TY - CHAP A1 - Resch-Genger, Ute ED - Schäferling, Michael T1 - Luminescent nanoparticles for chemical sensing and imaging N2 - The implementation of fluorescent methods is of outstanding importance in the field of optical chemical sensor Technology and biosciences. Their bioanalytical applications are manifold including fluorescence microscopy, fluorescence in situ hybridization, DNA sequencing, fluorescence-activated cell sorting, immunoassays, analysis of DNA and Protein microarrays, and quantitative PCR, just to name a few examples. Particularly, fluorescence microscopy is a valuable method in the versatile field of biomedical imaging methods which nowadays utilizes different fluorescence Parameters like emission wavelength/Color and lifetime for the discrimination between different targets. Sectional Images are available with confocal microscopes. Tissue, cells or single cellular compartments can be stained and visualized with fluorescent dyes and biomolecules can be selectively labeled with fluorescent dyes to Monitor biomolecular interactions inside cells or at Membrane bound receptors. On the other hand , fluorophores can act as indicator (or "molecular probe") to visualize intrinsically colorless and non-fluorescent ionic and neutral analytes such as pH, Oxygen (pO2), metal ions, anions, hydrogen peroxide or bioactive small organic molecules such as Sugars or nucleotides. Thereby, their photoluminescent properties (fluorescence or phoporescence intensity, exitation and/or Emission wavelength, emission lifetime or anisotropy) respond to the presence of these species in their immediate Environment. In general, the use of luminescent probes has the advantage that they can be delivered directly into the sample, and detected in a contactless remote mode. By now, these probes are often encapsulated in different types of nanoparticles (NPs) made from (biodegradable) organic polymers, biopolymers or inorganic materials like silica or bound to their surface. KW - Fluorescence KW - Upconversion KW - NIR KW - Sensor KW - Nanoparticle KW - Surface chemistry KW - Quantum yield KW - Liftetime KW - Nanocrystal KW - Lanthanide KW - Semiconductor KW - Polymer KW - Silica KW - Imaging KW - Application KW - Dye KW - Quantum dot PY - 2017 SN - 978-3-319-48260-6 SN - 978-3-319-48259-0 U6 - https://doi.org/10.1007/978-3-319-48260-6_5 SN - 1573-8086 SP - 71 EP - 109 PB - SPRINGER INTERNATIONAL PUBLISHING AG CY - Cham, Schweiz AN - OPUS4-44011 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Telgmann, L. A1 - Lindner, U. A1 - Lingott, J. A1 - Jakubowski, Norbert ED - Prof. Dr. Golloch, Alfred T1 - Analysis and speciation of lanthanoides by ICP-MS N2 - Inductively coupled plasma mass spectrometry (ICP-MS) is based on formation of positively charged atomic ions in a high-frequency inductively coupled Argon plasma at atmospheric pressure. The ions are extracted and transferred from the plasma source into a mass analyzer operated at high vacuum via an interface equipped with a sampling and a skimmer cone. The ions are separated in the mass analyzer according to their charge to mass ratio. The ions are converted at a conversion dynode and are detected by use of a secondary electron multiplier or a Faraday cup. From an analytical point of view, ICP-MS is a well-established method for multi-elemental analysis in particular for elements at trace- and ultra-trace levels. Furthermore, methods based on ICP-MS offer simple quantification concepts, for which usually (liquid) standards are applied, low matrix effects compared to other conventional analytical techniques, and relative limits of detection (LODs) in the low pg g−1 range and absolute LODs down to the attomol range. For these applications, ICP-MS excels by a high sensitivity which is independent of the molecular structure and a wide linear dynamic range. It has found acceptance in various application areas and during the last decade ICP-MS is also more and more applied for detection of rare earth elements particularly in the life sciences. Due to the fact that all molecules introduced into the high temperature of the plasma in the ion source were completely dissociated and broken down into atoms, which are subsequently ionized, all elemental species information is completely lost. However, if the different species are separated before they enter the plasma by using adequate fractionation or separation techniques, then ICP-MS can be used as a very sensitive element-specific detector. We will discuss this feature of ICP-MS in this chapter in more detail at hand of the speciation of gadolinium-containing contrast agents. KW - Analysis of lanthanoides KW - ICP-MS KW - Speciation of Gd-containing MRI contrast agents PY - 2017 SN - 978-3-11-036523-8 SP - Chapter 5, 124 EP - 144 PB - De Gruyter AN - OPUS4-40238 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Müller, L. A1 - Traub, Heike A1 - Jakubowski, Norbert ED - Prof. Dr. Golloch, Alfred T1 - Novel applications of lanthanoides as analytical or diagnostic tools in the life sciences by ICP-MS-based techniques N2 - Inductively coupled plasma mass spectrometry (ICP-MS) is a well-established analytical method for multi-elemental analysis in particular for elements at trace and ultra-trace levels. It has found acceptance in various application areas during the last decade. ICP-MS is also more and more applied for detection in the life sciences. For these applications, ICP-MS excels by a high sensitivity, which is independent of the molecular structure of the analyte, a wide linear dynamic range and by excellent multi-element capabilities. Furthermore, methods based on ICP-MS offer simple quantification concepts, for which usually (liquid) standards are applied, low matrix effects compared to other conventional bioanalytical techniques, and relative limits of detection (LODs) in the low pg g−1 range and absolute LODs down to the attomol range. In this chapter, we focus on new applications where the multi-element capability of ICP-MS is used for detection of lanthanoides or rare earth elements, which are applied as elemental stains or tags of biomolecules and in particular of antibodies. KW - ICP-MS KW - Life sciences KW - Mass cytometry KW - Laser ablation (LA)-ICP-MS KW - Bioimaging PY - 2017 SN - 978-3-11-036523-8 SP - Chapter 11, 301 EP - 320 PB - De Gruyter AN - OPUS4-40244 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Pelkner, Matthias A1 - Kreutzbruck, Marc ED - Fermon, C. ED - Van de Voorde, M. H. T1 - Spin Electronics for Non Destructive Testing N2 - Electromagnetic methods are widely used in Non-destructive Testing industries (NDT). In order to meet the requirements, safety-relevant products and structures have to be tested reliably during production or within subsequent maintenance cycles. For this purpose industrial users call for adapted testing methods which allow the detection of relevant defects such as cracks and pore in ferromagnetic or conductive materials. Automated testing systems and the application of sensor arrays are of great interest in order to enhance inspection quality and to decrease testing time and costs. Magneto resistance (MR) sensors like giant magneto resistance (GMR) or tunnel magneto resistance sensor (TMR) have proofed their suitability in many NDT-applications due to their extraordinary properties which combine high field sensitivity, a high spatial resolution and low costs. Due to their small size these sensors can be useful – in addition to the pure detection task – for a more detailed defect characterization and defect reconstruction providing defect size, orientation and geometry. This chapter gives a brief introduction of electromagnetic testing methods, i.e., magnetic particle inspection (MPI) and eddy current testing (ET), followed by two different approaches for which MR sensor arrays were successfully adapted. KW - Magneto resistance KW - GMR KW - TMR KW - Non-destructive testing KW - Magnetic flux leakage KW - Eddy current PY - 2017 SN - 978-3-527-33985-3 SP - 81 EP - 102 PB - Wiley-VCH Verlag GmbH & Co. KGaA CY - Weinheim AN - OPUS4-41463 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Rhode, Michael A1 - Münster, C. A1 - Mente, Tobias A1 - Böllinghaus, Thomas ED - Somerday, B.P. ED - Sofronis, P. T1 - Influence of experimental conditions and calculation method on hydrogen diffusion coefficient evaluation at elevated temperatures N2 - Literature provides a wide range of hydrogen diffusion coefficients for low alloyed steels used in power plants. In fact, experimental boundary conditions and calculation methods have influence on the determination of these coefficients. The diffusion and trapping behavior in creep-resistant steel 7CrMoVTiB10-10 has been studied. Based on experimental carrier gas hot extraction (CGHE) data, a numerical model has been developed to describe the hydrogen transport and respective hydrogen distribution at elevated temperatures. The numerical results suggest that common calculation methods for diffusion coefficients are limited for experimental data analysis. The sample preparation time before CGHE experiment influences the determined diffusion coefficients with the consequence that non-homogeneous hydrogen concentration profiles have to be considered in the simulations. KW - Temperature effect KW - Hydrogen diffusion KW - Creep-resistant steel KW - Hydrogen assisted cracking KW - Carrier gas hot extraction PY - 2017 SN - 978-0-7918-6138-7 U6 - https://doi.org/10.1115/1.861387_ch56 SP - 495 EP - 503 PB - ASME CY - New York, USA ET - 1 AN - OPUS4-42502 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Zscherpel, Uwe A1 - Ewert, Uwe ED - Russo, Paolo T1 - Handbook of X-ray imaging: Physics and technology N2 - Industrial Radiology is used for volumetric inspection of industrial objects. By penetration of these objects (typically weldments, pipes or castings) with X-ray or Gamma radiation the 3D-volume is projected onto a 2D image detector. The X-ray film is the oldest radiographic image detector and still in wide use in industry. The industrial X-ray film systems used today differ from these used in medicine. Medical film systems are described well in the literature, but industrial film systems not. So we start with a description of the properties and standards for industrial film systems. The requirements on image quality are defined by several standards and can be verified with different image quality indicators (IQIs). They describe the ability of the human being to detect small and low contrast indications in a noisy image background. The essential parameters for digital industrial radiology are described. Since about 30 years electronic image detectors are gradually replacing the industrial film. These detectors are based on storage phosphor imaging plates in combination with Laser scanners (“Computed Radiography”, CR) or a variety of different digital detector arrays (DDA). Typical applications of CR and DDAs are discussed as well as new possibilities by digital image processing, which is enabled by the computer based image handling, processing and analysis. KW - Industrial radiology KW - Industrial radiography KW - NDT films KW - Computed radiography KW - Digital detector arrays PY - 2018 SN - 978-1-4987-4152-1 SP - Chapter 30, 595 EP - 617 PB - CRC Press CY - Boca Raton, FL, USA AN - OPUS4-44026 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Lisec, Jan A1 - Jaeger, C. ED - Antonio, C. T1 - Statistical and Multivariate Analysis of MS-Based Plant Metabolomics Data N2 - Raw data from metabolomics experiments are initially subjected to peak identification and signal deconvolution to generate raw data matrices m × n, where m are samples and n are metabolites. We describe here simple statistical procedures on such multivariate data matrices, all provided as functions in the programming environment R, useful to normalize data, detect biomarkers, and perform sample classification. KW - Mass-Spectrometry KW - Multivariate Statistics PY - 2018 SN - 978-1-4939-7819-9 SN - 978-1-4939-7818-2 U6 - https://doi.org/10.1007/978-1-4939-7819-9_20 SN - 1064-3745 SN - 1940-6029 VL - 1778 SP - Chapter 20, 285 EP - 296 PB - Springer-Verlag AN - OPUS4-45492 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Schönhals, Andreas A1 - Frick, B. A1 - Zorn, R. ED - Kremer, Friedrich ED - Loidl, Alois T1 - The scaling of the molecular dynamics of liquid crystals as revealed by broadband dielectric, specific heat, and neutron spectroscopy N2 - A combination of different complementary methods is employed to investigate scaling of the molecular dynamics of two different liquid crystals. Each method is sensitive to different kind of fluctuations and provides therefore a different window to look at the molecular dynamics. In detail, broadband dielectric spectroscopy is combined with specific heat spectroscopy and neutron scattering. As systems the nematic liquid crystal E7 and a discotic liquid crystalline pyrene are considered. First of all it was proven that both systems show all peculiarities which are characteristic for glassy dynamics and the glassy state. Especially for the nematic liquid crystal E7 it could be unambiguously shown by a combination of dielectric and specific heat spectroscopy that the tumbling mode is the underlying motional process responsible for glassy dynamics. Dielectric investigations on the discotic liquid crystalline pyrene reveal that at the phase transition from the plastic crystalline to the hexagonal columnar liquid crystalline phase the molecular dynamics changes from a more strong to fragile temperature dependence of the relaxation rates. Moreover a combination of results obtained by specific heat spectroscopy with structural methods allows an estimation of the length scale relevant for the glass transition. KW - Broadband dielectric spectroscopy KW - Specific heat spectroscopy KW - Rod-like liquid crystals KW - Discotic liquid crystals PY - 2018 UR - https://link.springer.com/content/pdf/10.1007%2F978-3-319-72706-6.pdf SN - 978-3-319-72705-9 SN - 978-3-319-72706-6 U6 - https://doi.org/10.1007/978-3-319-72706-6_9 SN - 2190-930X SN - 2190-9318 SP - 279 EP - 306 PB - Springer International publishing AG CY - Cham, Switzerland ET - 1. AN - OPUS4-45624 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Radnik, Jörg ED - Wandelt, K. T1 - X-ray photoelectron spectroscopy for investigation of heterogeneous catalytic process N2 - Heterogeneous catalysis is a key technology in modern industrial societies. The main steps of a catalytic process take place at the surfaces of complex materials. For the investigations of these surfaces X-ray photoelectron spectroscopy is widely used and fits ideally. At some suitable examples, it will be explained how XPS can help to understand such catalysts better. The focus is on selective oxidation catalysts, one of the main challenges of present research. Here it will illustrate, how changes in the near surface region influence the catalyst performance and, herewith the different stages (activation, maximum performance and deactivation) in the life of catalysts. Additionally, it will be stressed out how important information at different depth regions (surface, near-surface region, bulk) can be useful for comprehensive understanding of the material. Another important subject is nanostructured catalysts with molecular sieves as supports or defined complexes as precursors. Finally, the combination of XPS with other methods used in the analysis of catalysts, e.g. electron microscopy, X-ray absorption spectroscopy and low energy ion scattering will be discussed. KW - X-ray photoelectron spectroscopy KW - Depth information KW - Heterogeneous catalysis KW - Structure-properties relationships PY - 2018 SN - 978-0-12-809739-7 VL - 1 SP - 607 EP - 614 PB - Elsevier AN - OPUS4-44876 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Liehr, Sascha ED - Peng, G.D. T1 - Polymer fiber sensors for structural and civil engineering applications N2 - This chapter gives an overview about polymer optical fiber (POF) sensors with the focus on structural and civil engineering applications. POF properties such as the high-strain range, the low Young’s modulus, and specific scattering effects open new fields for fiber-optic sensing applications. POF properties, sensitivities, and cross-sensitivities that are relevant for sensing are introduced. Advantages and limitations are discussed. State-of-the-art POF sensors and application examples are presented in subsections with regard to their underlying measurement principles. KW - Optical fiber sensors KW - Polymer optical fibers (POF) KW - Structural health monitoring KW - Distributed sensor PY - 2018 UR - https://link.springer.com/referenceworkentry/10.1007%2F978-981-10-1477-2_3-1 SN - 978-981-10-1477-2 U6 - https://doi.org/10.1007/978-981-10-1477-2_3-1 SP - 1 EP - 36 PB - Springer Nature CY - Singapore AN - OPUS4-45754 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -