TY - CONF A1 - Kjaervik, Marit A1 - Dietrich, P. A1 - Thissen, A. A1 - Schwibbert, Karin A1 - Unger, Wolfgang T1 - Investigations of biofilms in various conditions by near-ambient pressure XPS N2 - X-ray photoelectron spectroscopy (XPS) provides elemental and chemical information from the outermost ~10 nm of the sample surface. This is in the same order of magnitude as the thickness of the outer bacterial membrane of gram-negative bacteria, as well as outer membrane molecules as exopolysaccharides and lipopolysaccharides, commonly attached to the cell surface. With the development of near-ambient pressure (NAP)-XPS, bacteria can be analysed with minimal sample preparation. EnviroESCA is a laboratory based NAP-XPS instrument, equipped with a monochromated Al Kα radiation source and a differentially pumped energy analyser connected to an exchangeable sample environment. It allows for measurements in various gas-atmospheres, including water vapor, which makes it possible to characterise bacteria and other biological samples close to their natural, hydrated state. Artificial model-biofilms of exopolysaccharides, planktonic Pseudomonas Fluorescens and biofilms of Escherichia Coli have been characterised in hydrated and dried state. High-resolution XPS-spectra from carbon, oxygen, nitrogen and phosphorous can be assigned to carbohydrates, lipids and proteins in general agreement with literature. Especially the carbon 1s peak is of interest. A series of measurements of an E. coli biofilm from 11 mbar in humid environment to 1 mbar air reveal changes in the C1s peak, which suggests that the bacterial surface undergo substantial Change. T2 - BAM PhD-retreat CY - Warnemünde, Germany DA - 28.09.2018 KW - Biofilms KW - E. coli KW - NAP-XPS PY - 2018 AN - OPUS4-46132 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maiwald, Michael A1 - Emmerling, Franziska A1 - Villajos Collado, José Antonio A1 - Maierhofer, Christiane A1 - Thiel, Erik A1 - Altenburg, Simon T1 - Already producing or still assembling? – Perspectives towards modular production and quality control in a digitized process industry N2 - The CLEAN ENERGY Flagship is an initiative designed to utilize recent game changing developments in digital, materials and manufacturing technologies to catalyze a radical paradigm shift towards clean, reliable, efficient and cost-optimal energy. Unifying and drastically accelerating radically new energy material design, processing and integration across the entire value chain addressing energy production, conversion, storage and systems. CLEAN ENERGY participants are all distinguished research organisations that each benefit from their own industry networks and contacts with regions and state-level activities and have a long history of collaborating with each other (for 10 years now under the umbrella of EERA) within a European collaborative framework. Through EERA, CLEAN ENERGY aims to become a crucial partner in the SET-Plan, supporting long-lasting approaches through its established networks and internal collaborations. T2 - Clean Energy Workshop on Autonomous Materials Development Platforms CY - Brussels, Belgium DA - 02.10.2018 KW - Digitization KW - Energy production KW - Energy storage KW - Energy systems KW - Clean energy technology PY - 2018 AN - OPUS4-46135 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kjaervik, Marit A1 - Dietrich, P. A1 - Thissen, A. A1 - Schwibbert, Karin T1 - Surface characterisation of biological samples by near-ambient pressure XPS N2 - A presentation held for the seminar "Ausgewählte analytische Methoden der Physik" hosted by Prof. Birgit Kanngießer at TU Berlin. The first part focus on depth-dependent XPS-measurements (XPS, synchrotron HAXPES) to obtain a concentration profile of iodine in an artificial biofilm. In the second part, NAP-XPS measurements of various bacterial samples are presented. T2 - Forschungsseminar "Ausgewählte analytische Methoden der Physik", TU Berlin CY - Berlin, Germany DA - 17.07.2018 KW - Biofilms KW - Alginate KW - Agarose KW - HAXPES KW - NAP-XPS PY - 2018 AN - OPUS4-45505 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Crasselt, Claudia A1 - Schmidt, Wolfram A1 - Sturm, Heinz T1 - Influence of rheology modifying admixtures on hydration of cementitious suspensions N2 - The state of fresh concrete is predominantly determined by the rheological properties of the cement paste. In order to control performance spectra and requirements of novel concretes and to better understand macroscopic phenomena, comprehensive knowledge of the material behavior of fresh cement suspensions as well as of the complex relationships of mechanisms at the nano and micro scale are necessary. This work focuses on micro and nano rheology of suspensions of cementitious model systems and the influence of polycarboxylate-based admixtures on the rheology. The phenomena are driven by multiple parameters such as adsorption and particle interactions. Hence, the first part examines the interaction between polycarboxylate ether (PCE) and synthesized clinker phases and hydration products as model systems with regard to early hydration products. T2 - 6th International Symposium on Nanotechnology in Construction CY - Hong Kong, China DA - 02.12.2018 KW - Cement KW - Early hydration KW - Polycarboxylate ether (PCE), PY - 2018 AN - OPUS4-46980 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Emmerling, Franziska T1 - In-situ investigations of mechanochemical reactions N2 - Mechanochemistry is a fast and efficient method applicable for the synthesis of new organic[1], metal-organic[2], and inorganic[3] compounds. The direct monitoring of milling reactions is still challenging. The underlying reaction mechanisms remain often unclear. In the last years, have established a tandem in situ approach for investigating mechanochemical reactions using time-resolved in situ XRD coupled with Raman spectroscopy.[4] Here, we present an in situ coupling of synchrotron XRD, Raman spectroscopy, and thermography allowing the observation of mechanochemical reactions in real time.[5] Information on the crystalline, molecular, and temperature state of the materials during grinding could be collected. The chemical composition of the reaction mixture was found to be directly correlated with changes in the temperature profile of the reaction. Furthermore, the presented setup allows the detection of crystalline, amorphous, eutectic as well as liquid intermediates. The resulting deeper kinetic and thermodynamic understanding of milling processes is the key for future optimization of mechanochemical syntheses. T2 - ACS Conference Boston CY - Boston, USA DA - 19.08.2018 KW - Mechanochemistry KW - In situ KW - Kinetic PY - 2018 AN - OPUS4-46989 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Emmerling, Franziska T1 - New insights in mechanochemical processes using real-time in situ investigations N2 - Mechanochemistry is increasingly used for synthesizing various materials including metal organic compounds and cocrystals. Although this synthesis approach offers a fast and pure synthesis in high yields, there is a lack in understanding the mechanisms of milling reactions. The necessary data can only be obtained in in situ experiments, which were only recently established for milling reactions. Herein, we present a novel setup enabling a combined in situ investigation of mechanochemical reactions using synchrotron XRD and Raman spectroscopy. T2 - ECM31 CY - Oviedo, Spain DA - 18.08.2018 KW - Mechanochemistry KW - In situ PY - 2018 AN - OPUS4-46990 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Emmerling, Franziska T1 - In situ investigations of mechanochemical reactions N2 - Presentation of the recent results in the context of in situ investigations of reactions using X-ray diffraction. T2 - Germany Brazil Workshop: New light on mechanisms of chemical reactions CY - Kiel, Germany DA - 31.07.2018 KW - In situ KW - XRD PY - 2018 AN - OPUS4-46991 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Emmerling, Franziska T1 - In situ studies of mechanochemistry: a force of synthesis N2 - Recent results in the field of mechanisms and kinetics of mechanochemical reactions. T2 - Seminar GFZ Potsdam CY - Postdam, Germany DA - 28.03.2018 KW - In situ KW - XRD KW - Rietveld PY - 2018 AN - OPUS4-46992 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Emmerling, Franziska T1 - Synchrotron X-ray Investigations N2 - Summary of the techniques available at the BAMline and µspot BEamline. T2 - Workshop Humboldt University and Hebrew University of Jerusalem CY - Berlin, Germany DA - 09.10.2018 KW - In situ KW - XRD PY - 2018 AN - OPUS4-46993 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Emmerling, Franziska T1 - New insights in mechanochemical processes using real-time In situ investigations N2 - Mechanochemistry is a fast and efficient method applicable for the synthesis of new organic[1], metal-organic[2], and inorganic[3] compounds. The direct monitoring of milling reactions is still challenging. The underlying reaction mechanisms remain often unclear. In the last years, have established a tandem in situ approach for investigating mechanochemical reactions using time-resolved in situ XRD coupled with Raman spectroscopy.[4] Here, we present an in situ coupling of synchrotron XRD, Raman spectroscopy, and thermography allowing the observation of mechanochemical reactions in real time.[5] Information on the crystalline, molecular, and temperature state of the materials during grinding could be collected. The chemical composition of the reaction mixture was found to be directly correlated with changes in the temperature profile of the reaction. Furthermore, the presented setup allows the detection of crystalline, amorphous, eutectic as well as liquid intermediates. The resulting deeper kinetic and thermodynamic understanding of milling processes is the key for future optimization of mechanochemical syntheses. T2 - 5th International Conference "Fundamental Bases of Mechanochemical Technologies" CY - Novosibirsk, Russia DA - 25.06.2018 KW - Mechanochemistry KW - XRD KW - Kinetic KW - Coordination polymers PY - 2018 AN - OPUS4-46994 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -