TY - CONF A1 - Tahri, K. A1 - Tiebe, Carlo A1 - Bougrini, M. A1 - Saidi, T. A1 - El Alami-El Hassani, N. A1 - El Bari, N. A1 - Hübert, Thomas A1 - Bouchikhi, B. T1 - Determination of safranal concentration in saffron samples by means of VE-tongue, SPME-GC-MS, UV-vis spectrophotometry and multivariate analysis T2 - Proceedings of IEEE Sensors 2015 N2 - An experimental investigation has been carried out to characterize and discriminate seven saffron samples and to verify their declared geographical origin using a voltammetric electronic tongue (VE-tongue). The ability of multivariable analysis methods such as Principal Component Analysis (PCA), Hierarchical Cluster Analysis (HCA) to classify the saffron samples according to their geographical origin have been investigated. A good discrimination has reached using PCA and HCA in the VE-tongue characterization case. Furthermore, cross validation and Partial Least Square (PLS) techniques were applied in order to build suitable management and prediction models for the determination of safranal concentration in saffron samples based on SPME-GC-MS and UV-Vis Spectrophotometry. The obtained results reveals that some relationships were established between the VE-tongue signal, SPMEGC-MS and UV-Vis spectrophotometry methods to predict safranal concentration levels in saffron samples by using the PLS model. In the light of these results, we can say that the proposed electronic system offer a fast, simple and efficient tool to recognize the declared geographical origin of the saffron samples. T2 - IEEE Sensor 2015 CY - Busan, South Korea DA - 01.11.2015 KW - Chemometrics KW - Voltammetric electronic tongue KW - SPME-GC-MS KW - UV-vis Spectrometry KW - Saffron KW - Geographic differentiation PY - 2015 SN - 978-1-4799-8202-8 VL - CFP15SEN-USB SP - 68 EP - 71 PB - IEEE CY - Piscataway AN - OPUS4-36545 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kardjilov, N. A1 - Hilger, A. A1 - Manke, I. A1 - Banhart, J. A1 - Griesche, Axel T1 - Imaging with Cold Neutrons at the CONRAD-2 Facility T2 - Physics Procedia N2 - CONRAD-2 is an imaging instrument using low-energy (cold) neutrons. The instrument is installed at the end of a curved neutron guide which avoids the direct line of sight towards the reactor core. This ensures a very low background of high-energy neutrons and. photons at the sample position. The cold neutron beam provides a wavelength range which is suitable for phase-and diffraction-contrast imaging such as grating interferometry and Bragg edge mapping. The instrument is well suited for high resolution imaging due to the high efficiency of the very thin scintillators that can be used for the detection of cold neutrons. An instrument upgrade was performed recently as a part of an upgrade program for the cold neutron instrumentation at HZB. The parameters of the instrument as well as some research highlights will be presented. T2 - 10th World Conference on Neutron Radiography (WCNR) CY - Grindelwald, SWITZERLAND DA - 05.10.2014 KW - iron embrittlement KW - neutron imaging KW - neutron instrumentation KW - cold neutrons PY - 2015 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-373239 DO - https://doi.org/10.1016/j.phpro.2015.07.008 SN - 1875-3892 VL - 69 SP - 60 EP - 66 PB - Elsevier B.V. CY - Amsterdam, NL AN - OPUS4-37323 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hartmann, S. A1 - Shaporin, A. A1 - Hermann, S. A1 - Bonitz, J. A1 - Heggen, M. A1 - Meszmer, P. A1 - Sturm, Heinz A1 - Hölck, O. A1 - Blaudeck, T. A1 - Schulz, S. E. A1 - Mehner, J. A1 - Gessner, T. A1 - Wunderle, B. T1 - Towards nanoreliability of CNT-based sensor applications: Investigations of CNT-metal interfaces combining molecular dynamics simulations, advanced in situ experiments and analytics T2 - 2015 16th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems N2 - In this paper we present results of our recent efforts to understand the mechanical interface behaviour of single-walled carbon nanotubes (CNTs) embedded in metal matrices. We conducted experimental pull-out tests of CNTs embedded in Pd or Au and found Maximum forces in the range 10 - 102 nN. These values are in good agreement with forces obtained from molecular Dynamics simulations taking into account surface functional Groups (SFGs) covalently linked to the CNT material. The dominant failure mode in experiment is a CNT rupture, which can be explained with the presence of SFGs. To qualify the existence of SFGs on our used CNT material, we pursue investigations by means of fluorescence labeling of surface species in combination with Raman imaging. We also report of a tensile test system to perform pull-out tests inside a transmission electron microscope to obtain in situ images of CNT-metal interfaces under mechanical loads at the atomic scale. T2 - 2015 16th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems CY - Budapest, Hungary DA - 20.4.2015 KW - Carbon nanotube CNT KW - Metal matrix KW - Pull-out test KW - Molecular dynamics simulation KW - Surface functional groups KW - Fluorescence labeling KW - Raman imaging KW - Tensile test inside a TEM PY - 2015 SN - 978-1-4799-9950-7 VL - 2015 SP - 1 EP - 8 PB - IEEE AN - OPUS4-37625 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pascual, L. A1 - Baroja, I. A1 - Aznar, E. A1 - Sancenón, F. A1 - Marcos, M. Dolores A1 - Murguía, J.R. A1 - Amorós, P. A1 - Rurack, Knut A1 - Martínez-Mánez, Ramon T1 - Oligonucleotide-capped mesoporous silica nanoparticles as DNA-responsive dye delivery systems for genomic DNA detection JF - Chemical communications N2 - New hybrid oligonucleotide-capped mesoporous silica nanoparticles able to detect genomic DNA were designed. KW - Gesteuerte Materialien KW - Mycoplasma KW - Mesoporöse Träger KW - Sonden KW - DNA PY - 2015 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-321357 UR - http://pubs.rsc.org/en/content/articlepdf/2015/cc/c4cc08306g DO - https://doi.org/10.1039/C4CC08306G SN - 0022-4936 SN - 0009-241x SN - 1359-7345 SN - 1364-548x VL - 51 IS - 8 SP - 1414 EP - 1416 PB - Royal Society of Chemistry CY - Cambridge AN - OPUS4-32135 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mery, D. A1 - Riffo, V. A1 - Zscherpel, Uwe A1 - Mondragon, G. A1 - Lillo, I. A1 - Zuccar, I. A1 - Lobel, H. A1 - Carrasco, M. T1 - GDXray: The Database of X-ray Images for Nondestructive Testing JF - Journal of Nondestructive Evaluation N2 - In this paper, we present a new dataset consisting of 19,407 X-ray images. The images are organized in a public database called GDXray that can be used free of charge, but for research and educational purposes only. The database includes five groups of X-ray images: castings, welds, baggage, natural objects and settings. Each group has several series, and each series several X-ray images. Most of the series are annotated or labeled. In such cases, the coordinates of the bounding boxes of the objects of interest or the labels of the images are available in standard text files. The size of GDXray is 3.5 GB and it can be downloaded from our website. We believe that GDXray represents a relevant contribution to the X-ray testing community. On the one hand, students, researchers and engineers can use these X-ray images to develop, test and evaluate image analysis and computer vision algorithms without purchasing expensive X-ray equipment. On the other hand, these images can be used as a benchmark in order to test and compare the performance of different approaches on the same data. Moreover, the database can be used in the training programs of human inspectors. KW - Data base KW - NDT KW - RT KW - Digital image catalogues KW - Security PY - 2015 DO - https://doi.org/10.1007/s10921-015-0315-7 SN - 0195-9298 VL - 34 IS - 4 SP - 34 EP - 42 PB - Springer Verlag CY - Heidelberg AN - OPUS4-37732 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fischer, Franziska A1 - Scholz, G. A1 - Batzdorf, Lisa A1 - Wilke, Manuel A1 - Emmerling, Franziska T1 - Synthesis, structure determination, and formation of a theobromine: oxalic acid 2:1 cocrystal JF - CrystEngComm N2 - The structure and the formation pathway of a new theobromine : oxalic acid (2 : 1) cocrystal are presented. The cocrystal was synthesised mechanochemically and its structure was solved based on the powder X-ray data. The mechanochemical synthesis of this model compound was studied in situ using synchrotron XRD. Based on the XRD data details of the formation mechanism were obtained. The formation can be described as a self-accelerated ('liquid like') process from a highly activated species. KW - ssNMR spectroscopy KW - Synchrotron measurements KW - API molecule PY - 2015 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-331567 DO - https://doi.org/10.1039/c4ce02066a SN - 1466-8033 VL - 17 IS - 4 SP - 824 EP - 829 CY - London, UK AN - OPUS4-33156 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kramer, Claus A1 - Ried, Peter A1 - Mahn, Stefan A1 - Richter, Silke A1 - Langhammer, Nicole A1 - Kipphardt, Heinrich T1 - Design and application of a versatile gas calibration for non-metal determination by carrier gas hot extraction JF - Analytical methods N2 - In carrier gas hot extraction the calibration of low amounts of non-metals with masses of a few micrograms with small uncertainty remains a challenge. To achieve high flexibility a high precision gas mixture pump was combined with an automated syringe drive. The gas mixing pump allows filling the syringe with different gas compositions; the automated syringe drive allows matching to modulate the signal profiles to those of real samples. The system was designed and its experimental potential explored. The resulting calibration curves were comparable to those obtained by calibration using solid materials of sufficient purity and stoichiometry. However smaller uncertainties and lower limits of quantification (i.e. 0.5 µg and 0.6 µg for O and N, respectively) were found using the gas calibration device. KW - Non-metal determination KW - CGHE KW - Gas calibration PY - 2015 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-336130 DO - https://doi.org/10.1039/c5ay00845j SN - 1759-9660 SN - 1759-9679 VL - 7 IS - 13 SP - 5468 EP - 5475 PB - RSC Publ. CY - Cambridge AN - OPUS4-33613 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wilhelm, Stefan A1 - Kaiser, Martin A1 - Würth, Christian A1 - Heiland, J. A1 - Carrillo-Carrion, C. A1 - Muhr, V. A1 - Wolfbeis, Otto S. A1 - Parak, W.J. A1 - Resch-Genger, Ute A1 - Hirsch, T. T1 - Water dispersible upconverting nanoparticles: effects of surface modification on their luminescence and colloidal stability JF - Nanoscale N2 - We present a systematic study on the effect of surface ligands on the luminescence properties and colloidal stability of β-NaYF4:Yb3+,Er3+ upconversion nanoparticles (UCNPs), comparing nine different surface coatings to render these UCNPs water-dispersible and bioconjugatable. A prerequisite for this study was a large-scale synthetic method that yields ~2 g per batch of monodisperse oleate-capped UCNPs providing identical core particles. These ~23 nm sized UCNPs display an upconversion quantum yield of ~0.35% when dispersed in cyclohexane and excited with a power density of 150 W cm-2, underlining their high quality. A comparison of the colloidal stability and luminescence properties of these UCNPs, subsequently surface modified with ligand exchange or encapsulation protocols, revealed that the ratio of the green (545 nm) and red (658 nm) emission bands determined at a constant excitation power density clearly depends on the surface chemistry. Modifications relying on the deposition of additional (amphiphilic) layer coatings, where the initial oleate coating is retained, show reduced non-radiative quenching by water as compared to UCNPs that are rendered water-dispersible via ligand exchange. Moreover, we could demonstrate that the brightness of the upconversion luminescence of the UCNPs is strongly affected by the type of surface modification, i.e., ligand exchange or encapsulation, yet hardly by the chemical nature of the ligand. KW - upconverting nanoparticles (UCNPs) KW - Luminescence KW - surface modification PY - 2015 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-324071 DO - https://doi.org/10.1039/c4nr05954a SN - 2040-3364 SN - 2040-3372 VL - 7 IS - 4 SP - 1403 EP - 1410 PB - RSC Publ. CY - Cambridge AN - OPUS4-32407 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Guo, Y. A1 - Lippitz, Andreas A1 - Saftien, P. A1 - Unger, Wolfgang A1 - Kemnitz, E. T1 - Tuning the surface properties of novel ternary iron(III) fluoride-based catalysts using the template effect of the matrix JF - Dalton transactions N2 - Sol–gel prepared ternary FeF3–MgF2 materials have become promising heterogeneous catalysts due to their porosity and surface Lewis/Brønsted acidity (bi-acidity). Despite the good catalytic performance, nanoscopic characterisations of this type of material are still missing and the key factors controlling the surface properties have not yet been identified, impeding both a better understanding and further development of ternary fluoride catalysts. In this study, we characterised the interaction between the bi-acidic component (FeF3) and the matrix (MgF2) on the nano-scale. For the first time, the formation pathway of FeF3–MgF2 was profiled and the template effect of MgF2 during the synthesis process was discovered. Based on these new insights two novel materials, FeF3–CaF2 and FeF3–SrF2, were established, revealing that with decreasing the atomic numbers (from Sr to Mg), the ternary fluorides exhibited increasing surface acidity and surface area but decreasing pore size. These systematic changes gave rise to a panel of catalysts with tuneable surface and bulk properties either by changing the matrix alkaline earth metal fluoride or by adjusting their ratios to Fe or both. The template effect of the alkaline earth metal fluoride matrix was identified as the most probable key factor determining the surface properties and further influencing the catalytic performance in ternary fluoride based catalysts, and paves the way to targeted design of next-generation catalysts with tunable properties. KW - Catalysis KW - Surface analysis KW - XPS PY - 2015 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-327410 DO - https://doi.org/10.1039/c4dt03229b SN - 1477-9226 SN - 1477-9234 SN - 1364-5447 VL - 44 IS - 11 SP - 5076 EP - 5085 PB - RSC CY - Cambridge AN - OPUS4-32741 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lukowiak, M.C. A1 - Wettmarshausen, Sascha A1 - Hidde, Gundula A1 - Landsberger, Petra A1 - Boenke, Viola A1 - Rodenacker, K. A1 - Braun, Ulrike A1 - Friedrich, Jörg Florian A1 - Gorbushina, Anna A1 - Haag, R. T1 - Polyglycerol coated polypropylene surfaces for protein and bacteria resistance JF - Polymer chemistry N2 - Polyglycerol (PG) coated polypropylene (PP) films were synthesized in a two-step approach that involved plasma bromination and subsequently grafting hyperbranched polyglycerols with very few amino functionalities. The influence of different molecular weights and density of reactive linkers were investigated for the grafted PGs. Longer bromination times and higher amounts of linkers on the surface afforded long-term stability. The protein adsorption and bacteria attachment of the PP-PG films were studied. Their extremely low amine content proved to be beneficial for preventing bacteria attachment. PY - 2015 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-325406 DO - https://doi.org/10.1039/c4py01375a SN - 1759-9954 SN - 1759-9962 VL - 6 IS - 8 SP - 1350 EP - 1359 AN - OPUS4-32540 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Siebler, Daniel A1 - Rohwetter, Philipp A1 - Brusenbach, R. A1 - Plath, R. T1 - Optical-only detection of partial discharge with fluorescent polymer optical fiber sensors JF - Procedia engineering N2 - This paper reflects recent progress in the field of fluorescent polymer optical fiber sensors (F-POF) for partial discharge (PD) detection in high voltage (HV) cable accessories using optical-only PD detection by coincidence single photon counting. In experiments with artificial PD sources these sensors show the ability to detect optical emissions from picocoulomb-level PDs in a real-scale model of a translucent high voltage cable accessory. False positives (caused by detector noise) are efficiently suppressedwhile maintaining sufficient sensitivity,even when the sensor is located in an unfavorable position. T2 - EUROSENSORS 2015 CY - Freiburg, Germany DA - 06.09.2015 KW - Partial discharge KW - Silicone rubber KW - High voltage cable accessories KW - Polymer optical fiber POF KW - Fluorescence KW - Coincidence PY - 2015 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-337881 DO - https://doi.org/10.1016/j.proeng.2015.08.711 SN - 1877-7058 VL - 120 SP - 845 EP - 848 PB - Elsevier Ltd. CY - Amsterdam AN - OPUS4-33788 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Schäferling, Michael T1 - Luminescent Imaging with Optical Chemical Sensors T2 - Methods and Applications in Fluorescence N2 - The intention of this compilation of articles was to introduce brand-new developments in the field of chemical imaging which have not been discussed in previous review articles. These include the design of new sensor nanomaterials based on photon uponversion crystals which convert near-infrared excitation light into sensor signals in the visible wavelength range highlighted by Christ and Schäferling. Sun, Ungerböck and Mayr describe the state of the art in oxygen imaging in microreactors and microfluidic devices. Miniaturized sensors for the imaging of oxygen, pH and temperature in microchips, microfluidic platforms and microbioreactors are reviewed by Pfeiffer and Nagl. Furthermore, Dmitriev and Papkovsky present a critical assessment of the applicability of probes for intracellular oxygen sensing. I hope these articles provide an interesting insight into advanced luminescent sensor materials and the applications of optical micro- and nanosensors in fluorescence imaging today and will be inspiring for the reader. Finally, I would like to thank all authors and referees for spending their time to enable this collection of articles. KW - Optical sensors KW - Fluorescence Imaging KW - Chemical sensors PY - 2015 UR - http://iopscience.iop.org/article/10.1088/2050-6120/3/4/040202/meta;jsessionid=B183C2EDCA3AC5AE7CFFDDF235128E5C.c2.iopscience.cld.iop.org DO - https://doi.org/10.1088/2050-6120/3/4/040202 VL - 2015/3 IS - 4 SP - 040202 EP - 040202 PB - IOP Publishing CY - Bristol, UK AN - OPUS4-37444 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hahn, Marc Benjamin A1 - Solomun, Tihomir A1 - Wellhausen, Robert A1 - Herrmann, S A1 - Seitz, H A1 - Meyer, Susann A1 - Kunte, Hans-Jörg A1 - Zeman, J. A1 - Uhlig, F A1 - Smiatek, J A1 - Sturm, Heinz T1 - Influence of the Compatible Solute Ectoine on the Local Water Structure: Implications for the Binding of the Protein G5P to DNA JF - The journal of physical chemistry / B N2 - Microorganisms accumulate molar concentrations of compatible solutes like ectoine to prevent proteins from denaturation. Direct structural or spectroscopic information on the mechanism and about the hydration shell around ectoine are scarce. We combined surface plasmon resonance (SPR), confocal Raman spectroscopy, molecular dynamics simulations, and density functional theory (DFT) calculations to study the local hydration shell around ectoine and its influence on the binding of a gene-S-protein (G5P) to a single-stranded DNA (dT(25)). Due to the very high hygroscopicity of ectoine, it was possible to analyze the highly stable hydration shell by confocal Raman spectroscopy. Corresponding molecular dynamics simulation results revealed a significant change of the water dielectric constant in the presence of a high molar ectoine concentration as compared to pure water. The SPR data showed that the amount of protein bound to DNA decreases in the presence of ectoine, and hence, the protein-DNA dissociation constant increases in a concentration-dependent manner. Concomitantly, the Raman spectra in terms of the amide I region revealed large changes in the protein secondary structure. Our results indicate that ectoine strongly affects the molecular recognition between the protein and the oligonudeotide, which has important consequences for osmotic regulation mechanisms. KW - Aqueous solution KW - Biological structure KW - Raman spectroscopy KW - Organic osmolytes KW - High throughput KW - Gene-5 protein KW - Amino acid KW - Water structure PY - 2015 DO - https://doi.org/10.1021/acs.jpcb.5b09506 SN - 1520-6106 SN - 1089-5647 SN - 1520-5207 VL - 119 IS - 49 SP - 15212 EP - 15220 AN - OPUS4-35800 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wäsche, Rolf A1 - Hartelt, Manfred A1 - Hodoroaba, Vasile-Dan T1 - Analysis of nanoscale wear particles from lubricated steel-steel contacts JF - Tribology letters N2 - A new method for sampling wear particles directly from the lubricant reservoir has been developed and applied successfully for analyzing wear particles by high-resolution scanning electron microscopy in transmission mode having coupled energy-dispersive X-ray spectroscopy. The lubricated tribological testing was carried out with fully formulated as well as with non-formulated synthetic base oil. It was possible to analyze individual particles with dimensions as small as about 5–30 nm which are likely the 'primary' wear particles. A majority of the particles, however, are agglomerated and, thus, lead to the formation of larger agglomerates of up to a few micrometers. Chemical analysis led to the conclusion that most of the observed particles generated in formulated oil, especially the larger ones, are composed of the additives of the lubricant oil. In non-formulated base oil, the primary particles are of similar dimensions but contain only iron, chromium and oxygen, but most likely stem from the mating materials. This finding points to the fact that the main wear mechanism under lubricated conditions with fully formulated oil is more like a continuous shearing process rather than a catastrophic failure with the generation of larger primary particles. When the oil is non-formulated, however, several wear mechanisms act simultaneously and the wear rate is increased significantly. Generated larger primary particles are milled down to the nanoscale. When the oil is fully formulated, wear mainly takes places at the additive layer or tribofilm; thus, the steel surface is protected. KW - Particle KW - Wear particle analysis KW - Lubricated contact KW - Bearing steel KW - Nanoscale T-SEM KW - Nanoscale EDX analysis PY - 2015 DO - https://doi.org/10.1007/s11249-015-0534-1 SN - 1023-8883 SN - 1573-2711 VL - 58 IS - 3 SP - 49-1 - 49-10 PB - Springer Science Business Media B.V. CY - Dordrecht AN - OPUS4-33525 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kraehnert, R. A1 - Ortel, Erik A1 - Paul, B. A1 - Eckhardt, B. A1 - Kanis, M. A1 - Liu, R. A1 - Antoniou, A. T1 - Electrochemically dealloyed platinum with hierarchical pore structure as highly active catalytic coating JF - Catalysis science & technology N2 - Micro structured reactors are attractive candidates for further process intensification in heterogeneous catalysis. However, they require catalytic coatings with significantly improved space-time yields compared to traditional supported catalysts. We report the facile synthesis of homogeneous nanocrystalline Pt coatings with hierarchical pore structure by electrochemical dealloying of amorphous sputter-deposited platinum silicide layers. Thickness, porosity and surface composition of the catalysts can be controlled by the dealloying procedure. XPS analysis indicates that the catalyst surface is primarily composed of metallic Pt. Catalytic tests in gas-phase hydrogenation of butadiene reveal the typical activity, selectivity and activation energy of nanocrystalline platinum. However, space time yields are about 13 to 200 times higher than values reported for Pt-based catalysts in literature. The highly open metallic pore structure prevents heat and mass transport limitations allowing for very fast reactions and reasonable stability at elevated temperatures. KW - Pt catalysts KW - Pt–Si layers KW - Scanning Electron Microscopy (SEM) KW - Transmission Electron Microscopy (TEM) KW - pore structure KW - electrochemical dealloying PY - 2015 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-351393 DO - https://doi.org/10.1039/C4CY00851K SN - 2044-4753 SN - 2044-4761 VL - 5 IS - 1 SP - 206 EP - 216 PB - RSC Publ. CY - Cambridge AN - OPUS4-35139 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hemmann, Felix A1 - Agirrezabal-Telleria, Iker A1 - Jäger, Christian A1 - Kemnitz, E. T1 - Quantification of acidic sites of nanoscopic hydroxylated magnesium fluorides by FTIR and 15N MAS NMR spectroscopy JF - RSC Advances N2 - Lewis and Brønsted sites were quantified in a series of weak acidic hydroxylated magnesium fluorides by Fourier transform infrared spectroscopy (FTIR) and solid state nuclear magnetic resonance spectroscopy (NMR) with pyridine as probe molecule. Molar extinction coefficients, which are necessary for quantitative FTIR measurements, were calculated by an easy approach. It utilizes the fact that both signals, used for the quantification by FTIR, are caused by the same deformation vibration mode of pyridine. Comparison of quantitative FTIR experiments and quantification by NMR shows that concentrations of acidic sites determined by FTIR spectroscopy have to be interpreted with caution. Furthermore, it is shown that the transfer of molar extinction coefficients from one catalyst to another may lead to wrong results. Molar extinction coefficients and concentrations of acidic sites determined by FTIR spectroscopy are affected by grinding and probably the particle size of the sample. High temperature during FTIR experiments has further impact on the quantification results. KW - Acidity KW - Fluoride catalyst KW - Infrared spectroscopy KW - Adsorption of pyridine KW - Molar extinction coefficient determination PY - 2015 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-351448 DO - https://doi.org/10.1039/C5RA15116C SN - 2046-2069 VL - 5 IS - 109 SP - 89659 EP - 89668 PB - RSC Publishing CY - London AN - OPUS4-35144 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kabelitz, Anke A1 - de Oliveira Guilherme Buzanich, Ana A1 - Joester, Maike A1 - Reinholz, Uwe A1 - Radtke, Martin A1 - Bienert, Ralf A1 - Schulz, K. A1 - Schmack, R. A1 - Kraehnert, R. A1 - Emmerling, Franziska T1 - Time-resolved in situ studies on the formation mechanism of iron oxide nanoparticles using combined fast-XANES and SAXS JF - CrystEngComm N2 - The reaction of iron chlorides with an alkaline reagent is one of the most prominent methods for the synthesis of iron oxide nanoparticles. We studied the particle formation mechanism using triethanolamine as reactant and stabilizing agent. In situ fast-X-ray absorption near edge spectroscopy and small-angle X-ray scattering provide information on the oxidation state and the structural information at the same time. In situ data were complemented by ex situ transmission electron microscopy, wide-angle X-ray scattering and Raman analysis of the formed nanoparticles. The formation of maghemite nanoparticles (γ-Fe2O3) from ferric and ferrous chloride was investigated. Prior to the formation of these nanoparticles, the formation and conversion of intermediate phases (akaganeite, iron(II, III) hydroxides) was observed which undergoes a morphological and structural collapse. The thus formed small magnetite nanoparticles (Fe3O4) grow further and convert to maghemite with increasing reaction time. KW - oxidation state KW - structural information KW - maghemite PY - 2015 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-351376 DO - https://doi.org/10.1039/C5CE01585E SN - 1466-8033 VL - 17 IS - 44 SP - 8463 EP - 8470 CY - London, UK AN - OPUS4-35137 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hornemann, A. A1 - Eichert, D. A1 - Flemig, Sabine A1 - Ulm, G. A1 - Beckhoff, B. T1 - Qualifying label components for effective biosensing using advanced high-throughput SEIRA methodology JF - Physical chemistry, chemical physics N2 - The need for technological progress in bio-diagnostic assays of high complexity requires both fundamental research and constructing efforts on nano-scaled assay recognition elements that can provide unique selectivity and design-enhanced sensitivity features. Nanoparticle induced sensitivity enhancement and its application related to multiplexed capability Surface-Enhanced InfraRed Absorption (SEIRA) assay formats are well suitable for these purposes. The potential of diverse fluorophore–antibody conjugates, being chemisorbed onto low-cost gold nanoparticulate SEIRA substrates, has been explored with respect to their spectral discriminability. These novel biolabels deliver molecular SEIRA fingerprints that have been successfully analyzed by both uni- and multivariate analyzing tools, to discriminate their multiplexing capabilities. We show that this robust spectral encoding via SEIRA fingerprints opens up new opportunities for a fast, reliable and multiplexed high-end screening in biodiagnostics. KW - SEIRA methodology KW - bio-diagnostic KW - nanotechnology PY - 2015 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-351389 DO - https://doi.org/10.1039/C4CP05944A SN - 1463-9076 SN - 1463-9084 VL - 17 IS - 14 SP - 9471 EP - 9479 PB - The Royal Soc. of Chemistry CY - Cambridge AN - OPUS4-35138 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Klykov, Oleg A1 - Weller, Michael G. T1 - Quantification of N-hydroxysuccinimide and N-hydroxysulfosuccinimide by hydrophilic interaction chromatography (HILIC) JF - Analytical methods N2 - N-Hydroxysuccinimide (NHS) esters are the most important activated esters used in many different bioconjugation techniques, such as protein labelling by fluorescent dyes and enzymes, surface activation of chromatographic supports, microbeads, nanoparticles, and microarray slides, and also in the chemical synthesis of peptides. Usually, reactions with NHS esters are very reliable and of high yield, however, the compounds are sensitive to air moisture and water traces in solvents. Therefore, the quantification of NHS would be a very helpful approach to identify reagent impurities or degradation of stored NHS esters. No robust and sensitive method for the detection of NHS (or the more hydrophilic sulfo-NHS) has been reported yet. Here, a chromatographic method based on HILIC conditions and UV detection is presented, reaching a detection limit of about 1 mg L-1, which should be sensitive enough for most of the applications mentioned above. Exemplarily, the hydrolytic degradation of a biotin-NHS ester and a purity check of a fluorescent dye NHS ester are shown. An important advantage of this approach is its universality, since not the structurally variable ester compound is monitored, but the constant degradation product NHS or sulfo-NHS, which avoids the necessity to optimize the separation conditions and facilitates calibration considerably. KW - NHS KW - Sulfo-NHS KW - NHS-Ester KW - Qualitätskontrolle KW - Reinheitsbestimmung KW - HPLC PY - 2015 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-337833 DO - https://doi.org/10.1039/c5ay00042d SN - 1759-9660 SN - 1759-9679 VL - 7 IS - 15 SP - 6443 EP - 6448 PB - RSC Publ. CY - Cambridge AN - OPUS4-33783 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lempke, L. A1 - Fischer, Tobias A1 - Bell, Jérémy A1 - Kraus, Werner A1 - Rurack, Knut A1 - Krause, N. T1 - Gold-catalyzed allene cycloisomerization for pyrrole synthesis: towards highly fluorinated BODIPY dyes JF - Organic & biomolecular chemistry N2 - A novel synthetic strategy toward highly fluorinated BODIPY dyes with exceptional photostabilities relying on sustainable gold catalysis has been developed. A key to the tailored pyrrole precursors is the gold catalysis performed in ionic liquids as the reaction medium, allowing a facile recycling of the catalysts. The dyes prepared are well-matching with the spectral windows of popular rhodamine dyes and possess high brightness while showing a distinctly higher photostability than the rhodamines especially in aprotic solvents. KW - Gold-Katalyse KW - BODIPY-Farbstoffe KW - Photostabilität KW - Fluor-Substitution KW - Fluoreszenz PY - 2015 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-344692 DO - https://doi.org/10.1039/c4ob02671c SN - 1477-0520 SN - 1477-0539 VL - 13 IS - 12 SP - 3787 EP - 3791 PB - RSC CY - Cambridge AN - OPUS4-34469 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wilsch, Gerd A1 - Eichler, T. A1 - Millar, Steven A1 - Gottlieb, Cassian T1 - Quantitative determination of chloride-to-cement content of concrete by laser-induced breakdown spectroscopy (LIBS) T2 - CONCREEP 10 - Mechanics and physics of creep, shrinkage, and durability of concrete and concrete structures (Proceedings) N2 - Laser-induced breakdown spectroscopy (LIBS) is a combination of plasma generation on the sample surface by a high power laser pulse and optical emission spectroscopy (OES). It is a direct measurement method without an extensive sample preparation. Concrete is a multi phase system. With LIBS it is possible to distinguish the different phases and based on that to correlate the chloride content to the cement mass. This is done by scanning the surface with a resolution of up to 0.1 mm. The high measurement frequency of 100 Hz or even higher allows the in-situ visualization of the chloride content over the measured area. With a calibration a quantification of chloride concentration is possible. As an example the LIBS measurement on a 50 mm by 70 mm area with a resolution of 0.5 mm and the visualization of the chloride distribution takes only 10 minutes. Additionally it is possible to evaluate the carbonation depth from the same measurement. Examples of practical application to determine the chloride-to-cement-content on concrete samples are presented. The possibilities and the limitations of LIBS are discussed. T2 - CONCREEP 10 - Mechanics and physics of creep, shrinkage, and durability of concrete and concrete structures CY - Vienna, Austria DA - 21.09.2015 KW - LIBS KW - Chlorides KW - Carbonation KW - Heterogeneity KW - Quantitative concentration KW - 2D-map PY - 2015 SP - 815 EP - 822 AN - OPUS4-34677 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Roebben, G. A1 - Kestens, V. A1 - Varga, Z. A1 - Charoud-Got, J. A1 - Ramaye, Y. A1 - Gollwitzer, Christian A1 - Bartczak, D. A1 - Geißler, Daniel A1 - Noble, J.E. A1 - Mazoua, S. A1 - Meeus, N. A1 - Corbisier, P. A1 - Palmai, M. A1 - Mihály, J. A1 - Krumrey, M. A1 - Davies, J. A1 - Resch-Genger, Ute A1 - Kumarswami, N. A1 - Minelli, C. A1 - Sikora, A. A1 - Goenaga-Infante, H. T1 - Reference materials and representative test materials to develop nanoparticle characterization methods: the NanoChOp project case JF - Frontiers in Chemistry N2 - This paper describes the production and characteristics of the nanoparticle test materials prepared for common use in the collaborative research project NanoChOp (Chemical and optical characterization of nanomaterials in biological systems), in casu suspensions of silica nanoparticles and CdSe/CdS/ZnS quantum dots (QDs). This paper is the first to illustrate how to assess whether nanoparticle test materials meet the requirements of a "reference material" (ISO Guide 30, 2015) or rather those of the recently defined category of "representative test material (RTM)" (ISO/TS 16195, 2013). The NanoChOp test materials were investigated with small-angle X-ray scattering (SAXS), dynamic light scattering (DLS), and centrifugal liquid sedimentation (CLS) to establish whether they complied with the required monomodal particle size distribution. The presence of impurities, aggregates, agglomerates, and viable microorganisms in the suspensions was investigated with DLS, CLS, optical and electron microscopy and via plating on nutrient agar. Suitability of surface functionalization was investigated with attenuated total reflection Fourier transform infrared spectrometry (ATR-FTIR) and via the capacity of the nanoparticles to be fluorescently labeled or to bind antibodies. Between-unit homogeneity and stability were investigated in terms of particle size and zeta potential. This paper shows that only based on the outcome of a detailed characterization process one can raise the status of a test material to RTM or reference material, and how this status depends on its intended use. KW - Nanoparticle KW - Materials characterization KW - Reference material KW - Analytical quality assurance KW - Metrology PY - 2015 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-349644 DO - https://doi.org/10.3389/fchem.2015.00056 SN - 2296-2646 VL - 3 SP - Article 56, 1 EP - 16 PB - Frontiers Media CY - Lausanne AN - OPUS4-34964 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Galindo Guerreros, Julio Cesar A1 - Mackens, S. A1 - Niederleithinger, Ernst A1 - Fechner, T. ED - Manzanal, D. ED - Sfriso, A. O. T1 - Numerical simulations of crosshole and downhole seismic measurements as quality control tool for jet grout columns T2 - From Fundamentals to Applications in Geotechnics N2 - Sealing and strengthening of the subsoil by injection is a major issue in the field of geotechnical engineering. This involves also jet grouting, which allows creating columns of grouted soil by eroding and mixing the in-situ soil with a thin cement suspension. A general difficulty of this method is to predict the column diameter and its material strength. Here, we present two-dimensional finite-difference numerical simulation results of a promising non-destructive quality assurance testing tool to evaluate the diameter of jet grout columns. This approach incorporates crosshole and downhole seismic measurements. Preliminary tests showed that this tool is applicable under real site conditions. T2 - 15th Pan-American Conference on Soil Mechanics and Geotechnical Engineering CY - Buenos Aires, Argentina DA - 15.11.2015 KW - Jet grout KW - Diameter KW - Seismic KW - Crosshole KW - Downhole KW - FD KW - Quality control tool PY - 2015 SN - 978-1-61499-603-3 SN - 978-1-61499-602-6 DO - https://doi.org/10.3233/978-1-61499-603-3-985 SP - Part 1, 985 EP - 992 PB - IOS Press AN - OPUS4-37706 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Niederleithinger, Ernst A1 - Wolf, Julia A1 - Mielentz, Frank A1 - Wiggenhauser, Herbert A1 - Pirskawetz, Stephan T1 - Embedded ultrasonic transducers for active and passive concrete monitoring JF - Sensors N2 - Recently developed new transducers for ultrasonic transmission, which can be embedded right into concrete, are now used for non-destructive permanent monitoring of concrete. They can be installed during construction or thereafter. Large volumes of concrete can be monitored for changes of material properties by a limited number of transducers. The transducer design, the main properties as well as installation procedures are presented. It is shown that compressional waves with a central frequency of 62 kHz are mainly generated around the transducer's axis. The transducer can be used as a transmitter or receiver. Application examples demonstrate that the transducers can be used to monitor concrete conditions parameters (stress, temperature, …) as well as damages in an early state or the detection of acoustic events (e.g., crack opening). Besides application in civil engineering our setups can also be used for model studies in geosciences. KW - Ultrasound KW - Transmission KW - Concrete KW - Damages KW - Cracks KW - Stress KW - Monitoring KW - Acoustic emission KW - Transducers KW - Coda wave interferometry PY - 2015 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-345632 DO - https://doi.org/10.3390/s150509756 SN - 1424-8220 VL - 15 IS - 5 SP - 9756 EP - 9772 PB - MDPI CY - Basel AN - OPUS4-34563 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sötebier, Carina A1 - Bierkandt, Frank A1 - Rades, Steffi A1 - Jakubowski, Norbert A1 - Panne, Ulrich A1 - Weidner, Steffen T1 - Sample loss in asymmetric flow field-flow fractionation coupled to inductively coupled plasma-mass spectrometry of silver nanoparticles JF - Journal of analytical atomic spectrometry N2 - In this work, sample losses of silver nanoparticles (Ag NPs) in asymmetrical flow field-flow fractionation (AF4) have been systematically investigated with the main focus on instrumental conditions like focusing and cross-flow parameters as well as sample concentration and buffer composition. Special attention was drawn to the AF4 membrane. For monitoring possible silver depositions on the membrane, imaging laser ablation coupled to inductively coupled plasma mass spectrometry (LA-ICP-MS) was used. Our results show that the sample residue on the membrane was below 0.6% of the total injected amount and therefore could be almost completely avoided at low sample concentrations and optimized conditions. By investigation of the AF4 flows using inductively coupled plasma mass spectrometry (ICP-MS), we found the recovery rate in the detector flow under optimized conditions to be nearly 90%, while the cross-flow, slot-outlet flow and purge flow showed negligible amounts of under 0.5%. The analysis of an aqueous ionic Ag standard solution resulted in recovery rates of over 6% and the ionic Ag content in the sample was found to be nearly 8%. Therefore, we were able to indicate the ionic Ag content as the most important source of sample loss in this study. KW - Asymmetric flow filed-flow fractionation KW - ICP-MS KW - Nanoparticles KW - Sample loss KW - Quantification PY - 2015 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-336171 DO - https://doi.org/10.1039/c5ja00297d SN - 0267-9477 SN - 1364-5544 VL - 30 IS - 10 SP - 2214 EP - 2222 PB - Royal Society of Chemistry CY - London AN - OPUS4-33617 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nadejde, C. A1 - Neamtu, M. A1 - Schneider, Rudolf A1 - Hodoroaba, Vasile-Dan A1 - Ababei, G. A1 - Panne, Ulrich T1 - Catalytical degradation of relevant pollutants from waters using magnetic nanocatalysts JF - Applied Surface Science N2 - The catalytic efficiency of two magnetically responsive nanocatalysts was evaluated for the Degradation of Reactive Black 5 (RB5) and Reactive Yellow 84 (RY84) azo dyes using hydrogen peroxide as oxidant undervery mild conditions (atmospheric pressure, room temperature). In order to obtain the nanocatalysts, thesurface of magnetite (Fe3O4) nanoparticles, prepared by a co-precipitation method, was further modified with ferrous oxalate, a highly sensitive non-hazardous reducing agent. The sensitized nanomaterials were characterized by X-ray diffraction, scanning and transmission electron microscopy, energy-dispersive X-ray spectroscopy and vibrating sample magnetometry, and used in the catalytic wet hydrogen peroxideoxidation (CWHPO) of RB5 and RY84, in laboratory-scale experiments. The effect of important variables such as catalyst dosage, H2O2 concentration, and contact time was studied in the dye Degradation kinetics. The results showed that it was possible to remove up to 99.7% dye in the presence of 20 mM H2O2 after 240 min of oxidation for a catalyst concentration of 10 g L−1at 25◦C and initial pH value of 9.0.CWHPO of reactive dyes using sensitized magnetic nanocatalysts can be a suitable pre-treatment methodfor complete decolorization of effluents from textile dyeing and finishing processes, once the Optimum operating conditions are established. T2 - 10th International Conference On Physics Of Advanced Materials (ICPAM-10) CY - Iasi, Romania DA - 22.09.2014 KW - Sensitized magnetic nanocatalysts KW - Catalytic wet peroxide oxidation KW - Reactive azo dye degradation PY - 2015 UR - http://www.sciencedirect.com/science/article/pii/S0169433215000483 DO - https://doi.org/10.1016/j.apsusc.2015.01.036 SN - 0169-4332 VL - 352 SP - 42 EP - 48 PB - Elsevier B.V. AN - OPUS4-38760 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nadejde, C. A1 - Neamtu, M. A1 - Hodoroaba, Vasile-Dan A1 - Schneider, Rudolf A1 - Paul, Andrea A1 - Ababei, G. A1 - Panne, Ulrich T1 - Tannic acid- and natural organic matter-coated magnetite as green Fenton-like catalysts for the removal of water pollutants JF - Journal of Nanoparticle Research N2 - The use of magnetic materials as heterogeneous catalysts has attracted increasing attention in the last years since they proved to be promising candidates for water treatment. In the present study, two types of surface-modified magnetite (Fe3O4) nanoparticles, coated with non-hazardous naturally occurring agents—either tannic acid (TA) or dissolved natural organic matter—were evaluated as magnetic heterogeneous catalysts. Chemical synthesis (co-precipitation) was chosen to yield the nanocatalysts due to its well-established simplicity and efficiency. Subsequently, the properties of the final products were fully assessed by various characterization techniques. The catalytic activity in heterogeneous oxidation of aqueous solutions containing a model pollutant, Bisphenol A (BPA), was comparatively studied. The effect of operational parameters (catalyst loading, H2O2 dosage, and UV light irradiation) on the Degradation performance of the oxidation process was investigated. The optimum experimental parameters were found to be 1.0 g/L of catalysts and 10 mM H2O2, under UV irradiation. The highest mineralization rates were observed for Fe3O4-TA catalyst. More than 80 % of BPA was removed after 30 min of reaction time under the specified experimental conditions. The obtained results showed that the two catalysts studied here are suitable candidates for the removal of pollutants in wastewaters by means of heterogeneous reaction using a green sustainable treatment method. KW - Nanocatalysts KW - Photo-Fenton oxidation KW - Wastewater KW - Bisphenol A degradation KW - Environment KW - Mitigation PY - 2015 UR - http://link.springer.com/article/10.1007/s11051-015-3290-0 DO - https://doi.org/10.1007/s11051-015-3290-0 VL - 17 IS - 12 SP - 476 (1) EP - 476 (10) PB - Springer AN - OPUS4-38758 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Jin, Z. A1 - Geißler, Daniel A1 - Qiu, X. A1 - Wegner, Karl David A1 - Hildebrandt, N. T1 - A rapid, amplification-free, and sensitive diagnostic assay for single-step multiplexed fluorescence detection of microRNA JF - Angewandte Chemie - International Edition N2 - The importance of microRNA (miRNA) dysregulation for the development and progression of diseases and the discovery of stable miRNAs in peripheral blood have made these short-sequence nucleic acids next-generation biomarkers. Here we present a fully homogeneous multiplexed miRNA FRET assay that combines careful biophotonic design with various RNA hybridization and ligation steps. The single-step, single-temperature, and amplification-free assay provides a unique combination of performance parameters compared to state-of-the-art miRNA detection technologies. Precise multiplexed quantification of miRNA-20a, -20b, and -21 at concentrations between 0.05 and 0.5 nm in a single 150 mL sample and detection limits between 0.2 and 0.9 nm in 7.5 mL serum samples demonstrate the feasibility of both highthroughput and point-of-care clinical diagnostics. KW - Clinical diagnostics KW - FRET KW - MicroRNA KW - Multiplexing KW - Time-gated fluorescence detection PY - 2015 DO - https://doi.org/10.1002/anie.201504887 SN - 1433-7851 SN - 1521-3773 VL - 54 IS - 34 SP - 10024 EP - 10029 PB - Wiley-VCH CY - Weinheim AN - OPUS4-44837 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -