TY - CONF A1 - Maack, Stefan A1 - Küttenbaum, Stefan A1 - Niederleithinger, Ernst T1 - Practical procedure for the precise measurement of geometrical tendon positions in concrete with ultrasonic echo N2 - Existing concrete structures were usually designed for lifetimes of several decades. The current and urgently required efforts to increase sustainability and protect the environment will likely result in extended service lives up to 100 years. To achieve such objectives, it is required to assess structures over their entire lifecycles. Non-destructive testing (NDT) methods can reliably support the assessment of existing structures during the construction, operational, and decommissioning phases. One of the most important and safety-relevant components of a prestressed concrete structure are the tendons. NDT methods such as the ultrasonic echo method are suitable for both the detection and the localization of the tendons, i.e., the measurement of their geometrical position inside the component. The uniqueness of structures, concrete heterogeneity, and varying amounts of secondary components such as the reinforcement represent obstacles in the application of these methods in practice. The aim of this contribution is to demonstrate a practicable procedure, that can be used in the field to determine the parameters required for the measuring data analysis without extensive knowledge about the investigated components. For this purpose, a polyamide reference specimen is used to show which steps are required to obtain reliable imaging information on the position of tendons from the measurement data. The procedure is then demonstrated on a concrete test specimen that covers various relevant and practice-oriented test scenarios, such as varying tendon depths and component thicknesses. T2 - International Conference on Concrete Repair, Rehabilitation and Retrofitting (ICCRRR 2022) CY - Cape Town, South Africa DA - 03.10.2022 KW - Validation KW - Non-destructive testing KW - Ultrasonic KW - Reconstruction KW - Concrete KW - Tendon duct PY - 2022 AN - OPUS4-55999 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Küttenbaum, Stefan A1 - Taffe, A. T1 - Imaging of results in NDT-CE: Strength and limitations in the use of Radar vs. Ultrasonic Echo N2 - Presentation on behalf of the co-author specified in BAM-Publica. Study on capabilities of volume methods (GPR, Ultrasonic Echo) regarding lateral and depth localisation of reinforcement and tendons in concrete components. Varied boundary conditions: spacing and diameter of both the near surface rebars of the mesh, and the reflectors of interest, as well as component thickness and concrete cover. Please find corresponding references on slide 2. T2 - 6th International Conference on Concrete Repair, Rehabilitation and Retrofitting (ICCRRR2022) CY - Cape Town, South Africa DA - 03.10.2022 KW - Reinforcement KW - Tendon duct KW - Concrete KW - NDT KW - Localisation PY - 2022 AN - OPUS4-55987 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wilsch, Gerd A1 - Völker, Tobias A1 - Günther, Tobias T1 - Condition assessment of concrete infrastructure with LIBS N2 - Due to the ageing of the infrastructure facilities, a reliable assessment of the condition of concrete structures is of great interest to plan timely and appropriate measures. In concrete structures, pittingcorrosion of the reinforcement is the predominant deterioration mechanism affecting serviceability and eventually structural performance. Determination of quantitative chloride ingress is not only necessary to obtain valuable information on the current condition of a structure, but the data obtained can also be used to predict future developments and the associated risks. An overview of the progress and the possibilities of the application of laser-induced breakdown spectroscopy for concrete analysis in daily civil engineering practice is given. High-resolution 2D measurements of drill cores to determine the penetration of harmful species into concrete is presented. Furthermore, the application of a mobile LIBS system in a parking garage is shown. The system consists of a diode-pumped low-energy laser (3 mJ, 1.5 ns, 100 Hz) and a compact NIR spectrometer. A scanner allows two-dimensional element mapping. Progress towards the establishment of LIBS in a leaflet for the analysis of chlorine ingress into concrete in civil engineering is presented. T2 - Euro-Mediterranean Symposium on Laser-Induced Breakdown Spectroscopy 2021 CY - Gijón, Spain DA - 29.11.2021 KW - LIBS KW - Concrete KW - Chlorine KW - Civil engineering PY - 2021 AN - OPUS4-56536 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Strangfeld, Christoph T1 - TC 286-GDP STAR - chapter: Modelling moisture transport in porous media N2 - The current content and structure of the chapter "Modelling moisture transport in porous media" of the state of the art report is presented. T2 - RILEM Spring Convention 2021 CY - Online meeting DA - 06.04.2021 KW - Moisture transport KW - Porous media KW - Modelling mass transfer KW - Gas diffusion KW - Concrete PY - 2021 AN - OPUS4-52405 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Niederleithinger, Ernst A1 - Wang, Xin A1 - Epple, Niklas A1 - Schumacher, T. A1 - Ahmend, S. A1 - Klikowicz, P. T1 - Ultrasonic coda wave monitoring of concrete structures: First experiences with large-scale experiments and real structures N2 - Ultrasonic monitoring, making use of the sensitivity of the coda of repeated transmission meas-urements to changes in stress, temperature, moisture, as well as localized or distributed damage, has gotten at-tention in structural health monitoring (SHM) research recently. Analysis methods such as coda wave inter-ferometry (CWI), including its nonlinear extension, have been shown to be able to measure ultrasonic wave velocity changes with a 1∙10-5 resolution, while indicators such as cross-correlation or cross-coherence have been used to distinguish between reversible and irreversible changes. Several small- and large-scale laboratory experiments have demonstrated that stress changes in structures can be captured or damage detected in a very early stage. The use of this technique for pre-warning before failure are currently under investigation, as well as detailed research on the physical causes and the connection between ultrasonic wave properties and materi-al/structural behavior. Recently, several of large-scale laboratory and real structures have been instrumented with embedded ultrasonic transducers to gather experience and evidence on how to use this technology in re-al-world applications. Preliminary results from installations on a new bridge, an existing bridge, a tunnel, a la-boratory earthquake test as well as a historic stadium in Germany, Poland, and the United States, respectively, are presented. Environmental influences (mainly temperature) and validation by load tests are discussed. T2 - IABMAS 2020 CY - Online meeting DA - 11.04.2021 KW - Ultrasound KW - Monitoring KW - Coda wave interferometry KW - Concrete KW - Bridges PY - 2021 AN - OPUS4-54167 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Niederleithinger, Ernst T1 - NDT CE from simple detectors to deep insight and quantitative structural assessment N2 - Non-destructive testing methods are available in civil engineering for decades to estimate concrete properties or to detect flaws and features. But recently we have seen the dawn of next-generation tools, methods, and applications. Some of them will be discussed in the web talk: – Better tools: deeper and more detailed insight into concrete constructions – Better methods: Quantitative use in probabilistic structural assessment – Better rules: Towards standardization, qualification, and certification – Better application: Digitalization and Elimination of the boundaries between NDT, SHM, and BIM: NDT-CE 4.0 Not enough? I might show, how cosmic rays might become a game-changer in NDT-CE. This live webinar record was provided by https://eurostruct.org T2 - Eurostruct Live Talk CY - Online meeting DA - 12.05.2021 KW - NDT-CE KW - Concrete KW - Ultrasound KW - Muons PY - 2021 AN - OPUS4-54158 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Küttenbaum, Stefan A1 - Braml, T. A1 - Taffe, A. A1 - Maack, Stefan T1 - From uncertainty in measurement to certainty in bridge assessment N2 - In this contribution, an approach is outlined to process non-destructively gath-ered measurement data in a comparable way in order to include the measured information in probabilistic reliability assessments of existing structures. An es-sential part is the calculation of measurement uncertainties. The effect of incor-porating evaluated NDT-results is demonstrated by means of a prestressed con-crete bridge and GPR measurements conducted on this bridge as a case-study. The bridge is assessed regarding SLS Decompression using the NDT-results. T2 - 1st Conference of the European Association on Quality Control of Bridges and Structures – EUROSTRUCT2021 CY - Padova, Italy DA - 29.08.2021 KW - Reliability KW - Assessment KW - Existing structures KW - NDT KW - Concrete PY - 2021 AN - OPUS4-53173 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Völker, Christoph A1 - Moreno Torres, Benjami A1 - Kruschwitz, Sabine T1 - Understanding distributed data – a semantic web approach for data based analysis of NDT data in civil engineering N2 - In the field of non-destructive testing (NDT) in civil engineering, a large number of measurement data are collected. Although they serve as a basis for scientific analyses, there is still no uniform representation of the data. An analysis of various distributed data sets across different test objects is therefore only possible with high manual effort. We present a system architecture for an integrated data management of distributed data sets based on Semantic Web technologies. The approach is essentially based on a mathematical model - the so-called ontology - which represents the knowledge of our domain NDT. The ontology developed by us is linked to data sources and thus describes the semantic meaning of the data. Furthermore, the ontology acts as a central concept for database access. Non-domain data sources can be easily integrated by linking them to the NDT construction ontology and are directly available for generic use in the sense of digitization. Based on an extensive literature research, we outline the possibilities that this offers for NDT in civil engineering, such as computer-aided sorting, analysis, recognition and explanation of relationships (explainable AI) for several million measurement data. The expected benefits of this approach of knowledge representation and data access for the NDT community are an expansion of knowledge through data exchange in research (interoperability), the scientific exploitation of large existing data sources with data-based methods (such as image recognition, measurement uncertainty calculations, factor analysis, material characterization) and finally a simplified exchange of NDT data with engineering models and thus with the construction industry. Ontologies are already the core of numerous intelligent systems such as building information modeling or research databases. This contribution gives an overview of the range of tools we are currently creating to communicate with them. T2 - EGU General Assembly 2020 CY - Online meeting DA - 04.05.2020 KW - Ontology KW - NDT KW - Concrete KW - Onotology KW - Semantic Data Management KW - Reproducible Science PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-518076 DO - https://doi.org/10.5194/egusphere-egu2020-19332 AN - OPUS4-51807 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Niederleithinger, Ernst A1 - Abraham, O. A1 - Larose, E. T1 - A review on ultrasonic monitoring of concrete: coda wave interferometry and beyond N2 - The propagation of ultrasonic waves in concrete is affected by its micro- and macro-structure, geometry and properties as well as external influences as stress, temperature or moisture. In addition, age and degradation have a strong influence. Therefore, Ultrasound has been used to monitor concrete samples and structures since decades. However, early applications using conventional techniques as time-of flight or changes in amplitudes have been limited to detect changes in a late stage close to serviceability or ultimate load states. Around 2000, several new, more sensitive techniques adopted from geophysics or other field of material sciences have been introduced to research in ultrasonic monitoring of concrete. The most discussed methodologies are coda wave interferometry, a technique which allows to detect very subtle changes from repeated ultrasonic measurements. Nonlinear acoustic techniques help to identify e. g. cracks even in an inhomogeneous background. Both techniques can be combined. This paper reviews methods and results achieved so far on the laboratory scale and with full scale models the directions for future research and application is given as well. T2 - QNDE 2019 CY - Portland, OR, USA DA - 14.07.2019 KW - Ultrasound KW - Coda wave interferometry KW - Concrete KW - Nonlinear KW - Monitoring PY - 2019 AN - OPUS4-48688 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wilsch, Gerd A1 - Günther, Tobias A1 - Völker, Tobias T1 - Fast quantitave chemical analysis of concrete using LIBS N2 - Overview of application of LIBS for the fast and automated quantitative chemical analysis of concrete. T2 - NDT-E Workshop CY - Berlin, Germany DA - 12.06.2019 KW - Sulphate KW - LIBS KW - Concrete KW - Damage KW - Chloride KW - Mapping PY - 2019 AN - OPUS4-51704 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wilsch, Gerd A1 - Günther, Tobias A1 - Völker, Tobias T1 - LIBS for the analysis of concrete N2 - Special features and examples of using LIBS on concrete. T2 - Workshop on tandem LIBS/LA-ICP-MS CY - Berlin, Germany DA - 18.11.2019 KW - Mobile system KW - LIBS KW - Concrete KW - Damage KW - Chloride KW - Sulphate KW - Mapping PY - 2019 AN - OPUS4-51710 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wilsch, Gerd A1 - Günther, Tobias A1 - Völker, Tobias T1 - Mobile LIBS system for evaluation of concrete structures on site N2 - Features and application of a mobile LIBS system for evaluation of concrete structures on-site. T2 - EMSLIBS 2019 CY - Brno, Czech Republic DA - 08.09.2019 KW - On-site KW - LIBS KW - Concrete KW - Mapping KW - Evaluation PY - 2019 AN - OPUS4-51711 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Niederleithinger, Ernst T1 - Ultrasonic monitoring of structural concrete elements N2 - Ultrasonic transmission measurements are used to monitor concrete elements mostly on a laboratory scale since decades. Recently, coda wave interferometry, a technique adapted from seismology, has been introduced to civil engineering experiments. It can be used to reveal subtle changes in concrete samples and even large construction elements without having a transducer directly at the location where the change is taking place. The methodology works best with embedded transducers to avoid coupling issues or excessive environmental influence. These transducers can be used for newly built and existing structures. Recently, large concrete beams have been equipped with a network of transducers and loaded until failure. Using code wave interferometry, it was possible to visualize stress fields and damaged areas. This paper gives an overview of the state of the art, recent results achieved at BAM and a task list for further results and development. T2 - International Conference on Sustainable Materials, Systems and Structures (SMSS 2019) CY - Rovinj, Croatia DA - 20.03.2019 KW - Concrete KW - Ultrasound KW - Monitoring KW - coda wave interferometry PY - 2019 AN - OPUS4-47676 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Niederleithinger, Ernst T1 - Seismic methods to test concrete strcutures N2 - Seismic methods are increasingly used to improve ultrasonic imaging and monitoring of concrete. At BAM, we are research mainly the use of Reverse Time Migration to get better images from ultrasonic echo data of thick, complex concrete structures. Coda wave interferometry is used to detect subtle changes in concrete constructions, e. g. using embedded ultasonic transducers. T2 - Geophysikalisches Seminar der Universität Potsdam CY - Potsdam,. Germany DA - 25.01.2019 KW - Concrete KW - Ultrasound KW - Monitoring KW - Imaging PY - 2019 AN - OPUS4-47302 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Niederleithinger, Ernst T1 - Ultrasonic methods for concrete: To boldly see, what we have not seen before N2 - This keynote talk at NDE 2019 discusses specific progress in ultrasonic testing of concrete structures. A deep penetration instrument (LAUS) is introduced as well as advanced imaging methods adopted from geophysics and new approaches to ultrasonic monitoring. T2 - NDE 2019 CY - Bangalore, India DA - 05.12.2019 KW - NDT KW - Concrete KW - Ultrasound KW - Imaging KW - Monitoring PY - 2019 AN - OPUS4-50170 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Niederleithinger, Ernst T1 - Ultrasound: From Imaging to Monitoring N2 - Review of ultrasonic echo imaging and ultrasonic monitoring techniques applied to concrete structures, especially bridges. Includes newest research results from BAM. T2 - Transport Research Board Annual Meeting, Workshop 1647 CY - Washington, DC, USA DA - 6.1.2018 KW - Ultrasound KW - Imaging KW - Monitoring KW - Concrete KW - Bridges PY - 2018 AN - OPUS4-44587 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Strangfeld, Christoph T1 - Moisture testing and mapping N2 - Non-destructive testing of moisture in building materials T2 - NDT&E Advanced Training Workshop CY - Berlin, Germany DA - 27.06.2018 KW - Building materials KW - Concrete KW - Moisture measurement PY - 2018 AN - OPUS4-45348 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Coelho Lima, Isabela A1 - Niederleithinger, Ernst A1 - Grohmann, Maria T1 - Alternative imaging conditions for reverse time migration N2 - Ultrasound echo is a widely used NDT technique for determining the internal geometry of structures. Reverse-time migration (RTM) has been recently introduced to NDT applications, as an imaging method for ultrasound data, to overcome some of the limitations (e.g. imaging steeply dipping reflector) experienced by the Synthetic Aperture Focusing Technique (SAFT), the most commonly used imaging algorithm for these measurements. The standard implementation of RTM also experiences some drawbacks caused by its imaging condition, which is based on the zero-lag of the cross-correlation between source and receiver wavefields and generates high-amplitude low-frequency artifacts. Three alternative imaging conditions, developed for seismic data applications, were tested for their ability to provide better images than the standard cross-correlation: illumination compensation, deconvolution and wavefield decomposition. A polyamide specimen was chosen for the simulation of a synthetic experiment and for real data acquisition. The migrations of both synthetic and real data were performed with the software Madagascar. The illumination imaging condition was able to reduce the low-frequency noise and had a good performance in terms of computing time. The deconvolution improved the resolution in the synthetic tests, but did not showed such benefit for the real experiments. Finally, as for the wavefield decomposition, although it presented some advantages in terms of attenuating the low-frequency noise and some unwanted reflections, it was not able to image the internal structure of the polyamide as well as the cross-correlation did. Suggestions on how to improve the cost-effectiveness of the implementation of the deconvolution and wavefield decomposition were presented, as well as possible investigations that could be carried out in the future, in order to obtain better results with those two imaging conditions. T2 - DGZfP Jahrestagung 2018 CY - Leipzig, Germany DA - 07.05.2018 KW - Ultrasound KW - Reverse time migration KW - Imaging condition KW - Concrete PY - 2018 AN - OPUS4-44873 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Niederleithinger, Ernst A1 - Wang, Xin A1 - Mierschke, Vivien A1 - Bertschat, Anja Sophie T1 - Concepts from seismic interferometry transferred to sonic and ultrasonic concrete inspection and monitoring N2 - Seismic interferometry (SI) deals either with the sensible detection of changes in the subsurface or with the reconstruction of virtual signals between two receivers by crosscorrelation of signals from diffuse sources. These concepts can be applied in NDT in civil engineering for various purposes, e. g. to detect changes in bridges. Here it is demonstrated using data from a reference structure on our test site. Practical applications can be expected in the very near future. T2 - European Conference on Non-Destructive Testing (ECNDT) CY - Gothenburg, Sweden DA - 11.6.2018 KW - Ultrasound KW - Monitoring KW - Concrete KW - Interferometry KW - Coda PY - 2018 AN - OPUS4-46844 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wilsch, Gerd A1 - Gottlieb, Cassian A1 - Günther, Tobias A1 - Millar, Steven T1 - Fast quantitave chemical analysis of concrete using LIBS N2 - Overview about LIBS applications for investigation of building materials. T2 - NDT&E Advanced Training Workshop CY - Berlin, Germany DA - 27.06.2018 KW - LIBS KW - Concrete KW - Damage processes KW - Chlorid KW - Sulfate KW - Alkalies PY - 2018 AN - OPUS4-46821 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wilsch, Gerd A1 - Gottlieb, Cassian A1 - Millar, Steven A1 - Günther, Tobias A1 - Sankat, Nina T1 - Application of LIBS for the chemical investigation of concrete infrastructure N2 - Concrete is often used in combination with steel as reinforced concrete. Environmental influences, especially the ingress of harmful ions in combination with the ingress of water, trigger different damage processes which reduce the designed lifetime of a structure. The ingress of chlorides from de-icing salt or sea water leads to corrosion of the reinforcement. Also the carbonation of the concrete may trigger the corrosion of the reinforcement. The ingress of alkalis from de-icing salts may cause the expansion of the amorphous silica aggregates (alkali-silica reaction) through formation of a swelling gel of calcium silicate hydrate if water is present. The ingress of sulfates may cause spalling of the concrete surface due to ettringite formation. BAM has developed the LIBS technique for automated laboratory use with high numbers of samples to investigate transport processes of harmful species (Cl-, CO2, SO42- and alkalis) in concrete. Information about ingress depth and the quantitative values are important to estimate the remaining lifetime of the infrastructure. To get information about the ingress depth, a core has to be taken and cut in the middle. The measurements are carried out at the cross section. The main advantages of LIBS are the direct measurement on the surface of the concrete, fast analysis (sample rate 100 Hz) with a spatial resolution of up to 100 µm, the consideration of the heterogeneity of the concrete. The possibility of automated measurements saves a lot of manpower and time. At the same time a 2D-evaluation provides information about hot spots of elemental concentration which may not be found by standard methods. Typical results of 2D investigation of concrete in laboratory will be presented. The performance is also demonstrated by examples for onsite applications using a mobile LIBS system. The road map to standardization is presented as well. T2 - 12th ECNDT CY - Gothenburg, Sweden DA - 11.06.2018 KW - LIBS KW - Concrete KW - Chloride KW - Sulfates KW - Heterogeneity PY - 2018 AN - OPUS4-46828 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wilsch, Gerd A1 - Gottlieb, Cassian A1 - Günther, Tobias A1 - Millar, Steven A1 - Sankat, Nina T1 - Application of LIBS for the chemical investigation of concrete infrastructure N2 - Overview about LIBS applications in civil engineering T2 - Structural Faults + Repair-2018 CY - Edinburgh, UK DA - 15.05.2018 KW - On-site measurements KW - LIBS KW - Concrete KW - Chloride KW - Sulfates PY - 2018 AN - OPUS4-46948 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sharma, Govind A1 - Kind, Thomas T1 - Distinction of tendon ducts and rebars by GPR reflection signal patterns N2 - We investigated the possibility of surrounding waves along with perimeter of large diameter tendon ducts during ground penetrating radar (GPR) testing of concrete structures. The surrounding waves influence the primary reflection from tendon duct and alter the phase as well as amplitude of signal depending on the diameter of the tendon duct. This phenomenon was studied in detail by conducting several simulations using a commercial software Reflexw®. Finite Difference Time Domain method was adopted to analyze reflection patterns from objects of various diameters located at different depths in concrete media. The proposed methodology will be useful in qualitative assessment of size of metallic objects greater than a diameter of 6 cm. In general, the identification of large diameter tendon ducts in a civil structure is carried out by prior knowledge of the civil plan and its diagonal appearance to smaller diameter object mesh. The proposed methodology will enhance the confidence in identification of the larger diameter tendon ducts even if the civil plan is not known accurately. T2 - 17th International Conference on Ground Penetrating Radar CY - Rapperswil, Switzerland DA - 18.06.2018 KW - Ground penetrating radar KW - Rebar KW - Concrete PY - 2018 AN - OPUS4-46246 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wilsch, Gerd A1 - Gottlieb, Cassian A1 - Günther, Tobias A1 - Millar, Steven A1 - Völker, Tobias T1 - Application of LIBS for the chemical investigation of concrete infrastructure N2 - The majority of the built infrastructure is made of concrete, which is a multiphase system made of cement, aggregates, water and pores. Concrete is often used in combination with steel as reinforced concrete. Environmental influences, especially the ingress of harmful ions in combination with the ingress of water, trigger different damage processes which reduce the designed lifetime of a structure. The ingress of chlorides from de-icing salt or sea water leads to corrosion of the reinforcement. Also the carbonation of the concrete may trigger the corrosion of the reinforcement. The ingress of alkalis from de-icing salts may cause the expansion of the amorphous silica aggregates (alkali-silica reaction) through formation of a swelling gel of calcium silicate hydrate if water is present. The ingress of sulfates may cause spalling of the concrete surface due to ettringite formation. For the standard procedure in civil engineering cores are taken, cut in slices, grinded and the obtained homogenized powder is solved in acid and investigated by standard procedures. BAM has developed the LIBS technique for the 2D evaluation of the chemical composition of concrete [1-11]. The technique is established for automated laboratory use with high numbers of samples to investigate transport processes of harmful species (Cl-, CO2, SO42- and alkalis) in concrete. Information about ingress depth and the quantitative values are important to estimate the remaining lifetime of the infrastructure. LIBS is a surface technique. To get information about the ingress depth, a core has to be taken and cut in the middle. The measurements are carried out at the cross section. The main advantages of LIBS are the direct measurement on the surface of the concrete, fast analysis (sample rate 100 Hz) with a spatial resolution of up to 100 µm, the consideration of the heterogeneity of the concrete and the possibility of automated measurements which save a lot of manpower and time. As an example the investigation of ingress profiles for standard diffusion and migration tests in civil engineering takes hours in comparison to just a few minutes using LIBS. At the same time a 2D-evaluation provides information about hot spots of elemental concentration which may not be found by standard methods. Ingress of chlorides due to a crack in a repair mortar. Left: Photo of the cross section of a concrete core and the surface investigated by LIBS (area 70 mm x 70 mm). Right: Color coded chlorine intensity on the cross section of a concrete core, dark red represents high chlorine content. The state of the art of LIBS technique for applications in civil engineering will be presented, including typical results of 2D investigation of concrete in laboratory. The performance is also demonstrated by examples for onsite applications using a mobile LIBS system. The road map to standardization is presented as well. T2 - ICCRRR2018, 5th international conference on Concrete Repair, Rehabilitation and Retrofitting CY - Cape Town, South Africa DA - 19.11.2018 KW - LIBS KW - Chlorid KW - Alkalies KW - Concrete KW - Damage PY - 2018 AN - OPUS4-46781 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Niederleithinger, Ernst T1 - Progress in non-destructive testing and monitoring of concrete N2 - Überblicksvortrag zu Aktivitäten von BAM-8.2 T2 - Seminar der Universität Lund, Fakultät, Technische Geologie und NDT CY - Lund, Sweden DA - 8.3.2018 KW - Concrete KW - Non-Destructive Testing PY - 2018 AN - OPUS4-44575 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Niederleithinger, Ernst A1 - Wiggenhauser, Herbert T1 - The LAUS: First applications of a new system for ultrasonic imaging of very concrete structures N2 - The LAUS (Large Aperture Ultrasonic System) has been developed to image very thick concrete structures, which are not accessible for commercial systems. The device and the corresponding software is the result of joint research of BAM, an ultrasonic instrument manufacturer and University of Kassel, Germany. It consists of 12 separate arrays of 32 point-contact shear wave transducers each, which can be deployed in flexible configurations. Each array is combined with battery and transmitter, receiver and wireless communication electronics. Three case histories are presented. First the system was deployed on a 5-m thick heavily reinforced foundation slab. The reflection of the slab’s bottom was imaged clearly. In addition, a multiple reflection was registered, thus giving hope that even thicker elements might be imaged by the instrument. Second, the LAUS was used to investigate a massive bridge girder where a heavy rainstorm during concreting had led to imperfections that were visible after removing the formwork was removed. The LAUS could image tendon ducts in 1.8m depth and the backwall closely behind them. Some limited areas showed blurred reflections and were checked by drill holes; these areas were affected by diffuse damage which could be repaired by injections. Third, a large retaining wall was checked for thickness. Meanwhile, the LAUS has been used in underground waste deposits (nuclear and other) for quality assurance of sealing plugs. A confirmed penetration depth of about 7 m has been reached. T2 - ASNT SMT/NDT-CE 2018 CY - New Brunswick, NJ, USA DA - 27.8.2018 KW - LAUS KW - Ultrasound KW - Imaging KW - Concrete PY - 2018 AN - OPUS4-45828 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Niederleithinger, Ernst T1 - Non-destructive Evaluation for Nuclear Power Plant concrete infrastructure N2 - The ageing and decommissioning of nuclear concrete infrastructure (e. g. safety containments) as well as the building and closure of waste repositories gives new challenges to non-destructive testing. For example, the quality assurance of very thick concrete structures is beyond the limitations of commercial ultrasonic instrumentation. The presentation introduces typical testing tasks and the application of state of the art NDT techniques. In addition, it describes some new developments in ultrasonic testing and monitoring. Specifically, the application of the unique deep penetration system LAUS is shown. Ultrasonic monitoring using embedded transducers to check for subtle and sudden changes in the material is introduced as well. T2 - Aalto University Special Guest Seminar CY - Espoo, Finland DA - 25.10.2018 KW - Ultrasound KW - Concrete KW - Nuclear PY - 2018 AN - OPUS4-46425 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maierhofer, Christiane A1 - Krankenhagen, Rainer A1 - Altenburg, Simon A1 - Röllig, Mathias A1 - Myrach, Philipp T1 - Passive and active thermography applied to buildings and cultural heritage - Cracks and protection layers N2 - Artificial and natural cracks have been investigated with active and passive thermography. For the determination of the thickness of protection layers on concrete, an active thermography method has been developed. T2 - Short Courses of the QIRT 2018 Conference CY - Berlin, Germany DA - 25.6.2018 KW - Active themrography KW - Passive thermography KW - Cracks KW - Concrete PY - 2018 AN - OPUS4-45456 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Küttenbaum, Stefan A1 - Taffe, A. A1 - Braml, T. A1 - Maack, Stefan T1 - Reliability assessment of existing bridges based on NDT-results N2 - The non-destructive testing methods available for civil engineering (NDT-CE) enable the measurements of quantitative parameters, which realistically describe the characteristics of existing buildings. In the past, methods for quality evaluation and concepts for validation expanded into NDT-CE to improve the objectivity of measured data. Thereby, a metrological foundation was developed to collect statistically sound and structurally relevant information about the inner construction of structures without destructive interventions. More recently, the demand for recalculations of structural safety was identified. This paper summarizes a basic research study on structural analyses of bridges in combination with NDT. The aim is to use measurement data of nondestructive testing methods as stochastic quantities in static calculations. Therefore, a methodical interface between the guide to the expression of uncertainty in measurement and probabilistic approximation procedures (e.g. FORM) has been proven to be suitable. The motivation is to relate the scientific approach of the structural analysis with real information coming from existing structures and not with those found in the literature. A case study about the probabilistic bending proof of a reinforced concrete bridge with statistically verified data from ultrasonic measurements shows that the measuring results fulfil the requirements concerning precision, trueness, objectivity and reliability. T2 - 5th ICCRRR 2018 - International Conference on Concrete Repair, Rehabilitation and Retrofitting CY - Cape Town, South Africa DA - 19.11.2018 KW - NDT KW - Concrete KW - Stochastic model KW - Reassessment KW - Reliability PY - 2018 AN - OPUS4-46768 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Völker, Christoph A1 - Srinivasan, P. T1 - Visualization of automated multi sensor NDT assessment of concrete structures N2 - This talk demonstrates the results of the IGSTC-project entitled "NDT-Data Fusion". Project approach: Nondestructive testing (NDT) of concrete buildings allows to coordinate efficient repair measures. Multi-sensor platforms collect large data sets. Nevertheless, data analysis is typically performed manually. Data Fusion uses the full potential of a multi-sensory data set in order to: improve information quality (reliability, robustness, accuracy, clarity, completeness) and enables automated algorithm based data analysis. We present the project achievements, namely: - Development of building scanner system for multisensory NDT - Laboratory multi sensor investigations - Development of data fusion concept for honeycombing and pitting corrosion - Field testing T2 - IGSTC-Partners Meeting 2017 CY - Jodhpur, India DA - 22.10.2017 KW - Machine learning KW - Data fusion KW - NDT KW - Concrete KW - Corrosion KW - Honeycombs PY - 2017 AN - OPUS4-44097 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Völker, Christoph T1 - Data fusion for non-destructive testing N2 - This talk introduces the "mechanisms" behind data fusion and demonstrates how to effectively use them for NDT-data. Common fusion strategies are introduced to explain what is required to enter (publishing-) practice. T2 - NDE2017 Pre-Conference Workshop CY - Chennai, India DA - 12.12.2017 KW - Data fusion KW - NDT KW - Concrete KW - Validation KW - Machine learning PY - 2017 AN - OPUS4-44100 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Völker, Christoph A1 - Kruschwitz, Sabine A1 - Ebell, Gino T1 - A machine-learning based data fusion approach for improved corrosion damage monitoring N2 - Half-cell potential mapping (HP) is the most popular nondestructive test (NDT)-method for the localization of corrosion damage in concrete. It is generally recognized, that HP is prone to the environmental factors that arise from salt induced deterioration, such as varying moisture and chloride gradients. Additional NDT-methods are capable to determine distinctive areas, but cannot yet be used to estimate more accurate testing results. We introduce a supervised machine learning (SML) based approach for data fusion to make use of the additional sensor information. SML are methods that explore relations between different (sensor) data from predefined data labels. We use a simple linear classifier named logistic regression to distinguish defect and intact areas. The test performance improves drastically compared to the best single method, HP. In order to generate representative, labeled data we conducted a comprehensive experiment that simulates the deterioration-cycle of a chloride-exposed building part in the lab. Our data set consist of 18 measurement campaigns, each containing HP-, ground-penetrating-radar-, microwave-moisture-, and Wenner-resistivity-data. We detail the challenges that arise with a data driven approach in NDT and how we addressed them. T2 - NDE2017 CY - Chennai, India DA - 14.12.2017 KW - Data fusion KW - NDT KW - Concrete KW - Corrosion KW - Machine learning PY - 2017 AN - OPUS4-44101 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Adão, Filipe Jorge Santos Ferreira A1 - Helmerich, Rosemarie A1 - Voigt, Gerrit A1 - Moldenhauer, Laura A1 - Neumann, Patrick P. T1 - Humidity monitoring in concrete using Bluetooth Low Energy sensors N2 - The vulnerability of low quality concrete to changing weather conditions is well known. The constant exposure to temperature changes, biological activity, and humidity ends up in damage to buildings and structures which contain this material. It is therefore necessary to take preventive measures to control the extent of the damage done by weathering and possible penetration of adverse chemicals into structures which need public safety. The Federal Institute for Materials Research and Testing (BAM), in cooperation with the small enterprise LinTech GmbH, is working on a project to monitor humidity changes in concrete by analyzing the changes in signal strength (RSSI) from Bluetooth Low Energy sensors. In this paper, we show results which demonstrate the influence of changing water content in concrete on the received RSSI. We observed that as water content in concrete decreases, the received RSSI improves. However, the damping effect is not linearly proportional to water content, rather exponentially proportional. This suggests that changes in the received signal strength are more easily observed when water content in concrete is higher. Finally, we reconstructed a RSSI distribution map using computed tomography T2 - SMAR 2017 CY - Zurich, Switzerland DA - 13.09.2017 KW - RSSI KW - Concrete KW - Water KW - Monitoring KW - Computed Tomography PY - 2017 AN - OPUS4-43599 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wilsch, Gerd A1 - Gottlieb, Cassian A1 - Günther, Tobias A1 - Millar, Steven A1 - Sankat, Nina T1 - Application of LIBS for the chemical investigation of concrete infrastructure N2 - The majority of the built infrastructure is made of concrete, which is a multiphase system made of cement, aggregates, water and pores (every year nearly 4 billion tons of cement are produced which is largest mass flow generated by mankind). Concrete is often used in combination with steel as reinforced concrete. Environmental influences, especially the ingress of harmful ions in combination with the ingress of water, trigger different damage processes which reduce the designed lifetime of a structure. The ingress of chlorides from de-icing salt or sea water leads to corrosion of the reinforcement. Also the carbonation of the concrete may trigger the corrosion of the reinforcement. The ingress of alkalis from de-icing salts may cause the expansion of the amorphous silica aggregates (alkali-silica reaction) through formation of a swelling gel of calcium silicate hydrate if water is present. The ingress of sulfates may cause spalling of the concrete surface due to ett-ringite formation. For the standard procedure in civil engineering cores are taken, cut in slices, grinded and the obtained homogenized powder is solved in acid and investigated by standard procedures. BAM has developed the LIBS technique for the 2D evaluation of the chemical composition of concrete [1-5]. The technique is established for automated laborato-ry use with high numbers of samples to investigate transport processes of harmful species (Cl-, CO2, SO42- and alkalis) in concrete. Information about ingress depth and the quantitative values are important to estimate the remaining lifetime of the infrastructure. LIBS is a surface technique. To get information about the ingress depth, a core has to be taken and cut in the middle. The measurements are carried out at the cross section. The main advantages of LIBS are the direct measure-ment on the surface of the concrete, fast analysis (sample rate 100 Hz) with a spatial resolution of up to 100 μm, the consideration of the heterogeneity of the concrete and the possibility of automated measurements which save a lot of man-power and time. As an example the investigation of ingress profiles for standard diffusion and migration tests in civil engi-neering takes hours in comparison to just a few minutes using LIBS. At the same time a 2D-evaluation provides information about hot spots of elemental concentration which may not be found by standard methods. The state of the art of LIBS technique for applications in civil engineering will be presented, including typical results of 2D investigation of concrete in laboratory. The performance is also demonstrated by examples for on-site applications using a mobile LIBS system. The road map to standardization is presented as well. T2 - 9th Euro-Mediterranean Symposium on LIBS / Colloquium Spectroscopicum Internationale XL CY - Pisa, Italy DA - 12.06.2017 KW - ASR KW - LIBS KW - Concrete KW - Chlorid KW - Carbonation PY - 2017 AN - OPUS4-43194 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sankat, Nina A1 - Gottlieb, Cassian A1 - Millar, Steven A1 - Günther, Tobias A1 - Wilsch, Gerd T1 - Analysis of concrete structures using Laser-Induced Breakdown Spectroscopy N2 - The Laser-Induced Breakdown Spectroscopy (LIBS) is a laser spectroscopic method which allows a time efficient, minor-destructive, chemical analysis of materials. In principle all elements on the periodic table can be simultaneously analysed by using LIBS, regardless of the state of aggregation. LIBS offers numerous applications in the field of civil engineering; most importantly the analysis of building materials. This work will focus on the evaluation of concrete structures and harmful substances which can penetrate the concrete. A variety of information can be collected through LIBS. Determining the concentration of harmful substances like chloride, sodium or sulphur, the examination of the carbonation depth and the distinction between varying layers of materials (e.g. aggregates, cement paste, metals, etc.) are possible applications. All this information can be provided through one LIBS measurement in the form of a high resolution 2D element map, with resolutions up to 0.1 mm x 0.1 mm. To scan a concrete surface only an optical access is needed. To create a depth profile of an intruding substance the extraction of a drill core is necessary. Onsite measurements via LIBS can be conducted by using a mobile version of the LIBS system. Through using calibration curves LIBS allows not only the qualitative but also quantitative analysis of element concentrations. All those prospects make LIBS a trendsetting method to secure the integrity of infrastructures in a sustainable manner. T2 - CoMS 2017 CY - Zadar, Croatia DA - 19.04.2017 KW - Testing method KW - LIBS KW - Concrete KW - Harmful substances PY - 2017 AN - OPUS4-42632 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Strangfeld, Christoph A1 - Johann, Sergej A1 - Bartholmai, Matthias T1 - RFID based sensors in civil engineering N2 - Damages in infrastructure due to moisture amount to billions of Euros every year. For a more predictive structural health monitoring in civil engineering, the detection and monitoring of hazardous moisture in steel reinforced concrete constructions is of high interest. The sensors have to be wireless, elsewise they weaken the concrete cover of the rebars. The lifetime of such constructions is normally decades, thus the sensors have to be battery-free and fully passive. Considering these requirements, passive RFID-based sensors are developed. Communication and energy supply are realized wireless via the electromagnetic field of a RFID transmitter. The passive RFID based sensors are embedded into the concrete to enable the monitoring of moisture transport in porous materials. Results of the hydration process are shown. T2 - RFID tomorrow & wireless IoT CY - Düsseldorf, Germany DA - 27.09.2017 KW - RFID based sensors KW - Moisture monitoring KW - Concrete KW - Embedded sensors PY - 2017 AN - OPUS4-42622 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Strangfeld, Christoph T1 - Moisture testing and mapping N2 - Discussion and presentation of different methods for moisture measurements in civil Engineering. T2 - NDT&E Advanced Training Workshop CY - Berlin, Germany DA - 05.07.2017 KW - Moisture measurement KW - Building materials KW - Concrete PY - 2017 AN - OPUS4-42623 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Voigt, Gerrit A1 - Helmerich, Rosemarie A1 - Adão, Filipe Jorge Santos Ferreira A1 - Rückschloss, M. T1 - Determining moisture in materials and IoT N2 - Knowing the state of the setting process of concrete in buildings or the moisture level of old walls can be crucial in determining further steps in the construction or restoration process. Small 2.4 GHz modules can be either embedded or applied on the surface to determine the moisture distribution in material. Common modules, that are based on the highly available Bluetooth Low Energy standard, emit electromagnetic waves, whose signal strength gets dampened by water molecules. This effect serves as the basis on determining the moisture level in material. We will show how to apply this method in a meshed sensor network for online monitoring. T2 - Fourth Conference on Smart Monitoring, Assessment and Rehabilitation of Civil Structures CY - Zurich, Switzerland DA - 13.09.2017 KW - Moisture KW - Concrete KW - Radio signals KW - Bluetooth PY - 2017 AN - OPUS4-41999 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Strangfeld, Christoph A1 - Kruschwitz, Sabine T1 - Validierung und Vergleich verschiedener Methoden zur Bestimmung von Flüssigwasser in Baustoffen N2 - Darstellung der aktuellen Feuchtemesstechnik im Bauwesen. Erklärung der Grundlagen über die Sorptionsisotherme und den Wasserdampfpartialdruck. Vorstellung der Ergebnisse der korrespondierenden relativen Luftfeuchtemessungen. T2 - Abteilungsseminar der Abteilung 8, BAM CY - BAM, Berlin, Germany DA - 06.11.2017 KW - Concrete KW - Material moisture KW - Moisture measurements KW - Moisture in civil engineering KW - Corresponding relative humidity PY - 2017 AN - OPUS4-42744 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gottlieb, Cassian A1 - Günther, Tobias A1 - Millar, Steven A1 - Sankat, Nina A1 - Wilsch, Gerd T1 - Influence of grain sizes on the quantification of libs measurements in concrete influence of grain sizes on the quantification of libs measurements in concrete N2 - Concrete is a multiphase material made of cement, aggregates and water. The heterogeneity of concrete is a result of mixing aggregates (grain size between 0.125 mm to 32 mm) and cement (grain size < 0.04 mm) together. There are always aggregates with a grain size below 0.125 mm (flour grains) therefore the cement matrix is always a mixture of these small particles. Different grain size distributions by making concrete are important to ensure the needed density and com-pressive strength. In order to estimate the remaining lifetime of concrete structures the quantification of element concentra-tions of alkali and chlorides regarding to the cement matrix only (1/3 of the total mass), is a major concern in civil engineer-ing. Due to two-dimensional scanning with LIBS the coarse aggregates can be evaluated and excluded from the analysis. In the case of particles (flour grains and cement) smaller than the laser spot size, the microscopic hetero-geneity influences the laser-plasma interaction and has therefore an impact on the results. In this study the influence of the micro-heterogeneity and the impact on the laser-material interaction is examined. The effect of changing ratios between cement particles and aggregate particles in the laser-induced plasma has been analyzed (see figure 1, right). Therefore, different samples with defined grain sizes are prepared and the obtained distributions were analyzed with x-ray diffraction (XRD). For the LIBS measurements, an automated system that operates with a low energy NdCr:YAG laser (pulse energy of 3 mJ, a wavelength of 1064 nm, a pulse width of 1.5 ns, a repetition rate of 100 Hz) and a NIR Czerny-Turner spectrometer has been used. T2 - EMSLIBS Konferenz 2017 CY - Pisa, Italy DA - 12.06.2017 KW - Grain size KW - LIBS KW - Concrete PY - 2017 AN - OPUS4-40940 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Niederleithinger, Ernst T1 - Seismic methods for ultrasonic testing in Civil Engineering N2 - Invited presentation on the use of seismic imaging and monitoring technologies in civil engineering T2 - Geophysikalisches Kolloquium der ETH CY - Zürich, Switzerland DA - 17.03.2017 KW - Seimic KW - Ultrasound KW - Monitoring KW - Imaging KW - Concrete PY - 2017 AN - OPUS4-39428 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Niederleithinger, Ernst T1 - Detecting subtle changes in concrete with coda wave interferometry N2 - Subtle changes in concrete, caused by stress, temperature or deterioration can be detected by ultrasonic transmission measurements evaluated by coda wave interferometry. Background and examples are presented as well as possibilities to locate damages. T2 - New mathematics for a safer world: wave propagation in heterogeneous materials CY - Edinburgh, UK DA - 12.06.2017 KW - Concrete KW - Ultrasound KW - Coda wave interferometry KW - Monitoring PY - 2017 AN - OPUS4-40580 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Johann, Sergej A1 - Strangfeld, Christoph A1 - Müller, Maximilian A1 - Bartholmai, Matthias T1 - RFID sensor systems embedded in concrete - requirements for long-term operation N2 - One of the more difficult tasks for structural health monitoring is the continuous evaluation of the stability and load capacity of the building materials. This knowledge can be won, e.g., by taking material samples at the examining place with the drawback of partly destroying the structure. To avoid this, modern sensor and communication technologies offer promising methods for non-destructive testing. To address the tasks for monitoring of concrete structures, in the presented study, different sensors were combined with RFID transponders and embedded in concrete components. T2 - 33rd Danubia- Adria Symposium on Advances in Experimental Mechanics CY - Portorož, Slovenia DA - 20.09.2016 KW - Concrete KW - Embedded KW - RFID sensors KW - Structure health monitoring PY - 2016 AN - OPUS4-37533 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Niederleithinger, Ernst A1 - Wiggenhauser, Herbert T1 - Coda wave interferometry used for monitoring of concrete constructions N2 - Ultrasonic transmission measurements on concrete; embedded transducers; coda wave interferometry to check for subtle chnages in velocity as indicator for various loads or deterioration. T2 - 76. Jahrestagung der Deutschen Geophysikalischen Gesellschaft CY - Münster, Germany DA - 14.03.2016 KW - Ultrasound KW - Transmission KW - Coda wave interferometry KW - Concrete KW - Load PY - 2016 AN - OPUS4-37721 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Niederleithinger, Ernst T1 - Inspection and monitoring of massive concrete structures by innovative ultrasonic methods N2 - Presentation on recent progress in ultrasinic testing and monitoring of concrete for massive structures. First, a new instrument (LAUS) for ultrasonic echo testing of thicknesses up to 5 m is shown. A new method to provide better images of the concrete interior, Reverse Mitem Migration (RTM)is presented. Second, the use of embedded ultrasonic transducers and data processing methods borrowed from seismology to detect subtle changes in concrete are documented. T2 - NUCCON 2016 CY - Helsinki, Finland DA - 31.10.2016 KW - Ultrasound KW - Concrete KW - Imaging KW - Monitoring KW - Nuclear PY - 2016 AN - OPUS4-38181 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Niederleithinger, Ernst T1 - Progress in non-destructive testing and monitoring of concrete N2 - The presentation will give an overview on non-destructive testing techniques being developed at the Federal Institute for Materials Research and Testing, Germany (BAM). This includes ultrasonic methods, ground penetration radar, Laser-Induced Breakdown Spectroscopy (LIBS), infrared thermography, pile testing, sensor technology and building scanner. A focus of the talk will be ultrasonic methods, which are well established in various aspects of concrete testing. They are used for imaging the interior geometry of constructions, estimation of concrete strength or monitoring lab investigations. However, so far the detection of distributed damages, especially in an early stage, has been almost impossible. The arrival of new technologies as embedded transducers and sensitive data processing techniques adopted from seismology has opened new field of work. Recent research has been focused to detect changes in concrete elements induced by stress, temperature, moisture or chemical attacks by permanent monitoring. Techniques as Coda Wave Interferometry can resolve changes in ultrasonic velocity in the order of 1*10-5. In addition, many researchers believe that the investigation of nonlinear effects can be used to characterize damages. The presentation will give a wrap up of ultrasonic techniques currently used in practice. This will include echo based methods as multi-channel/multi-offset imaging of structural elements using commercial and prototype devices. Imaging methods as SAFT and RTM will be shortly discussed. The focus will be on the emerging techniques used for monitoring. New types of sensors will be presented as well as the devices used in laboratory and field applications. Insight will be given on the various influence factors on ultrasonic signals and various ways of feature extraction and data processing. The results of lab experiments will be shown to demonstrate the detection of various kind of damages from mechanical load, ASR, corrosion to fatigue. The experiences with our first installations in real constructions (bridges, tunnel) will also be presented. T2 - CIE Research Seminar, University of Western Sydney, New South Wales CY - Sydney, Australia DA - 15.12.2016 KW - Ultrasound KW - Concrete KW - Monitoring KW - Imaging PY - 2016 AN - OPUS4-38732 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Niederleithinger, Ernst A1 - Wiggenhauser, Herbert T1 - Coda wave interferometry used for monitoring of concrete constructions N2 - Concrete is known to be a very useful, flexible and durable construction material. However, due to excess load, fatigue, chemical processes, freeze-thaw or reinforcement corrosion concrete may suffer from degradation. If detected too late, repair is difficult and expensive. The propagation of ultrasonic waves is influenced by changes in the properties and structure of the material, including, but not limited to, stress, temperature, moisture content and microcracking. Ultrasonic velocieties thus may serve as indicators for structural health. Traditional ultrasonic methods as transmission time of flight measurements are used since decades, but are not sensible enough to show subtle changes. Coda Wave Interferometry (CWI), originally developed in seismology to detect stress changes in the earth's crust uses the information in the late part of ultrasonic signals originating from multiple reflections and scattering. Since a few years it is used by several researchers for lab experiments on concrete. Meanwhile specialized sensors to be embedded in concrete have been developed. We have conducted several lab and a few field experiments, which will be reported here. The capabilities and limitations of CWI are summarized. T2 - Jahrestagung der DGG CY - Münster DA - 14.03.2016 KW - Coda wave interferometry KW - Concrete KW - Monitoring KW - Ultrasound PY - 2016 AN - OPUS4-35710 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Niederleithinger, Ernst T1 - State-of-the-art ultrasonic monitoring of concrete N2 - Ultrasonic methods are well established in various aspects of concrete testing. They are used for imaging the interior geometry of constructions, estimation of concrete strength or monitoring lab investigations. However, so far the detection of distributed damages, especially in an early stage, has been almost impossible. The arrival of new technologies as embedded transducers and sensitive data processing techniques adopted from seismology has opened new field of work. Recent research has been focused to detect changes in concrete elements induced by stress, temperature, moisture or chemical attacks by permanent monitoring. Techniques as Coda Wave Interferometry can resolve changes in ultrasonic velocity in the order of 1*10-5. In addition, many researchers believe that the investigation of nonlinear effects can be used to characterize damages. The presentation will give a wrap up of ultrasonic techniques currently used in practice. This will include echo based methods as multi-channel/multi-offset imaging of structural elements using commercial and prototype devices. Imaging methods as SAFT and RTM will be shortly discussed. The focus will be on the emerging techniques used for monitoring. New types of sensors will be presented as well as the devices used in laboratory and field applications. Insight will be given on the various influence factors on ultrasonic signals and various ways of feature extraction and data processing. The results of lab experiments will be shown to demonstrate the detection of various kind of damages from mechanical load, ASR, corrosion to fatigue. The experiences with or first installations in real constructions (bridges, tunnel) will also be presented. T2 - CBIR Research Seminar, University of Technology Sydney CY - Sydney, Australia DA - 05.12.2016 KW - Ultrasound KW - Concrete KW - Monitoring KW - Imaging PY - 2016 AN - OPUS4-38730 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Niederleithinger, Ernst T1 - State-of-the-art of ultrasonic monitoring of concrete N2 - Ultrasonic methods are well established in various aspects of concrete testing. They are used for imaging the interior geometry of constructions, estimation of concrete strength or monitoring lab investigations. However, so far the detection of distributed damages, especially in an early stage, has been almost impossible. The arrival of new technologies as embedded transducers and sensitive data processing techniques adopted from seismology has opened new field of work. Recent research has been focused to detect changes in concrete elements induced by stress, temperature, moisture or chemical attacks by permanent monitoring. Techniques as Coda Wave Interferometry can resolve changes in ultrasonic velocity in the order of 1*10-5. In addition, many researchers believe that the investigation of nonlinear effects can be used to characterize damages. The workshop will give a wrap up of ultrasonic techniques currently used in practice. This will include echo based methods as multi-channel/multi-offset imaging of structural elements using commercial and prototype devices. Imaging methods as SAFT and RTM will be shortly discussed. The focus will be on the emerging techniques used for monitoring. New types of sensors will be presented as well as the devices used in laboratory and field applications. Insight will be given on the various influence factors on ultrasonic signals and various ways of feature extraction and data processing. The results of lab experiments will be shown to demonstrate the detection of various kind of damages from mechanical load, ASR, corrosion to fatigue. The experiences with or first installations in real constructions (bridges, tunnel) will also be presented. T2 - The 8th Australian Network of Structural Monitoring Annual Workshop CY - Melbourne, Australia DA - 29.11.2016 KW - Ultrasound KW - Concrete KW - Monitoring KW - Imaging PY - 2016 AN - OPUS4-38727 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Niederleithinger, Ernst T1 - Progress in non-destructive testing and monitoring of concrete N2 - The presentation will give an overview on non-destructive testing techniques being developed at the Federal Institute for Materials Research and Testing, Germany (BAM). This includes ultrasonic methods, ground penetration radar, Laser-Induced Breakdown Spectroscopy (LIBS), infrared thermography, pile testing, sensor technology and building scanner. A focus of the talk will be ultrasonic methods, which are well established in various aspects of concrete testing. They are used for imaging the interior geometry of constructions, estimation of concrete strength or monitoring lab investigations. However, so far the detection of distributed damages, especially in an early stage, has been almost impossible. The arrival of new technologies as embedded transducers and sensitive data processing techniques adopted from seismology has opened new field of work. Recent research has been focused to detect changes in concrete elements induced by stress, temperature, moisture or chemical attacks by permanent monitoring. Techniques as Coda Wave Interferometry can resolve changes in ultrasonic velocity in the order of 1*10-5. In addition, many researchers believe that the investigation of nonlinear effects can be used to characterize damages. The presentation will give a wrap up of ultrasonic techniques currently used in practice. This will include echo based methods as multi-channel/multi-offset imaging of structural elements using commercial and prototype devices. Imaging methods as SAFT and RTM will be shortly discussed. The focus will be on the emerging techniques used for monitoring. New types of sensors will be presented as well as the devices used in laboratory and field applications. Insight will be given on the various influence factors on ultrasonic signals and various ways of feature extraction and data processing. The results of lab experiments will be shown to demonstrate the detection of various kind of damages from mechanical load, ASR, corrosion to fatigue. The experiences with our first installations in real constructions (bridges, tunnel) will also be presented. T2 - CIES Research Seminar, University of New South Wales CY - Sydney, Australia DA - 13.12.2016 KW - Ultrasound KW - Concrete KW - Monitoring KW - Imaging PY - 2016 AN - OPUS4-38731 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -