TY - GEN A1 - Paz, B. A1 - Meyer, H.-P. A1 - Varychev, A. A1 - Rosner, M. A1 - Vogl, Jochen A1 - Behrendt, S. ED - Treister, M. ED - Yablonsky, L. T1 - Археометрические исследования стеклянных сосудов из погребений ранних кочевников Южного Приуралья T1 - Archäometrische Untersuchungen an achaimenidischen Glasgefäßen aus den Gräbern der frühen Nomaden des südlichen Urals N2 - Die untersuchten Gläser lassen sich in drei Gruppen einteilen. Die beiden Fragmente aus der Nekropole von Pjatimary deuten auf eine frühe Herstellungszeit hin und lassen sich mit eisenzeitlichen Fragmenten iranischer Herkunft vergleichen. Die Glasfunde aus der Nekropole Filippovka bestehen aus völlig unterschiedlichen Glasmaterialien und müssen einer späteren Herstellungszeit zugeordnet werden. Sowohl die unterschiedlichen Rezepturen als auch der definitive Hinweis auf verschiedene Rohstoffquellen zur Herstellung der untersuchten Gläser, lassen ein breitgefächertes Netz von weitreichenden Handelsbeziehungen erkennen. KW - Archäometrie KW - Isotopenverhältnisse Strontium und Blei KW - Elementanalyse KW - Massenspektrometrie KW - Herkunft PY - 2012 SN - 978-5-903011-85-8 VL - 1 SP - 262 EP - 267 PB - TAUS CY - Moskau AN - OPUS4-26899 LA - rus AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Müller, Larissa A1 - Jakubowski, Norbert A1 - Hösl, Simone A1 - Scheler, C. A1 - Roos, P.H. A1 - Linscheid, M.W. T1 - Comparison of different chelates for lanthanide labeling of antibodies and application in a Western blot immunoassay combined with detection by laser ablation (LA-)ICP-MS N2 - We have developed lanthanide labeling strategies for antibodies to adapt conventional biochemical workflows like Western blot immunoassays for detection by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) analysis with a special interest to apply the multi-element capabilities of ICP-MS for the design of multiplexed immunoassays. In this paper the lanthanide labeling of antibodies with MeCAT was investigated and the reaction conditions were optimized for application in a Western blot immunoassay analyzed by LA-ICP-MS. Furthermore, the MeCAT labeling strategy was compared with two other commercially available labeling reagents, MAXPAR™ and SCN-DOTA. As a proof-of-principle experiment chemically induced alterations of cytochrome P450 protein expression were investigated and the suitability of the differentially labeled antibodies for Western blot immunoassays of a complex liver microsomal protein fraction was tested. Limits of detection (LODs) in the lower fmol range were reached in the Western blot application using MeCAT and MAXPAR™ as element labeling reagents, whereas even sub-fmol LODs can be achieved in a dot blot experiment for the pure antibodies. PY - 2012 DO - https://doi.org/10.1039/c2ja30068k SN - 0267-9477 SN - 1364-5544 N1 - Geburtsname von Müller, Larissa: Wäntig, L. - Birth name of Müller, Larissa: Wäntig, L. N1 - Geburtsname von Hösl, Simone: Hardt, S. - Birth name of Hösl, Simone: Hardt, S. VL - 27 IS - 8 SP - 1311 EP - 1320 PB - Royal Society of Chemistry CY - London AN - OPUS4-26256 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rienitz, O. A1 - Schiel, D. A1 - Görlitz, V. A1 - Jährling, R. A1 - Vogl, Jochen A1 - Lara-Manzano, J.V. A1 - Zon, A. A1 - Fung, W.-H. A1 - Buzoianu, M. A1 - De Sena, R.C. A1 - Dos Reis, L.A. A1 - Valiente, L. A1 - Yim, Y.-H. A1 - Hill, S. A1 - Champion, R. A1 - Fisicaro, P. A1 - Bing, W. A1 - Turk, G.C. A1 - Winchester, M. R. A1 - Saxby, D. A1 - Merrick, J. A1 - Hioki, A. A1 - Miura, T. A1 - Suzuki, T. A1 - Linsky, M. A1 - Barzev, A. A1 - Máriássy, M. A1 - Cankur, O. A1 - Ari, B. A1 - Tunc, M. A1 - Konopelko, L.A. A1 - Kustikov, Y.A. A1 - Bezruchko, M. T1 - Final report on CCQM-K87: Mono-elemental calibration solutions N2 - The aim of this comparison was to demonstrate the capability of national metrology institutes to measure elemental mass fractions at a level of w(E) ≈ 1 g/kg as found in almost all mono-elemental calibration solutions. These calibration solutions represent an important link in traceability systems in inorganic analysis. Virtually all traceable routine measurements are linked to the SI through these calibration solutions. Every participant was provided with three solutions of each of the three selected elements chromium, cobalt and lead. This comparison was a joint activity of the Inorganic Analysis Working Group (IAWG) and the Electrochemical Analysis Working Group (EAWG) of the CCQM and was piloted by the Physikalisch-Technische Bundesanstalt (PTB, Braunschweig, Germany) with the help of the Bundesanstalt für Materialforschung und -prüfung (BAM, Berlin, Germany), the Centro Nacional de Metrología (CENAM, Querétaro, Mexico) and the National Institute of Standards and Technology (NIST, Gaithersburg, USA). A small majority of participants applied inductively coupled plasma optical emission spectrometry (ICP OES) in combination with a variety of calibration strategies (one-point-calibration, bracketing, calibration curve, each with and without an internal standard). But also IDMS techniques were carried out on quadrupole, high resolution and multicollector ICP-MS machines as well as a TIMS machine. Several participants applied titrimetry. FAAS as well as ICP-MS combined with non-IDMS calibration strategies were used by at least one participant. The key comparison reference values (KCRV) were agreed upon during the IAWG/EAWG meeting in November 2011 held in Sydney as the added element content calculated from the gravimetric sample preparation. Accordingly the degrees of equivalence were calculated. Despite the large variety of methods applied no superior method could be identified. The relative deviation of the median of the participants' results from the gravimetric reference value was equal or smaller than 0.1% (with an average of 0.05%) in the case of all three elements. KW - CCQM KW - Metrology KW - IDMS PY - 2012 DO - https://doi.org/10.1088/0026-1394/49/1A/08010 SN - 0026-1394 SN - 1681-7575 VL - 49 IS - 08010, 1A (Technical Supplement 2012) SP - 1 EP - 104 PB - Inst. of Physics Publ. CY - Bristol AN - OPUS4-30458 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Vogl, Jochen A1 - Rosner, Martin T1 - Production and certification of a unique set of isotope and delta reference materials for Boron isotope determination in geochemical, environmental and industrial materials N2 - Isotopic reference materials are essential to enable reliable and comparable isotope data. In the case of boron only a very limited number of such materials is available, thus preventing adequate quality control of measurement results and validation of analytical procedures. To address this situation a unique set of two boron isotope reference materials (ERM-AE102a and -AE104a) and three offset δ11B reference materials (ERM-AE120, -AE121 and -AE122) were produced and certified. The present article describes the production and certification procedure in detail. The isotopic composition of all the materials was adjusted by mixing boron parent solutions enriched in 10B or 11B with a boron parent solution having a natural isotopic composition under full gravimetric control. All parent solutions were analysed for their boron concentration as well as their boron isotopic composition by thermal ionisation mass spectrometry (TIMS) using isotope dilution as the calibration technique. For all five reference materials the isotopic composition obtained on the basis of the gravimetric data agreed very well with the isotopic composition obtained from different TIMS techniques. Stability and homogeneity studies that were performed showed no significant influence on the isotopic composition or on the related uncertainties. The three reference materials ERM-AE120, ERM-AE121 and ERM-AE122 are the first reference materials with natural δ11B values not equal to 0‰. The certified δ11B values are -20.2‰ for ERM-AE120, 19.9‰ for ERM-AE121 and 39.7‰ for ERM-AE122, each with an expanded uncertainty (k = 2) of 0.6‰. These materials were produced to cover about three-quarters of the known natural boron isotope variation. The 10B enriched isotope reference materials ERM-AE102a and ERM-AE104a were produced for industrial applications utilising 10B for neutron shielding purposes. The certified 10B isotope abundances are 0.29995 for ERM-AE102a and 0.31488 for ERM-AE104a with expanded uncertainties (k = 2) of 0.00027 and 0.00028, respectively. Together with the formerly certified ERM-AE101 and ERM-AE103 a unique set of four isotope reference materials and three offset δ11B reference materials for boron isotope determination are now available from European Reference Materials. KW - Boron isotope variations KW - Delta-scale KW - Stable isotopes KW - Isotope reference materials KW - Delta reference materials KW - Metrology in chemistry KW - Absolute isotope abundance PY - 2012 DO - https://doi.org/10.1111/j.1751-908X.2011.00136.x SN - 1639-4488 SN - 1751-908X VL - 36 IS - 2 SP - 161 EP - 175 PB - Blackwell CY - Oxford AN - OPUS4-26260 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Völling, E. A1 - Reifarth, N. A1 - Vogl, Jochen ED - Nosch, M.-L. ED - Laffineur, R. T1 - The intercultural context of treasure A in Troy - Jewellery and textiles N2 - At the end of May 1873, Heinrich Schliemann recovered Treasure A in Troy. He brought all the metal artifacts illegally to Athens and published his iscoveries one year later. Then he bequeathed the Trojan finds to Berlin where from 1881 onwards, Treasure A was exhibited in the Museum of Arts and Crafts (later Gropius Bau). Hubert. Schmidt inventoried and catalogued the Trojan remains in 1902 without the so-called “Dubletten” (duplicates). The transfer of the Treasure trove in 1945 to former Leningrad (St. Petersburg) and Moscow is well known, but there was a partial restoration of the looted art from the former Soviet Union back to the former GDR: eight out of eleven silver vessels of Treasure A came via Leipzig in 1979 finally back to Berlin’s Museum für Vor- und Frühgeschichte, Stiftung Preussischer Kulturbesitz in 1994. During its safe keeping in Leningrad and Leipzig, these silver jars remained ignored in the boxes in which they were transported, a Situation, which today permits them to be investigated almost in their condition of discovery. The study of the Originals allowed Information to be gleaned about their manufacture and offered opportunities for various analyses. After the gold jewellery came to light, technical data and an archaeological appraisal of the Trojan gold kept in the Pushkin Museum of Fine Arts in Moscow could be published in 1996. The considerable quantity of the outstanding gold artifacts of Treasure A was deposited inside the great silver vessel Sch 5873 and listed by Heinrich Schliemann. T2 - 13th International Aegean Conference CY - Copenhagen, Denmark DA - 21.04.2010 PY - 2012 SN - 978-90-429-2665-3 SP - 531 EP - 538 PB - Peeters Publishers CY - Liège, Belgium AN - OPUS4-26408 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Vogl, Jochen T1 - Measurement uncertainty in single, double and triple isotope dilution mass spectrometry N2 - Triple IDMS has been applied for the first time to the quantification of element concentrations. It has been compared with single and double IDMS obtained on the same sample set in order to evaluate the advantages and disadvantages of triple IDMS over single and double IDMS as an analytical reference procedure. The measurement results of single, double and triple IDMS are indistinguishable, considering rounding due to the individual measurement uncertainties. As expected, the relative expanded uncertainties (k = 2) achieved with double IDMS (0.08 %) are dramatically smaller than those obtained with single IDMS (1.4 %). Triple IDMS yields the smallest relative expanded uncertainties (k = 2, 0.077 %) unfortunately at the expense of a much higher workload. Nevertheless triple IDMS has the huge advantage that the isotope ratio of the spike does not need to be determined. Elements with high memory effects, highly enriched spikes or highest metrological requirements may be typical applications for triple IDMS. KW - Single IDMS KW - Double IDMS KW - Triple IDMS KW - Measurement uncertainty KW - Cd mass fraction PY - 2012 DO - https://doi.org/10.1002/rcm.5306 SN - 0951-4198 SN - 1097-0231 VL - 26 IS - 3 SP - 275 EP - 281 PB - Wiley CY - Chichester AN - OPUS4-25292 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Völz, Uwe A1 - Boehm, Rainer A1 - Heckel, Thomas A1 - Spruch, W. ED - Pombo, J. T1 - Ultrasonic testing of hollow axles with a conical rotation scanner phased array probe N2 - This paper describes the investigations, carried out during the ongoing European Project WOLAXIM. It presents the development of the non-destructive testing system for hollow axle inspection. The phased array probe is designed, the inspection parameters are determined and the required test equipment is planned according to the specifications. As a part of the probe design, a detailed model to calculate the sound field of the conical phased array is developed. With this model the optimal geometric parameters for bore diameters from 30mm up to 70mm are determined. The first design of a conical probe with forty-eight elements is realised. Based on this design a mock-up with ten elements is produced. The first practical tests with the calculated delay laws show high sensitivity for small test flaws and offer good agreement with the modelling results. The effectiveness as well as the sensitivity with a good signal to noise ratio is verified. The parameters for a short inspection time less than five minutes per axle are determined. A raw scanning with 1.5° circumferential and 2mm axial resolution is feasible within two minutes. That is significantly faster than comparable mechanically rotated probe systems. The remaining three minutes are sufficient for the other steps in the inspection process. The required features will be fulfilled by the COMPAS® phased array device. The feasibility of the ultrasonic system is shown. The specification and the theoretical probe design are complete and sufficient knowledge is present that the system will be viable. The results of the modelling and first practical tests show a good agreement with the objectives. The determined probe parameters satisfy the requirements. T2 - 1st International Conference on Railway Technology: Research, Development and Maintenance CY - Las Palmas de Gran Canaria, Spain DA - 18.04.2012 KW - Ultrasonic testing KW - Phased array KW - Rotation scanner KW - Hollow axle KW - Sleeve shaft KW - WOLAXIM PY - 2012 SN - 978-1-905088-52-2 DO - https://doi.org/10.4203/ccp.98.86 SN - 1759-3433 N1 - Serientitel: Civil-Comp Proceedings – Series title: Civil-Comp Proceedings VL - 98 SP - 1 EP - 10 PB - Civil Comp Press AN - OPUS4-26275 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pelkner, Matthias A1 - Neubauer, Andreas A1 - Reimund, Verena A1 - Kreutzbruck, Marc T1 - Routes for GMR-sensor design in non-destructive testing N2 - GMR sensors are widely used in many industrial segments such as information technology, automotive, automation and production, and safety applications. Each area requires an adaption of the sensor arrangement in terms of size adaption and alignment with respect to the field source involved. This paper deals with an analysis of geometric sensor parameters and the arrangement of GMR sensors providing a design roadmap for non-destructive testing (NDT) applications. For this purpose we use an analytical model simulating the magnetic flux leakage (MFL) distribution of surface breaking defects and investigate the flux leakage signal as a function of various sensor parameters. Our calculations show both the influence of sensor length and height and that when detecting the magnetic flux leakage of µm sized defects a gradiometer base line of 250 µm leads to a signal strength loss of less than 10% in comparison with a magnetometer response. To validate the simulation results we finally performed measurements with a GMR magnetometer sensor on a test plate with artificial µm-range cracks. The differences between simulation and measurement are below 6%. We report on the routes for a GMR gradiometer design as a basis for the fabrication of NDT-adapted sensor arrays. The results are also helpful for the use of GMR in other application when it comes to measure positions, lengths, angles or electrical currents. KW - Giant magneto resistance KW - Non-destructive testing KW - Magnetic flux leakage KW - Sensor array PY - 2012 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-271325 DO - https://doi.org/10.3390/s120912169 SN - 1424-8220 VL - 12 IS - 9 SP - 12169 EP - 12183 PB - MDPI CY - Basel AN - OPUS4-27132 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nolze, Gert A1 - Saliwan Neumann, Romeo A1 - Buchheim, Michaela T1 - Microstructure investigations of iron meteorites by EBSD and EDS analyses N2 - Meteorites are a unique and inspiring material for microstructural studies because if their very specific genesis. Iron meteorites have been formed under unimaginable cooling rates of a few ten Kelvins per million years so that the observable transformation of the formerly huge Fe-Ni single crystals of taenite occurred under nearly-equilibrium conditions. Octahedrites (meteorites having a Ni content between 6...15%) are characterized by ribbons of the low-temperature Fe-Ni phase kamacite separated by rims of residual taenite. This very specific feature is known as Widmanstaetten structure and has been investigated by synchrotron radiation in order to cover a higher volume fraction for a statistically relevant description of orientation relationships. However, plessite – a microstructure mainly consisting of the same phases – reflects the orientation relationship between kamacite and taenite as well. For their characterization, a scanning electron microscope is very suitable in order to investigate crystal orientations or identify phases. Despite the apparently ideal formation circumstances of iron meteorites, Ni concentration profiles prove non-equilibrium conditions. Combined EDS (energy dispersive spectroscopy) and EBSD (electron backscatter diffraction) measurements at a selected plessitic region of the Cape York iron shows that a correlation exists between Ni-concentration and the locally detected orientation relationship. T2 - 15th European Microscopy Congress CY - Manchester, UK DA - 16.09.2012 KW - Phase identification KW - Corrosion KW - Chloride KW - Dermbach PY - 2012 SP - 90 AN - OPUS4-37775 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kind, Thomas T1 - Ortung von Spanngliedern zum schadensfreien Bohren im Rahmen von Ertüchtigungsmaßnahmen N2 - Am Beispiel der Ertüchtigung einer Brücke in Bremen wird gezeigt, wie mit den zerstörungsfreien Prüfverfahren (ZfP) Radar- und Ultraschall die genau Lage vorgespannte Bewehrung gefunden bzw. bestätigt werden kann. Im Rahmen von Ertüchtigungsmaßnahmen an Spannbetonbrücken werden häufig Kernbohrungen durchgeführt, die die vorhandenen Spannbewehrungen nicht beschädigen dürfen. Es wird die Vorgehensweise beschrieben, wie mit ZfP ein wesentlicher Beitrag geleistet wird, das Risiko einer Beschädigung zu minimieren und somit eine bessere Planungssicherheit für die Ertüchtigungsmaßnahmen zu schaffen. Dabei werden auch die Grenzen der beiden Verfahren aufgezeigt. T2 - Fachtagung Bauwerksdiagnose 2012 - Praktische Anwendungen zerstörungsfreier Prüfungen und Zukunftsaufgaben CY - Berlin, Germany DA - 23.02.2012 KW - Radar KW - Zerstörungsfreie Prüfung KW - Stahlbeton KW - Ultraschall PY - 2012 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-398225 SN - 978-3-940283-40-5 VL - 134 (Vortrag 11) SP - 1 EP - 7 PB - Deutsche Gesellschaft für Zerstörungsfreie Prüfung (DGZfP) CY - Berlin, Germany AN - OPUS4-39822 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -