TY - JOUR A1 - Akhmetova, Irina A1 - Beyer, Sebastian A1 - Schutjajew, K. A1 - Tichter, T. A1 - Wilke, Manuel A1 - Prinz, Carsten A1 - B. Martins, Inês C. A1 - Al-Sabbagh, Dominik A1 - Roth, C. A1 - Emmerling, Franziska T1 - Cadmium benzylphosphonates - the close relationship between structure and properties N2 - Cadmium benzylphosphonate Cd(O3PBn)·H2O and its fluorinated derivates Cd(O3PBn-3F)·H2O, Cd(O3PBn-4F)·H2O, and Cd(O3PBn-F5)·H2O were synthesized mechanochemically. The Crystal structures of the compounds were determined based on powder X-ray diffraction (PXRD) data. The influence of the ligand substitution on the crystal structure of the metal phosphonate was determined. The hydrophobicity as a function of degree of fluorination was investigated using dynamic vapor sorption. KW - Mechanochemistry KW - Metal phosphonates KW - PXRD KW - DVS PY - 2019 DO - https://doi.org/10.1039/c9ce00776h VL - 21 SP - 5958 EP - 5964 PB - RSC Royal Society of Chemistry AN - OPUS4-49930 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sobina, E. A1 - Zimathis, Anett A1 - Prinz, Carsten A1 - Emmerling, Franziska A1 - de Santis Neves, R. A1 - Galhardo, C. E. A1 - De Robertis, E. A1 - WANG, H. A1 - Mizuno, K. A1 - Kurokawa, A. A1 - Unger, Wolfgang T1 - Final report of CCQM-K136 measurement of porosity properties (specific adsorption, BET specific surface area, specific pore volume and pore diameter) of nanoporous Al2O3 N2 - The CCQM-K136 key comparison for determination of the porosity properties of aluminum oxide has been organized jointly by the surface and micro/nano analysis working groups of CCQM to test the abilities of the metrology institutes to measure the porosity properties (specific adsorption, BET specific surface area, specific pore volume and pore diameter) of nanoporous Al2O3. Ural Scientific Research Institute for Metrology (UNIIM) acted as the coordinating laboratory for this comparison with BAM Federal Institute for Materials Research and Testing (BAM) as co-coordinating laboratory. Five NMIs and one DI participated in this key comparison. All participants used a gas adsorption method, here nitrogen adsorption at 77.3 K, for analysis according to the international standards ISO 15901-2 and 9277. KW - BET specific surface area KW - Specific adsorption KW - Pore diameter KW - Specific pore volume KW - Nanoporous Al2O3 PY - 2016 UR - http://iopscience.iop.org/article/10.1088/0026-1394/53/1A/08014 DO - https://doi.org/10.1088/0026-1394/53/1A/08014 SN - 0026-1394 SN - 1681-7575 VL - 2016 IS - 53 Technical Supplement SP - Article 08014, 1 EP - 39 PB - IOPscience AN - OPUS4-38282 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sobina, E. A1 - Zimathies, Annett A1 - Prinz, Carsten A1 - Emmerling, Franziska A1 - de Santis Neves, R. A1 - Wang, H. A1 - Mizuno, K. A1 - Devoille, L. A1 - Steel, E. A1 - Ceyhan, A. A1 - Sadak, E. ED - Sobina, E. T1 - Final report of CCQM-K153 Measurement of Specific Adsorption A [mol/kg] of N-2 and Kr on nonporous SiO2 at LN temperature (to enable a traceable determination of the Specific Surface Area (BET) following ISO 9277) N2 - CCQM key comparison K-153 Measurement of Specific Adsorption A [mol/kg] of N-2 and Kr on nonporous SiO2 at LN temperature (to enable a traceable determination of the Specific Surface Area (BET) following ISO 9277) has been performed by the Surface Analysis Working Group (SAWG) of the Consultative Committee for Amount of Substance (CCQM). The objective of this key comparison is to compare the equivalency of the National Metrology Institutes (NMIs) and Designated Institutes (DIs) for the measurement of specific adsorption, BET specific surface area) of nonporous substances (sorbents, ceramics, catalytic agents, etc) used in advanced technology. In this key comparison, a commercial nonporous silicon dioxide was supplied as a sample. Eight NMIs participated in this key comparison, but only five NMI's have reported in time. All participants used a gas adsorption method, here nitrogen and (or) krypton adsorption at 77.3 K, for analysis according to the international standards ISO 15901-2 and 9277. In this key comparison, the degrees of equivalence uncertainties for specific adsorption nitrogen and krypton, BET specific surface area were established. KW - Nonporous SiO2 KW - Specific Adsorption of N-2 and Kr KW - BET specific surface area PY - 2019 DO - https://doi.org/10.1088/0026-1394/56/1A/08013 VL - 56 IS - 1A SP - 08013 PB - IOP publishing Ltd CY - Bristol, UK AN - OPUS4-50358 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Beyer, Sebastian A1 - Prinz, Carsten A1 - Schürmann, Robin A1 - Feldmann, Ines A1 - Zimathies, Annett A1 - Blocki, Anna A1 - Bald, Ilko A1 - Schneider, Rudolf A1 - Emmerling, Franziska T1 - Ultra-sonication of ZIF-67 crystals results in ZIF-67 nano-flakes N2 - Zeolitic Imidazolate Frameworks (ZIFs) are crystalline materials that comprise of metal nodes and Imidazole derivatives as linkers. ZIF-67 is often used in polymer composite materials e. g. for gas separation membranes. Post-synthesis treatment of ZIF-67 crystals with ultrasound leads to unforeseen plasticity that resulted in sintered ZIF-67 and ZIF-67 nano-flakes. Consequently, ultrasound increases the external surface area of ZIF-67 which might improve e.g. blending with polymers in composite materials. These new morphologies of ZIF-67 were characterized by transmission electron, scanning electron, and atomic force microscopy. The ultrasound treatment of ZIF-67 did not result in the formation of an amorphous framework or a meta-stable crystal structure as indicated by powder x-ray diffraction. In addition, ultra-sonicated ZIF-67 retained the high gas adsorption capacity and pore size compared to synthesized ZIF-67. The morphological changes are hard to detect with standard analytical methods that are usually utilized for MOF characterization. These findings also suggest that sonochemical treatment of ZIFs leads to structural effects beyond increasing the amount of nucleation clusters during sono-chemical synthesis, which is currently not addressed in the field. KW - ZIF PY - 2016 DO - https://doi.org/10.1002/slct.201601513 SN - 2365-6549 VL - 1 IS - 18 SP - 5905 EP - 5908 AN - OPUS4-38496 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - de Olivera, Paulo A1 - Michalchuk, Adam A1 - Marquardt, Julien A1 - Feiler, Torvid A1 - Prinz, Carsten A1 - Torresi, R. A1 - Camargo, P. A1 - Emmerling, Franziska T1 - Investigating the role of reducing agents on mechanosynthesis of Au nanoparticles N2 - Control over the bottom up synthesis of metal nanoparticles (NP) depends on many experimental factors, including the choice of stabilising and reducing agents. By selectively manipulating these species, it is possible to control NP characteristics through solution-phase synthesis strategies. It is not known, however, whether NPs produced from mechanochemical syntheses are governed by the same rules. Using the Au NPs mechanosynthesis as a model system, we investigate how a series of common reducing agents affect both the reduction kinetics and size of Au NPs. It is shown that the relative effects of reducing agents on mechanochemical NP synthesis differ significantly from their role in analogous solution-phase reactions. Hence, strategies developed for control over NP growth in solution are not directly transferrable to environmentally benign mechanochemical approaches. This work demonstrates a clear need for dedicated, systematic studies on NP mechanosynthesis. KW - Mechanochemistry KW - Metal nanoparicels PY - 2020 DO - https://doi.org/10.1039/d0ce00826e VL - 22 IS - 38 SP - 6261 EP - 6267 PB - Royal Society of Chemistry AN - OPUS4-51757 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -