TY - CONF A1 - Radtke, Martin T1 - Von Ägypten bis Hiddensee – Analyse von Gold mit Synchrotronstrahlung - Update 2018 N2 - Gold ist eines der sieben schon im Altertum bekannten Metalle und wurde wg. seines Glanzes und seiner Seltenheit von alters her als Tauschmittel und zur Herstellung von Schmuck benutzt. Außerdem ist es einfach bearbeitbar und weitestgehend gegen chemische Einflüsse resistent. Die Untersuchungen von Gold mit synchrotronstrahlungsangeregter Röntgenfluoreszenzanalyse sind zerstörungsfrei und geben Auskunft über die in der untersuchten Probe vorhandenen chemischen Elemente. Bei den hier vorgestellten Untersuchungen an der BAMline stehen Fragestellungen wie Herkunft, Herstellungsverfahren und Zusammengehörigkeit von Goldfunden im Vordergrund. Die verschiedenen Fragestellungen werden an einer Reihe von Beispielen erläutert die vom Wikingerschatz aus Hiddensee über die Himmelsscheibe von Nebra bis hin zu Funden aus Ägypten langen. Zusätzlich werden die modernen Messmethoden vorgestellt, die am Synchrotron heutzutage zur Verfügung stehen. T2 - Vorlesung FU Berlin Einführung in die Archäometrie CY - Berlin, Germany DA - 01.11.2018 KW - Gold KW - Synchrotron KW - XRF KW - BAMline PY - 2018 AN - OPUS4-46451 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gollwitzer, Christian A1 - Ulbricht, Alexander A1 - Scholz, Philipp A1 - Joshi, Yogita A1 - Weidner, Steffen T1 - 3D printing material filled with metal organic frameworks analyzed by synchrotron based absorption edge tomography N2 - Absorption edge tomography, also known as differential tomography at absorption edges, is a method which exploits the sudden change of the attenuation coefficient, when the photon energy crosses the absorption edge of an element. Synchrotron radiation is the best source for absorption edge tomography, because of its small bandwidth, high intensity and easily adjustable photon energy. The synchrotron beamline BAMline at the synchrotron radiation facility BESSY II in Berlin, which is operated by the Bundesanstalt für Materialforschung und -prüfung (BAM), provides a monochromatized beam in a photon energy range from 5 keV up to 80 keV with a bandwidth of 2%, when the double multilayer monochromator is used. Together with the microtomography setup, this enables differential tomography with submicron resolution at the K edge of the elements from chromium up to the lanthanides, and up to uranium, when the L edges are used as well. In this work, metal organic frameworks (MOFs) embedded in polymer are characterized using differential tomography. MOFs are microporous structures of metal ions, coordinated by organic linker molecules, that can be used in a broad field of applications, especially in gas storage and catalysis. In this work, polymer embedded MOFs were extruded into filaments, which could be used for 3d-printing to profit from the specific properties of the MOFs in polymeric materials combined with the arbitrary shapes provided by 3d-printing. For the extrusion, different polymer classes like ABS, polyester- and polyetherurethanes, as well as different MOFs (ZIF-8, ZIF-67, HKUST-1) were used to create MOF containing filaments with a nominal diameter of 3.0 mm. Differential tomography at the edges of the Zn, Co, and Cu was then used to find the distribution of the corresponding MOF in the filament and to analyze the shape of the inclusions. T2 - MSE 2018 CY - Darmstadt, Germany DA - 26.09.2018 KW - Absorption edge KW - Tomography KW - Metal organic framework KW - Synchrotron PY - 2018 AN - OPUS4-46429 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Witte, Steffen A1 - Radtke, Martin A1 - de Oliveira Guilherme Buzanich, Ana A1 - Grunewald, Christian A1 - Reinholz, Uwe A1 - Riesemeier, Heinrich A1 - Emmerling, Franziska T1 - XAFS@BAMline N2 - X-ray Absorption fine structure spectroscopy (XAFS) is a frequently employed technique in order to investigate structural composition and Change of chemical compounds such as catalytic species or corrosion processes. These structural properties are essential (i) to understand underlying reaction mechanism and (ii) to further improve the design of materials. While XAFS measurements are usually performed with ionization Chambers or simple fluorescence detectors, we at BAMline specialize in measurements with innovative set-ups that meet Specialrequirements such as time resolution, (3D-) spatial Resolution or demanding sample environments. This contribution presents various available XAFS configurations with their corresponding applications. In particular, these comprise single -shot XAFS for time- resolved measurements, grazing-exit XAFS with energy and a spatially resolved detector for the characterization of thin films and an in situ grazing incidence Setup for the characterization of corrosion layers. Additionally,the possibility of analyzing Minute samples in total-reflection geometry is demonstrated. T2 - EXRS 2018 CY - Ljubljana, Slovenia DA - 24.06.2018 KW - XANES KW - XAFS KW - BAMline KW - Synchrotron KW - TXRF PY - 2018 AN - OPUS4-46361 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Witte, Steffen A1 - Kulow, Anicó A1 - Seeberg, D. A1 - de Oliveira Guilherme Buzanich, Ana A1 - Radtke, Martin A1 - Reinholz, Uwe A1 - Grunewald, Christian A1 - Riesemeier, Heinrich A1 - Wohlrab, S. T1 - S2XAFS@work: Customization for the Characterization of VOx based Catalysts N2 - X-ray absorption fine structure spectroscopy (XAFS) is a frequently employed technique in order to investigate structural composition and change of chemical compounds such as catalytic species. These structural properties are essential (i) to understand underlying reaction mechanism and (ii) to further improve the design of efficient catalysts. This investigation is based on a newly developed XAFS setup comprising both time- and lateral-resolved XAFS information simultaneously in a single-shot (S2XAFS). The primary broadband beam is generated by a filter/X-ray-mirror combination (bandpass). The transmitted beam through the sample is diffracted by a convexly bent Si (111) crystal, producing a divergent beam. This, in turn, is collected by an area sensitive detector with a theta to 2 theta geometry. This facile, stable and scanningless setup was tested at the BAMline @ BESSY-II (Berlin, Germany). This contribution focuses on further experimental optimizations allowing the characterization of supported vanadium oxide (VOx) based catalysts at the lower hard X-ray regime (5 to 6 keV). First S2XAFS measurements of these catalysts are presented herein. Supported VOx catalysts show promising results in the oxidation of methane to formaldehyde. S2XAFS allows determining the structural composition of the metal (i.e. vanadium) based on a fast and smart setup. It is therefore an ideal tool to identify crucial roles of chemical compounds in catalytic reactions. T2 - XAFS 2018 CY - Cracow, Poland DA - 22.07.2018 KW - XANES KW - XAFS KW - BAMline KW - Synchrotron PY - 2018 AN - OPUS4-46362 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radtke, Martin A1 - de Oliveira Guilherme Buzanich, Ana A1 - Reinholz, Uwe A1 - Riesemeier, Heinrich A1 - Scharf, o T1 - The colour X-ray camera – Basics and applications of a 2D X-ray detector N2 - The Color X-ray Camera CXC or SLcam® is an energy-resolving X-ray camera capable of energy- and space-resolved measurements. It consists of a high-speed CCD detector coupled to a polycapil-lary optic that conducts the X-ray photons from the probe to distinct pixels onto the detector. The camera is capable of fast acquisition of spatially and energy resolved fluorescence images. A dedicated software enables the acquisition and the online processing of the spectral data for all 69696 pixels, leading to a real-time visualization of the elements distribution in a sample. It was developed in a joint project with BAM, IFG Berlin and PN Sensors. In this contribution we will mainly discuss the use of the CXC at our beamline, the BAMline at BESSY II and imaging applications of the CXC from different areas, like biology and archaeometry. Additionally new developments for the use of the detector without optics, like wavelength dispersive detection or 1shot-XANES, will be presented. T2 - Seminar Strahlenphysikalische Anwendungen in Technik und Medizin CY - ATi Wien, Austria DA - 24.01.2018 KW - XRF KW - Synchrotron KW - BAMline PY - 2018 AN - OPUS4-46365 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Müller, Anja A1 - Radnik, Jörg A1 - Lippitz, Andreas A1 - Unger, Wolfgang T1 - Progress Talk 3 / Non-destructive depth profiling of core-shell nanoparticles by ER-XPS N2 - This presentation deals with the progress between month twenty and twenty-nine of my PhD thesis. I prepared it, in order to update my supervisor Prof. Kemnitz and my colleagues from the department of chemistry at the Humboldt-Universität zu Berlin (HU). T2 - Working Group Meeting of Prof. Erhard Kemnitz CY - Humboldt-Universität zu Berlin (HU), Germany DA - 20.11.2018 KW - ER-XPS KW - Synchrotron KW - Core-shell nanoparticles KW - Depth-profiling PY - 2018 AN - OPUS4-46676 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radtke, Martin A1 - de Oliveira Guilherme Buzanich, Ana A1 - Reinholz, Uwe A1 - Emmerling, Franziska T1 - Materials research with synchrotron radiation N2 - Synchrotron radiation sources with their unique properties in terms of intensity, polarization and adjustability offer a wide range of possibilities in materials research. A basic introduction about the creation and special properties of synchrotron radiation will be given. Examples of current work at BAMline, the high-energy measuring facility of the Federal Institute for Materials Research and Testing at the synchrotron BESSY, are used to illustrate the possibilities and limitations of existing measuring methods. It will be shown how the formation of corrosion layers can be tracked, how the abrasion of implants leads to the introduction of heavy metals into the surrounding bone matrix and how the detection of smallest impurities in gold is possible by optimizing the measuring conditions. Finally, an outlook at the hardware and software developments to be expected in the coming years is given. T2 - INCT-FNA Symposium 2019 CY - Niteroi, Brazil DA - 27.05.2019 KW - Synchrotron KW - XRF KW - XANES KW - EXAFS KW - TXRF KW - Color X-ray Camera PY - 2019 AN - OPUS4-48897 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radtke, Martin T1 - Machine learning for direct quantification of XRF measurements N2 - In X-ray fluorescence (XRF), a sample is excited with X-rays, and the resulting characteristic radiation is detected to detect elements quantitatively and qualitatively. Quantification is traditionally done in several steps: 1. Normalization of the data 2. Determination of the existing elements 3. Fit of the measured spectrum 4. Calculation of concentrations with fundamental parameters / MC simulations / standard based The problem with standard based procedures is the availability of corresponding standards. The problem with the calculations is that the measured intensities for XRF measurements are matrix-dependent. Calculations must, therefore, be performed iteratively (= time consuming) in order to determine the chemical composition. First experiments with gold samples have shown the feasibility of machine learning based quantification in principle. A large number of compositions were simulated (> 10000) and analyzed with a deep learning network. For first experiments, an ANN (Artificial Neural Network) with 3 hidden layers and 33x33x33 neurons was used. This network learned the mapping of spectra to concentrations using supervised learning by multidimensional regression. The input layer was formed by the normalized spectrum, and the output layer directly yielded the searched values. The applicability for real samples was shown by measurements on certified reference materials. T2 - Denver X-ray Conference CY - Lombard, IL, USA DA - 05.08.2019 KW - Machine learning KW - Artificial intelligence KW - Neural network KW - XRF KW - Synchrotron PY - 2019 AN - OPUS4-48903 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Emmerling, Franziska T1 - New insights in mechanochemical processes using real-time in situ investigations N2 - Use of synchrotron radiation for special sample conditions. Recent work of the group at BESSY II. T2 - DESY Usermeeting Satelite Workshop CY - Hamburg, Germany DA - 22.01.2019 KW - XRD KW - In situ KW - Rietveld KW - Synchrotron PY - 2019 AN - OPUS4-47262 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - de Oliveira Guilherme Buzanich, Ana T1 - Hard X-ray spectroscopy and imaging at the BAMline and MySpot beamlines at BESSY II (Berlin, Germany) N2 - Overview of the X-ray based analytical methods conducted at the BAMline and µSpot Beamline for structure analysis. T2 - Pccr2 + AfLS conference CY - Accra, Ghana DA - 29.01.2019 KW - X-ray spectroscopy KW - Synchrotron KW - Beamline KW - Material characterization PY - 2019 AN - OPUS4-47319 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -