TY - JOUR A1 - Henning, L. M. A1 - Müller, J. T. A1 - Smales, Glen Jacob A1 - Pauw, Brian Richard A1 - Schmidt, J. A1 - Bekheet, M. F. A1 - Gurlo, A. A1 - Simon, U. T1 - Hierarchically porous and mechanically stable monoliths from ordered mesoporous silica and their water filtration potential N2 - Mechanically stable structures with interconnected hierarchical porosity combine the benefits of both small and large pores, such as high surface area, pore volume, and good mass transport capabilities. Hence, lightweight micro-/meso-/macroporous monoliths are prepared from ordered mesoporous silica COK-12 by means of spark plasma sintering (SPS, S-sintering) and compared to conventionally (C-) sintered monoliths. A multi-scale model is developed to fit the small angle X-ray scattering data and obtain information on the hexagonal lattice parameters, pore sizes from the macro to the micro range, as well as the dimensions of the silica population. For both sintering techniques, the overall mesoporosity, hexagonal pore ordering, and amorphous character are preserved. The monoliths' porosity (77–49%), mesopore size (6.2–5.2 nm), pore volume (0.50–0.22 g cm-3 ), and specific surface area (451–180 m2 g-1) decrease with increasing processing temperature and pressure. While the difference in porosity is enhanced, the structural parameters between the C-and S-sintered monoliths are largely converging at 900 C, except for the mesopore size and lattice parameter, whose dimensions are more extensively preserved in the S-sintered monoliths, however, coming along with larger deviations from the theoretical lattice. Their higher mechanical properties (biaxial strength up to 49 MPa, 724 MPa HV 9.807 N) at comparable porosities and ability to withstand ultrasonic treatment and dead-end filtration up to 7 bar allow S-sintered monoliths to reach a high permeance (2634 L m-2 h-1 bar-1), permeability (1.25 x 10^-14 m2), and ability to reduce the chemical oxygen demand by 90% during filtration of a surfactant-stabilized oil in water emulsion, while indicating reasonable resistance towards fouling. KW - SAXS KW - Hierarchically porous KW - Silica KW - Water filtration PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-555928 DO - https://doi.org/10.1039/D2NA00368F SN - 2516-0230 SP - 1 EP - 17 PB - Royal Society of Chemistry CY - Cambridge AN - OPUS4-55592 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hoevelmann, J. A1 - Stawski, T. M. A1 - Besselink, R. A1 - Freeman, H. M. A1 - Dietmann, K. M. A1 - Mayanna, S. A1 - Pauw, Brian Richard A1 - Benning, L. G. T1 - A template-free and low temperature method for the synthesis of mesoporous magnesium phosphate with uniform pore structure and high surface area N2 - Mesoporous phosphates are a group of nanostructured materials with promising applications, particularly in biomedicine and catalysis. However, their controlled synthesis via conventional template-based routes presents a number of challenges and limitations. Here, we show how to synthesize a mesoporous Magnesium phosphate with a high surface area and a well-defined pore structure through thermal decomposition of a crystalline struvite (MgNH4PO4·6H2O) precursor. In a first step, struvite crystals with various morphologies and sizes, ranging from a few micrometers to several millimeters, had been synthesized from supersaturated aqueous solutions (saturation index (SI) between 0.5 and 4) at ambient pressure and temperature conditions. Afterwards, the crystals were thermally treated at 70–250 °C leading to the release of structurally bound water (H2O) and ammonia (NH3). By combining thermogravimetric analyses (TGA), scanning and transmission electron microscopy (SEM, TEM), N2 sorption analyses and small- and wide-angle X-ray scattering (SAXS/WAXS) we show that this decomposition process results in a pseudomorphic transformation of the original struvite into an amorphous Mg-phosphate. Of particular importance is the fact that the final material is characterized by a very uniform mesoporous structure with 2–5 nm wide pore channels, a large specific surface area of up to 300 m2 g−1 and a total pore volume of up to 0.28 cm3 g−1. Our struvite decomposition method is well controllable and reproducible and can be easily extended to the synthesis of other mesoporous phosphates. In addition, the so produced mesoporous material is a prime candidate for use in biomedical applications considering that Magnesium phosphate is a widely used, non-toxic substance that has already shown excellent biocompatibility and biodegradability. KW - Struvite KW - SAXS KW - Scattering KW - Nanoporous KW - Geology PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-477130 DO - https://doi.org/10.1039/c8nr09205b VL - 11 IS - 14 SP - 6939 EP - 6951 PB - Royal Society of Chemistry AN - OPUS4-47713 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hollamby, M. J. A1 - Aratsu, K. A1 - Pauw, Brian Richard A1 - Rogers, S. E. A1 - Smith, A. J. A1 - Yamauchi, M. A1 - Lin, X. A1 - Yagai, S. T1 - Simultaneous SAXS and SANS Analysis for the Detection of Toroidal Supramolecular Polymers Composed of Noncovalent Supermacrocycles in Solution N2 - Molecular self-assembly primarily occurs in solution. To better understand this process, techniques capable of probing the solvated state are consequently required. Smallangle scattering (SAS) has a proven ability to detect and characterize solutions, but it is rarely applied to more complex assembly shapes. Here, small-angle X-ray and neutron scattering are applied to observe toroidal assemblies in solution. Combined analysis confirms that the toroids have a core–shell structure, with a p-conjugated core and an alkyl shell into which solvent penetrates. The dimensions determined by SAS agree well with those obtained by (dried-state) atomic force microscopy. Increasing the number of naphthalene units in the molecular building block yields greater rigidity, as evidenced by a larger toroid and a reduction in solvent penetration into the shell. The detailed structural analysis demonstrates the applicability of SAS to monitor complex solution-based selfassembly. KW - Nanorings KW - Self-assembly KW - Small-angle scattering KW - Supramolecular chemistry KW - Toroids PY - 2016 DO - https://doi.org/10.1002/anie.201603370 SN - 1433-7851 SN - 1521-3773 IS - 128 SP - 10044 EP - 10047 PB - Wiley-VCH Verlag GmbH CY - Weinheim AN - OPUS4-37144 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Huang, J. A1 - Tarábek, J. A1 - Kulkarni, R. A1 - Wang, Cui A1 - Dračínský, M. A1 - Smales, Glen Jacob A1 - Pauw, Brian Richard A1 - Resch-Genger, Ute A1 - Bojdys, M. J. T1 - A π-conjugated, covalent phosphinine framework N2 - Structural modularity of polymer frameworks is a key advantage of covalent organic polymers, however, only C, N, O, Si and S have found their way into their building blocks so far. Here, we expand the toolbox available to polymer and materials chemists by one additional nonmetal, phosphorus. Starting with a building block that contains a λ⁵‐phosphinine (C₅P) moiety, we evaluate a number of polymerisation protocols, finally obtaining a π‐conjugated, covalent phosphinine‐based framework (CPF‐1) via Suzuki‐Miyaura coupling. CPF‐1 is a weakly porous polymer glass (72.4 m2 g‐1 N2 BET at 77 K) with green fluorescence (λmax 546 nm) and extremely high thermal stability. The polymer catalyzes hydrogen evolution from water under UV and visible light irradiation without the need for additional co‐catalyst at a rate of 33.3 μmol h‐¹ g‐¹. Our results demonstrate for the first time the incorporation of the phosphinine motif into a complex polymer framework. Phosphinine‐based frameworks show promising electronic and optical properties that might spark future interest in their applications in light‐emitting devices and heterogeneous catalysis. KW - Phosphinine KW - Fully aromatic frameworks KW - Suzuki-Miyaura coupling KW - Polymers KW - Fluorescence KW - Small-angle scattering PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-485330 DO - https://doi.org/10.1002/chem.201900281 SP - 2 EP - 10 PB - Wiley VCH-Verlag CY - Weinheim AN - OPUS4-48533 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hunter, R. D. A1 - Hayward, E. C. A1 - Smales, Glen Jacob A1 - Pauw, Brian Richard A1 - Kulak, A. A1 - Guan, S. A1 - Schnepp, Z. T1 - The effect of nitrogen on the synthesis of porous carbons by iron-catalyzed graphitization N2 - This paper reports a systematic study into the effect of nitrogen on iron-catalyzed graphitization of biomass. Chitin, chitosan, N-acetylglucosamine, gelatin and glycine were selected to represent nitrogen-rich saccharides and amino-acid/polypeptide biomass precursors. The materials were pyrolyzed with an iron catalyst to produce carbons with a wide range of chemical and structural features such as mesoporosity and nitrogen-doping. Many authors have reported the synthesis of nitrogen-doped carbons by pyrolysis and these have diverse applications. However, this is the first systematic study of how nitrogen affects pyrolysis of biomass and importantly the catalytic graphitization step. Our data demonstrates that nitrogen inhibits graphitization but that some nitrogen survives the catalytic graphitization process to become incorporated into various chemical environments in the carbon product. KW - Graphitization KW - Nanoparticles KW - Nanocomposite KW - Porous carbon KW - Nitrogen KW - Scattering PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-575351 DO - https://doi.org/10.1039/d3ma00039g VL - 4 SP - 2070 EP - 2077 PB - Royal Society of Chemistry AN - OPUS4-57535 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Krauss, S. W. A1 - Eckardt, M. A1 - Will, J. A1 - Spiecker, E. A1 - Siegel, R. A1 - Dulle, M. A1 - Schweins, R. A1 - Pauw, Brian Richard A1 - Senker, J. A1 - Zobel, M. T1 - H-D-isotope effect of heavy water affecting ligand-mediated nanoparticle formation in SANS and NMR experiments N2 - An isotopic effect of normal (H2O) vs. heavy water (D2O) is well known to fundamentally affect structure and chemical properties of proteins, for instance. Here we correlate results from small angle X-ray and neutron scattering (SAXS, SANS) with high-resolution scanning transmission electron microscopy to track the evolution of CdS nanoparticle size and crystallinity from aqeuous solution in presence of the organic ligand ethylenediaminetetraacetate (EDTA) at room temperature in both H2O and D2O. We provide evidence via SANS experiments that exchanging H2O by D2O impacts nanoparticle formation by changing the equilibria and dynamics of EDTA clusters in solution as investigated by nuclear magnetic resonance. The colloidal stability of the CdS nanoparticles, covered by a layer of [Cd(EDTA)]2- complexes, is significantly reduced in D2O despite the strong stabilizing effect of EDTA in suspensions of normal water. Hence, conclusions about nanoparticle formation mechanisms from D2O solutions can bare limited transferability to reactions in normal water due to isotopic effects, which thus need to be discussed for contrast match experiments. KW - General Materials Science KW - Quantum dots KW - CdS KW - Deuterium KW - X-ray scattering KW - MOUSE PY - 2023 DO - https://doi.org/10.1039/D3NR02419A SN - 2040-3364 VL - 15 IS - 40 SP - 16413 EP - 16424 PB - Royal Society of Chemistry (RSC) AN - OPUS4-58294 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pauw, Brian Richard A1 - Smales, Glen Jacob T1 - A quick intro to our NeXus format… N2 - A brief introduction is given into our data collection and organization procedure, and why we have settled on the HDF5-based NeXus format for describing experimental data. The links between NeXus and the SciCat data catalog is also provided, showing how the NeXus metadata is automatically added as searchable metadata in the catalog. T2 - NFDI NeXus Workshop CY - Online meeting DA - 17.03.2022 KW - Data management KW - Measurement organization KW - Measurement data KW - NFDI KW - FAIR KW - Open access KW - Data mining KW - Data tagging KW - Automated data tagging PY - 2022 AN - OPUS4-54823 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Pauw, Brian Richard T1 - dataMerge V0.1 - A statistics-aware binning and merging backend N2 - A tool for merging and/or rebinning single or multiple datasets to achieve a lower point density with best possible statistics. highly scriptable, CLI, no GUI Version 0.1: works but could do with a cleanup. Weighting by uncertainty currently always on, but should be optional for use as an azimuthal or radial averager KW - X-ray science KW - Image averaging KW - Dataset merging KW - Photon counting detectors KW - SAXS KW - SANS KW - X-ray scattering KW - X-ray diffraction PY - 2022 DO - https://doi.org/10.6084/m9.figshare.21591360 PB - Digital Science CY - Cambridge, MA, USA AN - OPUS4-56340 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pauw, Brian Richard A1 - Smales, Glen Jacob T1 - What is in X-ray scattering Data? An overview of features. N2 - During the Better with Scattering 2021 workshop, we discuss what information can be obtained from an X-ray scattering pattern. Examples of structural features and their physical expression in scattering patterns are demonstrated. T2 - Better with Scattering workshop 2021 CY - Online meeting DA - 29.11.2021 KW - Scattering KW - SAXS KW - X-ray scattering KW - Data analysis KW - Data interpretation KW - Fourier transforms PY - 2021 AN - OPUS4-54011 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pauw, Brian Richard A1 - Smales, Glen Jacob T1 - X-ray Scattering for Nanostructure Quantification, and the Quest for the Perfect Experiment N2 - Compared to the clear, real-space images you can get from electron microscopy, X-ray scattering patterns are rather featureless. These patterns, however, contain structural information from all of the material structure illuminated by the X-ray beam. With this technique, you can measure nanoparticle dispersions, catalysts, composites, MOF powders, battery materials, light metal alloys and gels to reveal information on the structural features found within these materials. We have even measured many such materials for several research groups from the University of Birmingham, revealing structure features in the sub-nm to the micrometer range. Measuring an X-ray scattering pattern is relatively easy, but measuring a high-quality, useful pattern requires significant effort and good laboratory organization. Such laboratory organization can help address the reproducibility crisis in science, and easily multiply the scientific output of a laboratory, while greatly elevating the quality of the measurements. We have demonstrated this for small- and wide-angle X-ray scattering in the MOUSE project (Methodology Optimization for Ultrafine Structure Exploration) [1]. With the MOUSE, we have combined: a) a comprehensive and highly automated laboratory workflow with b) a heavily modified X-ray scattering instrument. This combination allows us to collect fully traceable scattering data, within a well-documented, FAIR-compliant data flow (akin to what is found at the more automated synchrotron beamlines). With two full-time researchers, our lab collects and interprets thousands of datasets, on hundreds of samples, for dozens of projects per year, supporting many users along the entire process from sample selection and preparation, to the analysis of the resulting data. T2 - School of Chemistry Seminars CY - Birmingham, UK DA - 10.11.2021 KW - X-ray scattering KW - MOUSE KW - Instrumentation KW - SAXS KW - Methodology KW - Nanostructure PY - 2021 UR - https://www.youtube.com/watch?v=N2kY4wbqeM4 AN - OPUS4-53810 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -