TY - CONF A1 - Johann, Sergej A1 - Kohlhoff, Harald A1 - Gawlitza, Kornelia A1 - Bell, Jérémy A1 - Mansurova, Maria A1 - Tiebe, Carlo A1 - Bartholmai, Matthias T1 - Semi-automatic Gas Measurement Device Based on Fluorescent Multi-gas Sensors N2 - This paper describes the development of a semi-automatic gas measurement device presenting potentially a broad range of applications, noteworthy in the agricultural sector. Non-reversible fluorescent molecular sensors were designed and syn-thesized. Upon, integration into a hydrogel matrix with an optimal ratio of co-solvents, the sensors reacting selectively to ammonia were illuminated by excitation light to produce a concentration-correlated fluorescence emission. An automated mechanical-elec-trical device initiates a given gas mixture and thus simulates con-centrations similar to a threshold value. The aim of this project is to develop a sensor or a low-cost method which can monitor low concentrations of harmful gases and aid in their elimination or regulation in livestock housing, barns or stables. T2 - IEEE Sensors 2019 CY - Montreal, Canada DA - 27.10.2019 KW - gas analysis KW - fluorescence KW - embedded sensor KW - spectroscopy KW - environment KW - agricultural economy PY - 2019 SN - 978-1-7281-1634-1 SP - 88 EP - 92 PB - IEEE AN - OPUS4-49506 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Johann, Sergej A1 - Lapalus, Antoin A1 - Tiebe, Carlo A1 - Bartholmai, Matthias T1 - Design and Implementation of Smart Multisensor Monitoring System for Safe Workplaces with LoRaWAN N2 - This project addresses the application of safe workplaces in offices and chemical laboratories where indoor air quality plays an important role. The LoRaWAN (Long Range Wide Area Network) is used as a communication interface to make important sensor data globally accessible. The goal of the development is to create a sensor node and an online and offline solution that collects the data from the sensor nodes and stores it on a local server or in a cloud. In cooperation with the companies WISTA GmbH and IONOS, a test sensor network is going to be established in the Berlin-Adlershof area. T2 - SMSI 2020 CY - Meeting was canceled DA - 22.06.2020 KW - Smart sensors KW - Air quality monitoring KW - LoRaWAN KW - VOC KW - Multisensor system PY - 2020 DO - https://doi.org/10.5162/SMSI2020/E5.4 SP - 388 EP - 389 AN - OPUS4-50878 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Johann, Sergej A1 - Mansurova, Maria A1 - Kohlhoff, Harald A1 - Gkertsos, Aris A1 - Neumann, Patrick P. A1 - Bell, Jérémy A1 - Bartholmai, Matthias T1 - Wireless Mobile Sensor Device for in-situ Measurements with Multiple Fluorescent Sensors N2 - This paper describes a wireless mobile prototype able to perform optical measurements by means of a miniatur-ized spectrometer for low light analysis, e.g. fluorescent sensors. Evaluations, calculations, calibration management and result display are performed by a computer or a standard tablet. The device was designed primarily to detect traces of oil in drinking or ground water and for the analyses of crude oils. However, it can also address a wide range of fluorescent sensors. The fast and user-friendly inspection of water quality or oil properties, as well as the adaptability and mobility, make the device attractive for a variety of users. Further application areas could be easily imple-mented by adapting the optics and the software (database, data processing and calibration plots, etc.) T2 - IEEE Sensors 2018 CY - New Delhi, India DA - 28.10.2018 KW - Wireless mobile sensor device KW - Fluorescent sensor KW - Embedded system KW - Water quality KW - Oil PY - 2018 SN - 978-1-5386-4707-3 SP - 1067 EP - 1070 PB - IEEE CY - New Delhi, India AN - OPUS4-46556 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Johann, Sergej A1 - Noske, Reinhard A1 - Feller, Viktor A1 - Bartholmai, Matthias ED - Vonau, Winfried ED - Cruvinel, P. ED - Chilibon, I. ED - Carvalho, V. ED - Sophocleous, M. T1 - Gas detection using a multi-sensor device with pump control and VOC sensor N2 - This paper deals with the development and investi-gation of a volatile organic compound (VOC) system for differ-ent scenarios. The integrated multi-sensor unit can detect dif-ferent gases through the integrated 3-fold VOC sensor, where-by a continuous measurement takes place. The system-integrated flow control, with pump and flow sensor, allows the gas molecules to be transported directly to the VOC sensor. The entire measurement is permanently stored on an integrat-ed Secure Digital (SD) card. If the previously determined limit range is exceeded, an alarm is generated. Due to the combina-tion of different components, numerous applications are possi-ble. The system is the first step or a tool towards further devel-opments in the field of gas sensors and is primarily used for the validation of chemically based gas sensors, and it is still largely extended by application-specific influences. T2 - Sensordevices 2017 - The Eighth International Conference on Sensor Device Technologies and Applications CY - Rome, Italy DA - 2017-09-10 KW - Gas detection KW - VOC KW - Pump control KW - Multi sensor device PY - 2017 SN - 978-1-61208-581-4 SP - 1 EP - 4 CY - Rome, Italy AN - OPUS4-42097 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Johann, Sergej A1 - Strangfeld, Christoph A1 - Müller, Maximilian A1 - Bartholmai, Matthias ED - Aulova, Alexandra ED - Rogelj Ritonja, Alenka ED - Emri, Igor T1 - RFID sensor systems embedded in concrete - requirements for long-term operation N2 - One of the more difficult tasks for structural health monitoring is the continuous evaluation of the stability and load capacity of the building materials. This knowledge can be won, e.g., by taking material samples at the examining place with the drawback of partly destroying the structure. To avoid this, modern sensor and communication technologies offer promising methods for non-destructive testing. To address the tasks for monitoring of concrete structures, in the presented study, different sensors were combined with RFID transponders and embedded in concrete components. T2 - 33rd Danubia - Adria Symposium on Advances in Experimental Mechanics CY - Portorož, Slovenia DA - 20.09.2016 KW - Structure health monitoring KW - Concrete KW - Embedded KW - RFID sensors PY - 2016 SN - 978-961-94081-0-0 SP - 68 EP - 69 CY - Ljubljana AN - OPUS4-37535 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Johann, Sergej A1 - Strangfeld, Christoph A1 - Zimmek, David A1 - Bartholmai, Matthias ED - Helmerich, Rosemarie ED - Ilki, A. ED - Motavalli, M. T1 - Smart electronic helper for long-term monitoring of bridges and building structures N2 - Increasing traffic volume on the one hand and ageing infrastructure on the other hand have created many new challenges for maintenance and structural health monitoring of roads and bridges. In the past, many bridges and road structures have been neglected, often resulting in traffic congestion, road closure, and increased repair costs. This research is concerned with the development of a system to improve the challenge of maintenance and early detection of damage, particularly moisture penetration and corrosion of steel reinforced concrete components. The objective is to develop a method that will also work after 30 years and longer. Many new IoT solutions are equipped with internal energy storage elements (accumulators or batteries) which are inappropriate here, since most relevant signs of concrete degradation occur after decades, where the functioning of such elements are more than questionable. The presented technology approach uses radio-frequency identification (RFID) and enables connectivity to sensors. It offers the advantage of an passive, completely independent energy supply without any energy storage components. Since the system should be permanently embedded in concrete, it is crucial to develop a long-term stable device which is adapted to the environmental influences of the structure, e.g., long-term resistance in very alkaline environment of pH 13. In numerous experiments, the robustness of the system was tested and evaluated. Various tests with encapsulations to protect the electronics were performed, and for long-term validation different concrete specimens were instrumented with RFID-sensor-systems. Their operating time is now around two years and investigations for signs of fatigue and damage to the encapsulation and the electronics are ongoing. T2 - 5th International Conference on Smart Monitoring, Assessment and Rehabilitation of Civil Structures (SMAR 2019) CY - Potsdam, Germany DA - 27.08.2019 KW - Long term monitoring KW - Passive RFID KW - SHM KW - Sensors KW - Smart structures PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-489890 SP - 1 EP - 6 PB - German Society for Non-Destructive Testing (DGZfP e.V.) AN - OPUS4-48989 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Johann, Sergej A1 - Winkler, Nicolas P. A1 - Bartholmai, Matthias ED - Kourkoulis, S. K. T1 - Multi-sensor system for long-term monitoring with WiFi and LoRaWAN technology N2 - In many cases, science falls back on self-developed prototype systems, which are used and developed for the measurement and execution of the tasks. About 80 % of the development is based on the same hardware design, which is used in only one application scenario and then discarded. For the most part, there are also uncalibrated sensors, since it is costly to calibrate a complicated sensor measurement system or the entire measurement chain since access to the sensor systems is not always available. This paper describes a conceptual design to implement a versatile sensor system with the motivation to fuse the data recording and data reception, which can cover large areas with the help of LoRaWAN (Long Range Wide Area Network) technology. To overcome disadvantages of LoRaWAN, namely the slow data rates, the proposed sensor system can also cover smaller areas with the widespread WiFi technology. An enormous advantage over individual complete systems in the form of a prototype, is the rapid expansion, uncomplicated calibration of the individual sensors and the ecological relief. A modular design is used, where individual stacks with sensors and peripherals can be added separately. The stacks are standalone low-power systems and can be calibrated, maintained, and replaced separately and do not require the entire measurement chain. The measured and sent values are stored locally on the main stack and sent to the data collector (gateway) and evaluated by means of the automated selection between WiFi and LoRaWAN. T2 - 38th Danubia-Adria Symposium on Advances in Experimental Mechanics CY - Athens, Greece DA - 20.09.2022 KW - Multisensor system KW - LoRaWAN KW - WiFi KW - Long term monitoring PY - 2022 SP - 1 EP - 2 AN - OPUS4-56462 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Manolov, Manol A1 - Subaric-Leitis, Andreas A1 - Bartholmai, Matthias T1 - Bestimmung der Maschinennachgiebigkeit beim Einsatz sphärischer Indenter in der Instrumentierten Eindringprüfung N2 - Es wird ein vereinfachtes Verfahren für die Bestimmung und Implementierung der Maschinennachgiebigkeit bei der Verwendung eines sphärischen Indenters dargestellt. Die Maschinennachgiebigkeit wird bei deutlicher Kraftabhängigkeit als Funktion der Kraft in die Auswertung implementiert. Als sensitiver Kennwert dient der aus der instrumentierten Eindringprüfung an Härtevergleichsplatten ermittelte Eindringmodul. T2 - Sensoren und Messsysteme CY - Nürnberg, Germany DA - 26.06.2018 KW - Maschinennachgiebigkeit KW - Instrumentierte Eindringprüfung KW - Sphärische Indenter KW - Vereinfachtes Verfahren KW - Kraftabhängige Funktion KW - Härtevergleichsplatten KW - Eindringmodul PY - 2018 SN - 978-3-8007-4683-5 SN - 0932-6022 VL - 19. ITG/GMA-Fachtagung SP - 565 EP - 569 PB - VDE Verlag GmbH CY - Berlin AN - OPUS4-45394 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Melzer, Michael A1 - Fischer, Michael A1 - Thomas, Marcus A1 - Subaric-Leitis, Andreas A1 - Bartholmai, Matthias T1 - Calibration Service as a Gateway to Sustainable Research and Development N2 - Over decades, the German Federal Institute for Materials Research and Testing (BAM) has established a sophisticated calibration laboratory for force, temperature and electrical quantities. Since more than 15 years it is accredited, currently by the national accreditation body (DAkkS), and offers its service also to external entities on a global scale. As a public provider, we are furthermore committed to research and development activities that demand measurements with highest quality and low level of uncertainties. Two R&D examples are highlighted within this contribution. T2 - SMSI 2020 CY - Meeting was canceled DA - 22.06.2020 KW - Calibration of force KW - Calibration of temperature KW - Calibration of electrical quantities KW - Measurement uncertainty KW - New sensor principles PY - 2020 SN - 978-3-9819376-2-6 DO - https://doi.org/10.5162/SMSI2020/E3.3 SP - 374 EP - 375 AN - OPUS4-51222 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Moufid, M. A1 - Tiebe, Carlo A1 - El Bari, N. A1 - Bartholmai, Matthias A1 - Bouchikhi, B. T1 - Advance in electronic nose technology developed for the detection and discrimination of ethanol, ammonia, and hydrogen sulfide gases N2 - This work focuses on the design and fabrication of low-cost and fast-response of an electronic nose (E-nose) based on semiconductor gas sensors, for discriminating some synthetic gases such as ammonia (NH3), ethanol (C2H5OH), and hydrogen sulfide (H2S). Additionally, the capability of separating different concentration levels of each considered gases was checked. Dataset treatment of E-nose by using Principal Component Analysis (PCA) showed a good discrimination of the different synthetic gases. Furthermore, perfect classification was reached of different concentration levels of the analysed gases by using Discriminant Function Analysis (DFA). In the light of these results, it could be stated that the developed E-nose system constitutes an inexpensive, rapid, simple to use, and efficient tool for synthetic gases detection. T2 - IEEE International Symposium on Olfaction and Electronic Nose (ISOEN) CY - Aveiro, Portugal DA - 29.05.2022 KW - Electronic nose KW - Metal oxide semiconductor KW - Chemometric techniques KW - Environmental analysis PY - 2022 SN - 978-1-6654-5860-3 DO - https://doi.org/10.1109/ISOEN54820.2022.9789636 SP - 1 EP - 3 AN - OPUS4-56574 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Moufid, M. A1 - Tiebe, Carlo A1 - El Bari, N. A1 - Bartholmai, Matthias A1 - Bouchikhi, B. T1 - Characterization of Unpleasant Odors in Poultry Houses Using Metal Oxide Semiconductor-Based Gas Sensor Arrays and Pattern Recognition Methods N2 - In this study, the ability of an electronic nose developed to analyze and monitor odor emissions from three poultry farms located in Meknes (Morocco) and Berlin (Germany) was evaluated. Indeed, the potentiality of the electronic nose (e-nose) to differentiate the concentration fractions of hydrogen sulfide, ammonia, and ethanol was investigated. Furthermore, the impact change of relative humidity values (from 15% to 67%) on the responses of the gas sensors was reported and revealed that the effect remained less than 0.6%. Furthermore, the relevant results confirmed that the developed e-nose system was able to perfectly classify and monitor the odorous air of poultry farms. T2 - 1st International Electronic Conference on Chemical Sensors and Analytical Chemistry CY - Online meeting DA - 01.07.2021 KW - Pattern recognition methods KW - Gas sensors KW - Electronic nose KW - poultry odorous air monitoring PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-544005 UR - https://csac2021.sciforum.net/ DO - https://doi.org/10.3390/CSAC2021-10481 VL - 5 IS - 52 SP - 1 EP - 7 PB - MDPI AN - OPUS4-54400 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Moufid, M. A1 - Tiebe, Carlo A1 - El Bari, N. A1 - Bartholmai, Matthias A1 - Bouchikhi, B. T1 - Combining of TD-GC-MS and home developed electronic nose for road traffic air monitoring N2 - In this work, we demonstrate the ability of an electronic nose system based on an array of six-semiconductor gas sensors for outdoor air quality monitoring over a day at a traffic road in downtown of Meknes city (Morocco). The response of the sensor array reaches its maximum in the evening of the investigated day which may due to high vehicular traffic or/and human habits resulting in elevated concentrations of pollutants. Dataset treatment by Principal Component Analysis and Discriminant Function Analysis shows a good discrimination between samples collected at different times of the day. Moreover, Support Vector Machines were used and reached a classification success rate of 97.5 %. Thermal Desorption-Gas Chromatography-Mass Spectrometry (TD-GC-MS) technique was used to validate the developed e-nose system by identifying the composition of the analyzed air samples. The discrimination obtained by e-nose system was in good agreement with the TD-GC-MS results. This study demonstrates the usefulness of TD-GC-MS and e-nose, providing high accuracy in discriminating outdoor air samples collected at different times. This demonstrates the potential of using the e-nose as a rapid, easy to use and inexpensive environmental monitoring system. T2 - 2021 IEEE International Conference on Design & Test of Integrated Micro & Nano-Systems (DTS) CY - Sfax, Tunisia DA - 07.06.2021 KW - GC-MS KW - Electronic nose KW - Gas sensors KW - Urban air monitoring PY - 2021 DO - https://doi.org/10.1109/DTS52014.2021.9498110 SP - 1 EP - 6 AN - OPUS4-54401 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Neumann, Patrick P. A1 - Bennetts, V.H. A1 - Lilienthal, A.J. A1 - Bartholmai, Matthias T1 - From insects to micro air vehicles - a comparison of reactive plume tracking strategies N2 - Insect behavior is a common source of inspiration for roboticists and computer scientists when designing gas-sensitive mobile robots. More specifically, tracking airborne odor plumes, and localization of distant gas sources are abilities that suit practical applications such as leak localization and emission monitoring. Gas sensing with mobile robots has been mostly addressed with ground-based platforms and under simplified conditions and thus, there exist a significant gap between the outstanding insect abilities and state-of-the-art robotics systems. As a step toward practical applications, we evaluated the performance of three biologically inspired plume tracking algorithms. The evaluation is carried out not only with computer simulations, but also with real-world experiments in which, a quadrocopter-based micro Unmanned Aerial Vehicle autonomously follows a methane trail toward the emitting source. Compared to ground robots, micro UAVs bring several advantages such as their superior steering capabilities and fewer mobility restrictions in complex terrains. The experimental evaluation shows that, under certain environmental conditions, insect like behavior in gas-sensitive UAVs is feasible in real-world environments. T2 - IAS13 - 13th International conference on intelligent autonomous systems CY - Padova, Italy DA - 2014-07-15 KW - Autonomous micro UAV KW - Mobile robot olfaction KW - Gas source localization KW - Reactive plume tracking KW - Biologically inspired robots PY - 2016 SN - 978-3-319-08338-4; 978-3-319-08337-7 DO - https://doi.org/10.1007/978-3-319-08338-4_110 SN - 2194-5357 SP - 1533 EP - 1548 PB - Springer Verlag CY - Berlin, Germany AN - OPUS4-31526 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Neumann, Patrick P. A1 - Grotelüschen, Bjarne A1 - Bartholmai, Matthias A1 - Strangfeld, Christoph ED - Kossa, A. ED - Kiss, R. T1 - Towards Autonomous NDT Inspection: Setup and Validation of an Indoor Localization System N2 - Monitoring and maintenance of civil infrastructure are of great importance, as any undetected damage can cause high repair costs, unintended deadtime, or endanger structural integrity. The inspection of large concrete structures such as bridges and parking lots is particularly challenging and time-consuming. Traditional methods are mostly manual and involve mapping a grid of measurement lines to record the position of each measurement. Current semi-automated methods, on the other hand, use GPS or tachymeters for localization but still require trained personnel to operate. An entirely automated approach using mobile robots would be more cost- and time-efficient. While there have been developments in using GPS-enabled mobile robots for bridge inspection, the weak signal strength in indoor areas poses a challenge for the automated inspection of structures such as parking lots. This paper aims to develop a solution for the automated inspection of large indoor concrete structures by addressing the problem of robot localization in indoor spaces and the automated measurement of concrete cover and rebar detection. T2 - 39th Danubia-Adria Symposium on Advances in Experimental Mechanics CY - Siófok, Hungary DA - 26.09.2023 KW - NDT Inspection KW - Mobile Robot KW - Indoor Localization KW - Setup and Validation PY - 2023 SN - 978-963-421-927-9 SP - 88 EP - 89 PB - Hungarian Scientific Society of Mechanical Engineering (GTE) CY - Siófok, Hungary AN - OPUS4-58660 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Neumann, Patrick P. A1 - Hirschberger, Paul A1 - Bartholmai, Matthias T1 - Flying Ant Robot – Aerial Chemical Trail Detection and Localization N2 - This paper presents first advances in the area of aerial chemical trail following. For that purpose, we equipped a palm-size aerial robot, based on the Crazyflie 2.0 quadrocopter, with a small lightweight metal oxide gas sensor for measuring evaporated ethanol from chemical trails. To detect and localize the chemical trail, a novel detection criterion was developed that uses only relative changes in the transient phase of the sensor response, making it more robust in its application. We tested our setup in first crossing-trail experiments showing that our flying ant robot is able to correlate an odor hit with the chemical trail within 0.14 m. Principally, this could enable aerial chemical trail following in the future. T2 - IEEE Sensors 2021 CY - Online meeting DA - 31.10.2021 KW - Nano aerial robot KW - Trail following KW - Trail detection KW - Localization PY - 2021 DO - https://doi.org/10.1109/sensors47087.2021.9639857 SP - 1 EP - 4 PB - IEEE AN - OPUS4-53933 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Neumann, Patrick P. A1 - Hirschberger, Paul A1 - Bartholmai, Matthias ED - Holl, H. T1 - Aerial Chemical-Trail Detection and Localization N2 - This paper presents first advances in the area of aerial chemical trail following. For that purpose, we equipped a palm-size aerial robot, based on the Crazyflie 2.0 quadrocopter, with a small lightweight metal oxide gas sensor for measuring evaporated ethanol from chemical trails. To detect and localize the chemical trail, a novel detection criterion was developed that uses only relative changes in the transient phase of the sensor response, making it more robust in its application. We tested our setup in first crossing-trail experiments showing that our flying ant robot is able to correlate an odor hit with the chemical trail within 0.14 m. Principally, this could enable aerial chemical trail following in the future. T2 - 37th Danubia - Adria Symposium on Advances in Experimental Mechanics CY - Linz, Austria DA - 21.09.2021 KW - Nano aerial robot KW - Trail following KW - Trail detection KW - Localization PY - 2021 SN - 978-3-9504997-0-4 VL - 2021 SP - 39 EP - 40 AN - OPUS4-53409 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Neumann, Patrick P. A1 - Hirschberger, Paul A1 - Bartholmai, Matthias ED - Zemčík, Robert ED - Krystek, Jan T1 - Influence of rotor downwash on vertically displaced nanobots in flight N2 - Using a swarm of copter-based gas-sensitive aerial nano robots for monitoring indoor air quality is challenging due to, e.g., limited air space in buildings. To avoid an over-regulation of the available indoor air space (e.g., prohibit copters to fly above each other), a safety region around each copter must be defined to guarantee a safe operation of the swarm. The key contributions of this paper are the realization of experiments that investigate the influence of the rotor downwash on flying vertically displaced nano robots and the development of a model describing the above-mentioned safety region. T2 - 36th Danubia-Adria Symposium on Advances in Experimental Mechanics CY - Pilsen, Czech Republic DA - 24.09.2019 KW - Gas sensing KW - Mobile Robot Olfaction KW - Nano aerial robot KW - Swarm PY - 2019 SP - 23 EP - 24 CY - Plzeň AN - OPUS4-49173 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Neumann, Patrick P. A1 - Hirschberger, Paul A1 - Baurzhan, Zhandos A1 - Tiebe, Carlo A1 - Hofmann, Michael A1 - Hüllmann, Dino A1 - Bartholmai, Matthias T1 - Indoor air quality monitoring using flying nanobots: Design and experimental study N2 - In this paper, we introduce a nano aerial robot swarm for Indoor Air Quality (IAQ) monitoring applications such as occupational health and safety of (industrial) workplaces. The robotic swarm is composed of nano Unmanned Aerial Vehicles (UAVs), based on the Crazyflie 2.0 quadrocopter, and small lightweight Metal Oxide (MOX) gas sensors for measuring the Total Volatile Organic Compound (TVOC), which is a measure for IAQ. An indoor localization and positioning system is used to estimate the absolute 3D position of the swarm similar to GPS. A test scenario was built up to validate and optimize the swarm for the intended applications. Besides calibration of the IAQ sensors, we performed experiments to investigate the influence of the rotor downwash on the gas measurements at different altitudes and compared them with stationary measurements. Moreover, we did a first evaluation of the gas distribution mapping performance. Based on this novel IAQ monitoring concept, new algorithms in the field of Mobile Robot Olfaction (MRO) are planned to be developed exploiting the abilities of an aerial robotic swarm. T2 - 18th International Symposium on Olfaction and Electronic Nose CY - Fukuoka, Japan DA - 26.05.2019 KW - Nano aerial robot KW - Swarm KW - Indoor air quality KW - Monitoring PY - 2019 SN - 978-1-5386-3641-1 SP - 1 EP - 3 PB - IEEE CY - USA AN - OPUS4-48148 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Neumann, Patrick P. A1 - Hirschberger, Paul A1 - Baurzhan, Zhandos A1 - Tiebe, Carlo A1 - Hofmann, Michael A1 - Hüllmann, Dino A1 - Bartholmai, Matthias T1 - Indoor air quality monitoring using flying nanobots: Design and experimental study N2 - In this paper, we introduce a nano aerial robot swarm for Indoor Air Quality (IAQ) monitoring applications such as occupational health and safety of (industrial) workplaces. The robotic swarm is composed of nano Unmanned Aerial Vehicles (UAVs), based on the Crazyflie 2.0 quadrocopter, and small lightweight Metal Oxide (MOX) gas sensors for measuring the Total Volatile Organic Compound (TVOC), which is a measure for IAQ. An indoor localization and positioning system is used to estimate the absolute 3D position of the swarm similar to GPS. A test scenario was built up to validate and optimize the swarm for the intended applications. Besides calibration of the IAQ sensors, we performed experiments to investigate the influence of the rotor downwash on the gas measurements at different altitudes and compared them with stationary measurements. Moreover, we did a first evaluation of the gas distribution mapping performance. Based on this novel IAQ monitoring concept, new algorithms in the field of Mobile Robot Olfaction (MRO) are planned to be developed exploiting the abilities of an aerial robotic swarm. T2 - 2019 IEEE International Symposium on Olfaction and Electronic Nose (ISOEN) CY - Fukuoka, Japan DA - 26.05.2019 KW - Indoor air quality KW - Nano aerial robot KW - Aerial robot olfaction KW - Swarm KW - Gas detector PY - 2019 SN - 978-1-5386-8327-9 SN - 978-1-5386-8328-6 DO - https://doi.org/10.1109/ISOEN.2019.8823496 SP - 1 EP - 3 PB - IEEE AN - OPUS4-48920 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Neumann, Patrick P. A1 - Hüllmann, Dino A1 - Bartholmai, Matthias ED - Pastramă, D. Ş ED - Constantinescu, D. M. T1 - Concept of a gas-sensitive nano aerial robot swarm for indoor air quality monitoring N2 - In industrial environments, airborne by-products such as dust and (toxic) gases, constitute a major risk for the worker’s health. Major changes in automated processes in the industry lead to an increasing demand for solutions in air quality management. Thus, occupational health experts are highly interested in precise dust and gas distribution models for working environments. For practical and economic reasons, high-quality, costly measurements are often available for short time-intervals only. Therefore, current monitoring procedures are carried out sparsely, both in time and space, i.e., measurement data are collected in single day campaigns at selected locations only. Real-time knowledge of contaminant distributions inside the working environment would also provide means for better and more economic control of air impurities. For example, the possibility to regulate the workspace’s ventilation exhaust locations can reduce the concentration of airborne contaminants by 50%. To improve the occupational health and safety of (industrial) workplaces, this work aims for developing a swarm of gas-sensitive aerial nano robots for monitoring indoor air quality and for localizing potential emission sources. T2 - 35th Danubia-Adria Symposium on Advances in Experimental Mechanics CY - Sinaia, Romania DA - 25.09.2018 KW - Mobile Robot Olfaction KW - Swarm KW - Nano aerial robot KW - Gas sensing PY - 2018 SN - 978-606-23-0874-2 SP - 139 EP - 140 PB - PRINTECH CY - Bukarest AN - OPUS4-46137 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -