% of initial SiF4 converts into volatile fluorosilanes. A rate of production of Si is 0.9 g/h at the energy consumption 0.56 kWh /g. KW - Plasma enhanced chemical vapor deposition KW - PECVD KW - Silicon tetrafluoride KW - Emission spectroscopy KW - Probe diagnostics PY - 2022 DO - https://doi.org/10.1016/j.sab.2022.106502 SN - 0584-8547 VL - 195 SP - 106502 PB - Elsevier B.V. AN - OPUS4-55316 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gornushkin, Igor B. T1 - A Long Way of Plasma Modeling: Personal Experience N2 - Modeling is an important tool for understanding a physical phenomenon. It helps to interpret results of experiments and optimize experimental parameters for obtaining a desirable result. Modeling laser induced plasma is beneficial for many scientific and industrial fields, e.g., analytical chemistry, pulsed laser deposition, plasma enhanced chemical vapor deposition, laser welding, additive manufacturing etc. In this presentation, a personal experience in development of a physical model of laser induced plasma will be given in a chronological sequence starting from early 2000th and until now. Over the time, the model evolved from its simple analytical form that described plasma emission spectra to its current numerical form that describes plasma dynamics, chemistry, and interaction with a substrate surface. Several examples will be given for the application of the model to practical problems such as spectroscopic chemical analysis, plasma enhanced chemical vapor deposition, and surface modification by laser ablation. T2 - XII World Conference on Laser Induced Breakdown Spectroscopy CY - Bari, Italy DA - 05.09.2022 KW - Laser induced plasma KW - CFD computational fluid dynamic KW - Plasma modeling KW - Plasma chemistry PY - 2022 AN - OPUS4-55669 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Gornushkin, Igor B. ED - Galbács, G. T1 - Calibration-Free Quantitative Analysis N2 - Calibration-free methods in laser-induced breakdown spectroscopy, CF LIBS, serve as an alternative to calibration-based LIBS techniques. Their major advantage is the ability for fast chemical analysis in situations where matrix-matched standards are not readily available (as, e.g., in the analysis of biological materials and remote analysis) or amount of samples are limited. Their main applications are in the industry, geology, biology, archeology, and even space exploration. This chapter overviews the principle of operation and performance of CF LIBS techniques. KW - Laser induced plasma KW - Calibration-free LIBS PY - 2022 SN - 978-3-031-14501-8 DO - https://doi.org/10.1007/978-3-031-14502-5 SP - 67 EP - 100 PB - Springer Nature Switzerland AG AN - OPUS4-56651 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Simon, Fabian A1 - Gehrenkemper, Lennart A1 - von der Au, Marcus A1 - Wittwer, Phillip A1 - Roesch, Philipp A1 - Pfeifer, Jens A1 - Cossmer, Antje A1 - Meermann, Björn T1 - A fast and simple PFAS extraction method utilizing HR–CS–GFMAS for soil samples N2 - Here, we describe an optimized fast and simple extraction method for the determination of per- and polyfluorinated alkyl substances (PFASs) in soils utilizing high resolution-continuum source-graphite furnace molecular absorption spectrometry (HR–CS–GFMAS). To omit the bias of the solid phase extraction (SPE) step commonly used during the analysis of extractable organically bound fluorine (EOF) we optimized a fast and simple SPE-free extraction method. The developed extraction method consists of a liquid-solid extraction using acidified methanol without any additional SPE. Four extraction steps were representative to determine a high proportion of the EOF (>80% of eight extractions). Comparison of the optimized method with and without an additional SPE clean-up step revealed a drastic underestimation of EOF concentrations using SPE. Differences of up to 94% were observed which were not explainable by coextracted inorganic fluoride. Therefore, not only a more accurate but also a more economic as well as ecologic method (bypassing of unnecessary SPE) was developed. The procedural limit of quantification (LOQ) of the developed method was 10.30 μg/kg which was sufficient for quantifying EOF concentrations in all tested samples. For future PFAS monitoring and potential regulative decisions the herein presented optimized extraction method can offer a valuable contribution. KW - Per- and polyfluorinated alkly substances (PFASs) KW - High resolution-continuum source-graphite furnace molecular absorption spectrometry (HR-CS-GFMAS) KW - Soils KW - Solid phase extraction (SPE) KW - Extractable organically bound fluorine (EOF) KW - Solid-liquid extraction PY - 2022 DO - https://doi.org/10.1016/j.chemosphere.2022.133922 VL - 295 SP - 1 EP - 9 PB - Elsevier Ltd. AN - OPUS4-54359 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -