TY - JOUR A1 - Ziegler, K. A1 - Kunert, A. T. A1 - Reinmuth-Selzle, K. A1 - Leifke, A. L. A1 - Widera, D. A1 - Weller, Michael G. A1 - Schuppan, D. A1 - Fröhlich-Nowoisky, J. A1 - Lucas, K. A1 - Pöschl, U. T1 - Chemical modification of pro-inflammatory proteins by peroxynitrite increases activation of TLR4 and NF-κB: Implications for the health effects of air pollution and oxidative stress N2 - Environmental pollutants like fine particulate matter can cause adverse health effects through oxidative stress and inflammation. Reactive oxygen and nitrogen species (ROS/RNS) such as peroxynitrite can chemically modify proteins, but the effects of such modifications on the immune system and human health are not well understood. In the course of inflammatory processes, the Toll-like receptor 4 (TLR4) can sense damage-associated molecular patterns (DAMPs). Here, we investigate how the TLR4 response and pro-inflammatory potential of the proteinous DAMPs α-Synuclein (α-Syn), heat shock protein 60 (HSP60), and high-mobility-group box 1 protein (HMGB1), which are relevant in neurodegenerative and cardiovascular diseases, changes upon chemical modification with peroxynitrite. For the peroxynitrite-modified proteins, we found a strongly enhanced activation of TLR4 and the pro-inflammatory transcription factor NF-κB in stable reporter cell lines as well as increased mRNA expression and secretion of the pro-inflammatory cytokines TNF-α, IL-1β, and IL-8 in human monocytes (THP-1). This enhanced activation of innate immunity via TLR4 is mediated by covalent chemical modifications of the studied DAMPs. Our results show that proteinous DAMPs modified by peroxynitrite more potently amplify inflammation via TLR4 activation than the native DAMPs, and provide first evidence that such modifications can directly enhance innate immune responses via a defined receptor. These findings suggest that environmental pollutants and related ROS/RNS may play a role in promoting acute and chronic inflammatory disorders by structurally modifying the body's own DAMPs. This may have important consequences for chronic neurodegenerative, cardiovascular or gastrointestinal diseases that are prevalent in modern societies, and calls for action, to improve air quality and climate in the Anthropocene. KW - Protein nitration KW - Protein oligomerization KW - Damage-associated molecular patterns (DAMPs) KW - Pattern recognition receptor KW - Anthropocene KW - Environmental pollutants PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-517128 DO - https://doi.org/10.1016/j.redox.2020.101581 VL - 37 SP - 101581 PB - Elsevier B.V. AN - OPUS4-51712 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ziegler, Mathias A1 - Thiel, Erik A1 - Studemund, T. T1 - Thermography using a 1D laser array – From planar to structured heating N2 - In the field of optically excited thermography, flash lamps (impulse shaped planar heating) and halogen lamps (modulated planar heating) have become established for the specific regimes of impulse and lock-in thermography. Flying-spot laser thermography is implemented by means of a rasterized focused laser, e. g. for crack detection (continuous wave operation) and photothermal material characterization (high-frequency modulated). The availability of novel technologies, i. e. fast and high-resolution IR cameras, brilliant innovative light sources and high-performance data acquisition and processing technology will enable a paradigm shift from stand-alone photothermal and thermographic techniques to uniform quantitative measurement and testing technology that is faster and more precise. Similar to an LED array, but with irradiance two orders of magnitude higher, a new type of brilliant laser source, i. e. the VCSEL array (vertical-cavity surface-emitting laser), is now available. This novel optical energy source eliminates the strong limitation to the temporal dynamics of established light sources and at the same time is spectrally clearly separated from the detection wavelength. It combines the fast temporal behavior of a diode laser with the high optical irradiance and the wide illumination area of flash lamps. In addition, heating can also be carried out in a structured manner, because individual areas of the VCSEL array can be controlled independently of each other. This new degree of freedom enables the development of completely new thermographic NDT methods. KW - Thermography KW - Laser thermography KW - Laser KW - Lock-in KW - VCSEL KW - Thermal wave KW - Photothermal PY - 2018 UR - https://www.hanser-elibrary.com/doi/abs/10.3139/120.111209 DO - https://doi.org/10.3139/120.111209 SN - 0025-5300 VL - 60 IS - 7-8 SP - 749 EP - 757 PB - Carl Hanser Verlag CY - München AN - OPUS4-45482 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zientek, Nicolai A1 - Laurain, C. A1 - Meyer, Klas A1 - Paul, Andrea A1 - Engel, D. A1 - Guthausen, G. A1 - Kraume, M. A1 - Maiwald, Michael T1 - Automated data evaluation and modelling of simultaneous F-19-H-1 medium-resolution NMR spectra for online reaction monitoring N2 - Medium-resolution nuclear magnetic resonance spectroscopy (MR-NMR) currently develops to an important analytical tool for both quality control and processmonitoring. In contrast to high-resolution onlineNMR (HR-NMR),MR-NMRcan be operated under rough environmental conditions. A continuous re-circulating stream of reaction mixture fromthe reaction vessel to the NMR spectrometer enables a non-invasive, volume integrating online analysis of reactants and products. Here, we investigate the esterification of 2,2,2-trifluoroethanol with acetic acid to 2,2,2-trifluoroethyl acetate both by 1H HR-NMR (500MHz) and 1H and 19F MRNMR (43MHz) as amodel system. The parallel online measurement is realised by splitting the flow,which allows the adjustment of quantitative and independent flow rates, both in the HR-NMR probe as well as in the MR-NMR probe, in addition to a fast bypass line back to the reactor. One of the fundamental acceptance criteria for online MR-MNR spectroscopy is a robust data treatment and evaluation strategy with the potential for automation. The MR-NMR spectra are treated by an automated baseline and phase correction using the minimum entropy method. The evaluation strategies comprise (i) direct integration, (ii) automated line fitting, (iii) indirect hard modelling (IHM) and (iv) partial least squares regression (PLS-R). To assess the potential of these evaluation strategies for MR-NMR, prediction results are compared with the line fitting data derived from the quantitative HR-NMR spectroscopy. Although, superior results are obtained from both IHM and PLS-R for 1H MR-NMR, especially the latter demands for elaborate data pretreatment, whereas IHM models needed no previous alignment. KW - NMR KW - 1H-NMR KW - 19F-NMR KW - Medium-resolution NMR KW - Online NMR KW - Quantitative NMR KW - Reaction monitoring KW - Data processing KW - Automation KW - Process analytical technology KW - IHM KW - Indirect hard modeling KW - Chemometrics KW - PLS-R KW - Partial least squares regression PY - 2016 UR - http://onlinelibrary.wiley.com/doi/10.1002/mrc.4216/abstract DO - https://doi.org/doi:10.1002/mrc.4216 VL - 54 SP - 513 EP - 520 PB - John Wiley & Sons, Ltd CY - Hoboken, New Jersey, USA AN - OPUS4-36135 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zientek, Nicolai A1 - Meyer, Klas A1 - Kern, Simon A1 - Maiwald, Michael T1 - Quantitative online NMR spectroscopy in a nutshell N2 - Online NMR spectroscopy is an excellent tool to study complex reacting multicomponent mixtures and gain process insight and understanding. For online studies under process conditions, flow NMR probes can be used in a wide range of temperature and pressure. This paper compiles the most important aspects towards quantitative process NMR spectroscopy in complex multicomponent mixtures and provides examples. After NMR spectroscopy is introduced as an online method and for technical samples without sample preparation in deuterated solvents, influences of the residence time distribution, pre-magnetization, and cell design are discussed. NMR acquisition and processing parameters as well as data preparation methods are presented and the most practical data analysis strategies are introduced. KW - Prozessanalytik KW - Process analytical technology KW - Online NMR spectroscopy KW - Online monitoring PY - 2016 DO - https://doi.org/10.1002/cite.201500120 SN - 0009-286X VL - 88 IS - 6 SP - 698 EP - 709 PB - Wiley-VCH Verlag GmbH & Co. KGaA CY - Weinheim, Germany AN - OPUS4-36333 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zimmermann, T. A1 - von der Au, Marcus A1 - Reese, A. A1 - Klein, O. A1 - Hildebrandt, L. A1 - Pröfrock, D. T1 - Substituting HF by HBF4 – an optimized digestion method for multi-elemental sediment analysis via ICP-MS/MS N2 - Determination of elemental mass fractions in sediments plays a major role in evaluating the environmental status of aquatic ecosystems. Herewith, the optimization of a new total digestion protocol and the subsequent analysis of 48 elements in different sediment reference materials (NIST SRM 2702, GBW 07313, GBW 07311 and JMC-2) based on ICP-MS/MS detection is presented. The developed method applies microwave acid digestion and utilizes HBF4 as fluoride source for silicate decomposition. Similar to established protocols based on HF, HBF4 ensures the dissolution of the silicate matrix, as well as other refractory oxides. As HBF4 is not acutely toxic; no special precautions have to be made and digests can be directly measured via ICP-MS without specific sample inlet systems, evaporation steps or the addition of e.g. H3BO3, in order to mask excess HF. Different acid mixtures with and without HBF4 were evaluated in terms of digestion efficiency based on the trace metal recovery. The optimized protocol (5 mL HNO3, 2 mL HCL, 1 mL HBF4) allows a complete dissolution of the analyzed reference materials, as well as quantitative recoveries for a wide variety of certified analytes. Low recoveries for e.g. Sr, Ba and rare earth elements due to fluoride precipitation of HF-based digestions protocols, can be avoided by the usage of HBF4 instead. Based on the usage of high purity HBF4 all relevant trace, as well as matrix elements can be analyzed with sufficiently low LOQs (0.002 μg L−1 for U up to 6.7 μg L−1 for Al). In total, 34 elements were within a recovery range of 80%–120% for all three analyzed reference materials GBW 07313, GBW 07311 and JMC-2. 14 elements were outside a recovery range of 80%–120% for at least one of the analyzed reference materials. KW - Reference Materials KW - Sediment KW - HF free Digestion PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-510480 DO - https://doi.org/10.1039/D0AY01049A SP - 1 EP - 10 PB - Royal Society of Chemistry AN - OPUS4-51048 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zinke, R. A1 - Wothe, K. A1 - Dugarev, D. A1 - Götze, O. A1 - Köhler, F. A1 - Schalau, Sebastian A1 - Krause, U. T1 - Uncertainty consideration in CFD-models via response surface modeling: Application on realistic dense and light gas dispersion simulations N2 - Major accidents in the process industry often lead to the release of light or dense gases, which can mean a thread to employees, local residents or to the environment. Possible scenarios are therefore analyzed and evaluated in advance for approval issues. There is a trend, where simple empirical models are being replaced with more complex numerical models. Gaussian dispersion models or models based on dimensional analysis approaches are for example, increasingly replaced by CFD simulations. The main reason for this is the potentially higher accuracy. However, usually scenarios using sharp parameter values are calculated, since comprehensive consideration of parameter distributions via Monte Carlo or Latin Hypercube Sampling fails due to the numerical effort. This includes the risk that the influence of uncertainties on the simulation results is not taken into account. Response surface methods offer an alternative, with which the CFD problem can be mapped onto an algebraic surrogate model. If this is sufficiently precise, parameter sampling can also be carried out with the surrogate as well, as shown in some publications. Previous investigations only demonstrated the basic principle using trivial dispersion models. In this paper two realistic CFD simulations from the plant safety area are considered: VOC emissions from a storage tank and near-ground dense gas emissions. The entire procedure of response surface determination and parameter studies was automated and parallelized for high-performance-computing, and is carried out on the underlying CFD grids. For the CFD simulations as well as for all visualizations, the commercial software ANSYS CFX and the open source software OpenFOAM were used. The aim of this paper is to demonstrate the method using industry-relevant applications as well as to show how this can be used in practical engineering applications. The quality of surrogate modeling, the numerical effort and advantages that can result from the procedure are discussed as well as advantages which may result from taking parameter uncertainties into account in safety studies. KW - CFD KW - Accidental release KW - Response surface methods KW - Air dispersion modeling PY - 2022 DO - https://doi.org/10.1016/j.jlp.2021.104710 SN - 0950-4230 VL - 75 SP - 1 EP - 10 PB - Elsevier CY - Amsterdam AN - OPUS4-56887 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zocca, Andrea A1 - Müller, Bernd R. A1 - Laquai, René A1 - Kupsch, Andreas A1 - Wieder, Frank A1 - Benemann, Sigrid A1 - Wilbig, Janka A1 - Günster, Jens A1 - Bruno, Giovanni T1 - Microstructural characterization of AP40 apatite-wollastonite glass-ceramic N2 - The microstructure of an apatite-wollastonite (code name AP40) glass-ceramic is analyzed in this study by combining 2D microscopy, phase analysis, X-ray absorption and synchrotron X-ray refraction computed tomography (XCT and SXRCT, respectively). It is shown that this combination provides a useful toolbox to characterize the global microstructure in a wide scale range, from sub-micrometer to millimeter. The material displays a complex microstructure comprising a glassy matrix with embedded fluorapatite and wollastonite small crystals. In this matrix, large (up to 200 μm) spike-shaped structures are distributed. Such microstructural features are oriented around a central sphere, thereby forming a structure resembling a sea urchin. A unique feature of SXRCT, in contrast to XCT, is that internal interfaces are visualized; this allows one to show the 3D distribution of these urchins with exceptionally good contrast. Furthermore, it is revealed that the spike-shaped structures are not single crystals, but rather composed of sub-micrometric crystals, which are identified as fluorapatite and diopside phases by SEM-EDX analysis. KW - Glass-ceramic KW - X-ray refraction KW - Computed tomography KW - Microstructure PY - 2023 DO - https://doi.org/10.1016/j.ceramint.2022.12.130 SN - 0272-8842 VL - 49 IS - 8 SP - 12672 EP - 12679 PB - Elsevier Science CY - Amsterdam AN - OPUS4-57452 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zorn, R. A1 - Szymoniak, Paulina A1 - Kolmangadi, Mohamed Aejaz A1 - Malpass-Evans, R. A1 - McKeown, N. A1 - Tyagi, M. A1 - Böhning, Martin A1 - Schönhals, Andreas T1 - Low frequency vibrations and diffusion in disordered polymers bearing an intrinsic microporosity as revealed by neutron scattering N2 - The microscopic diffusion and the low frequency density of states (VDOS) of PIM-EATB(CH3) are investigated by inelastic and quasi-elastic neutron scattering where also the demethylated counterpart of PIM-EA-TB(H2) is considered. These intrinsic microporous polymers are characterized by large BET surface area values of several hundred m2/g and pore sizes between 0.5 and 2 nm. Detailed comparison is made to the archetype of polymers of intrinsic microporosity, PIM-1, and polynorbornenes also bearing a microporosity. Due to the wavelength of neutrons, the diffusion and vibrations can be addressed on microscopic length and time scales. From the inelastic neutron scattering experiments the low frequency density of states (VDOS) is estimated which shows excess contributions to the Debye-type VDOS known as Boson peak. It was found that the maximum frequency of the Boson peak decreases with increasing microporosity characterized by the BET surface area. However, besides the BET surface area, additional factors such as the backbone stiffness govern the maximum frequency of the Boson peak. Further the mean squared displacement related to microscopic motions was estimated from elastic fixed window scans. At temperatures above 175 K, the mean squared displacement PIM-EA-TB(CH3) is higher than that for the demethylated counterpart PIM-EA-TB(H2). The additional contribution found for PIM-EATB(CH3) is ascribed to the rotation of the methyl group in this polymer because the only difference between the two structures is that PIM-EA-TB(CH3) has methyl groups where PIM-EA-TB(H2) has none. A detailed comparison of the molecular dynamics is also made to that of PIM-1 and the microporous polynorbornene PTCNSi1. The manuscript focuses on the importance of vibrations and the localized molecular mobility characterized by the microscopic diffusion on the gas Transport in polymeric separation membranes. In the frame of the random gate model localized fluctuations can open or close bottlenecks between pores to enable the diffusion of gas molecules. KW - Polymer of intrisic microporosity KW - Neutron scattering KW - Boson peak KW - Methyl group rotation PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-538490 DO - https://doi.org/10.3390/cryst11121482 VL - 11 IS - 12 SP - 1 EP - 16 PB - MDPI CY - Basel AN - OPUS4-53849 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zorn, R. A1 - Szymoniak, Paulina A1 - Kolmangadi, Mohamed Aejaz A1 - Wolf, M. A1 - Alentiev, D. A1 - Bermeshev, M. A1 - Böhning, Martin A1 - Schönhals, Andreas T1 - Low frequency vibrational density of state of highly permeable super glassy polynorbornenes – The Boson peak N2 - Inelastic incoherent neutron time-of flight scattering was employed to measure the low frequency density of states for a series of addition polynorbornenes with bulky side groups. The rigid main chain in combination with the bulky side groups give rise to a microporosity of these polymers in the solid state. The microporosity characterized by the BET surfaces area varies systematically in the considered series. Such materials have some possible application as active separation layer in gas separation membranes. All investigated materials show excess contributions to the Debye type density of states characteristic for glasses known as Boson peak. The maximum position of the Boson peak shifts to lower frequency values with increasing microporosity. Data for PIM-1 and Matrimid included for comparison are in good agreement to this dependency. This result supports the sound wave interpretation of the Boson peak. KW - Polynorbornes KW - Neutron Scattering PY - 2020 DO - https://doi.org/10.1039/d0cp03360j SN - 1463-9076 VL - 22 IS - 33 SP - 18381 EP - 18387 PB - Royal Chemical Society AN - OPUS4-51165 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zorn, R. A1 - Yin, Huajie A1 - Lohstroh, W. A1 - Harrison, W. A1 - Budd, P.M. A1 - Pauw, Brian Richard A1 - Böhning, Martin A1 - Schönhals, Andreas T1 - Anomalies in the low frequency vibrational density of states for a polymer with intrinsic microporosity - the Boson peak of PIM-1 N2 - Polymers with intrinsic microporosity are promising candidates for the active separation layer in gas separation membranes. Here, the vibrational density of states (VDOS) for PIM-1, the prototypical polymer with intrinsic microporosity, is investigated by means of inelastic neutron scattering. The results are compared to data measured for a more conventional high-performance polyimide used in gas separation membranes (Matrimid). The measured data show the characteristic low frequency excess contribution to VDOS above the Debye sound wave level, generally known as the Boson peak in glass-forming materials. In comparison to the Boson peak of Matrimid, that of PIM-1 is shifted to lower frequencies. This shift is discussed considering the microporous, sponge-like structure of PIM-1 as providing a higher compressibility at the molecular scale than for conventional polymers. For an annealed PIM-1 sample, the Boson peak shifts to higher frequencies in comparison to the un-annealed sample. These changes in the VDOS of the annealed PIM-1 sample are related to changes in the microporous structure as confirmed by X-ray scattering. KW - Polymers KW - Boson peak KW - Neutron scattering KW - Physical aging KW - Polymer of intrinsic microporosity PY - 2018 DO - https://doi.org/10.1039/C7CP07141H SN - 1463-9076 SN - 1463-9084 VL - 20 IS - 3 SP - 1355 EP - 1363 PB - The Royal Society of Chemistry AN - OPUS4-43808 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zou, Q. A1 - Marcelot, C. A1 - Ratel-Ramond, N. A1 - Yi, X. A1 - Roblin, P. A1 - Frenzel, Florian A1 - Resch-Genger, Ute A1 - Eftekhari, A. A1 - Bouchet, A. A1 - Coudret, C. A1 - Verelst, M. A1 - Chen, X. A1 - Mauricot, R. A1 - Roux, C. T1 - Heterogeneous Oxysulfide@Fluoride Core/ Shell Nanocrystals for Upconversion-Based Nanothermometry N2 - Lanthanide (Ln3+)-doped upconversion nanoparticles (UCNPs) often suffer from weak luminescence, especially when their sizes are ultrasmall (less than 10 nm). Enhancing the upconversion luminescence (UCL) efficiency of ultrasmall UCNPs has remained a challenge that must be undertaken if any practical applications are to be envisaged. Herein, we present a Ln3+-doped oxysulfide@fluoride core/shell heterostructure which shows efficient UCL properties under 980nm excitation and good stability in solution. Through epitaxial heterogeneous growth, a ∼4 nm optically inert β-NaYF4 shell was coated onto ∼5 nm ultrasmall Gd2O2S:20%Yb,1%Tm. These Gd2O2S:20%Yb,1%Tm@NaYF4 core/shell UCNPs exhibit a more than 800-fold increase in UCL intensity compared to the unprotected core, a 180-fold increase in luminescence decay time of the 3H4 → 3H6 Tm3+ transition from 5 to 900 μs, and an upconversion quantum yield (UCQY) of 0.76% at an excitation power density of 155 W/cm2. Likewise, Gd2O2S:20%Yb,2%Er@NaYF4 core/shell UCNPs show a nearly 5000-fold increase of their UCL intensity compared to the Gd2O2S:20%Yb,2%Er core and a maximum UCQY of 0.61%. In the Yb/Er core−shell UCNP system, the observed variation of luminescence intensity ratio seems to originate from a change in lattice strain as the temperature is elevated. For nanothermometry applications, the thermal sensitivities based on thermally coupled levels are estimated for both Yb/Tm and Yb/Er doped Gd2O2S@NaYF4 core/shell UCNPs. KW - Upconversion nanoparticle KW - Nanosensor KW - Lanthanide KW - Surface coating KW - Quantum yield KW - Photophysic PY - 2022 DO - https://doi.org/10.1021/acsnano.2c02423 SN - 1936-0851 SP - 1 EP - 11 PB - ACS Publications AN - OPUS4-55440 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zscherpel, Uwe A1 - Schumacher, David A1 - Redmer, Bernhard A1 - Ewert, Uwe A1 - Ullberg, C. A1 - Weber, N. A1 - Pantsar, T. T1 - Digital radiology with photon counting detectors N2 - The progress in X-ray detector electronics (sensitivity and speed) allows meanwhile fast single photon detection by a matrix detector. Combined photon counting and energy discrimination is implemented in the electronic circuit of each detector pixel. The company XCounter developed detectors based on CdTe single crystals, which can be tiled to larger areas and have a pixel size of 100ìm. The largest area available in beginning of 2014 is 50x75 mm². These detectors have very promising properties, which make them very suitable for NDT applications: 1. A CdTe attenuation layer of 750 µm thickness allows efficient X-ray detection up to ca. 300 keV. In counting mode only photon noise is important; no other detector noise sources need to be considered. There is no Offset signal without radiation. 2. Each of the detector pixels has two energy thresholds. These can be used for dual energy imaging for materials separation. Also the suppression of scattered radiation by energy thresholding will improve the image contrast sensitivity. First experiments will be presented which demonstrate the advantages of this new detector technology over the conventional charge integrating detectors. A challenge is the development of a modified detector calibration procedure, which becomes critical at longer exposure times. T2 - ECNDT 2014 - 11th European conference on non-destructive testing CY - Prague, Czech Republic DA - 06.10.2014 KW - Materials characterization KW - Radiographic testing (RT) KW - Digital detector array KW - Photo counting KW - Image quality KW - Calibration KW - Dual-energy KW - Energy discrimination KW - Digital radiology KW - Detectors PY - 2014 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-323063 UR - https://www.ndt.net/?id=16709 SN - 1435-4934 N1 - Geburtsname von Schumacher, David: Walter, D. - Birth name of Schumacher, David: Walter, D. VL - 19 IS - 12 SP - 1 EP - 8 PB - NDT.net CY - Kirchwald AN - OPUS4-32306 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zweigle, J. A1 - Capitain, C. A1 - Simon, Fabian Michael A1 - Roesch, Philipp A1 - Bugsel, B. A1 - Zwiener, C. T1 - Non-extractable PFAS in functional textiles − Characterization by complementary methods: oxidation, hydrolysis, and fluorine sum parameters N2 - Per- and polyfluoroalkyl substances (PFAS) are widely used for durable water-repellent finishing of different fabrics and textiles like outdoor clothing, carpets, medical textiles and more. Existing PFAS extraction techniques followed by target analysis are often insufficient in detecting widely used side-chain fluorinated polymers (SFPs) that are barely or non-extractable. SFPs are typically copolymers consisting of a non-fluorinated backbone with perfluoroalkyl side-chains to obtain desired properties. We compared the accessible analytical information and performance of complementary techniques based on oxidation (dTOP assay, PhotoTOP), hydrolysis (THP assay), standard extraction, extractable organic fluorine (EOF), and total fluorine (TF) with five functional textiles and characterized 7 further textiles only by PhotoTOP oxidation. The results show that when applied directly to textile samples, oxidation by dTOP and PhotoTOP and also hydrolysis by the THP are able to capture large fractions of the TF in form of perfluoroalkyl side-chains present in the textiles while methods relying on extracts (EOF, target and non-target analysis) were much lower (e.g., factor ~25-50 lower). The conversion of large fractions of the measured TF into PFCAs or FTOHs from fluorinated side chains is in contrast to previous studies. Concentrations ranged from FS > FTIR > XRD, based on their effectiveness in discriminating the state of papyri degradation. However, the most trustworthy evaluation of the age of papyri samples should rely on several methods. KW - Archaeometry KW - FTIR KW - XRD KW - Raman KW - Chromatography KW - Papyrology PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-428704 DO - https://doi.org/10.1038/srep46236 SN - 2045-2322 VL - 7 SP - 46236, 1 EP - 46236, 12 AN - OPUS4-42870 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -