TY - CONF A1 - Beck, Uwe A1 - Griepentrog, Michael A1 - Hertwig, Andreas A1 - Hielscher-Hofinger, Stefan A1 - Lange, Thorid A1 - Weise, Matthias T1 - Uncertainty budgets in surface technology: stepheigt, layerthickness, indentation hardness, adehesive strength N2 - The object (sample) and the measurement/testing procedure may always have unknown degrees of freedom, i.e. instead of 𝐯 ≥ n – 1 in many cases 𝐯 ≫ n - 1 may apply, in particular in the micro- and nano-world! T2 - 10. VDI-Fachtagung, Messunsicherheit und Prüfprozesse CY - Erfurt, Germany DA - 10.11.2021 KW - Methodology in metrology KW - Methodology in testing KW - Spectroscopic Ellipsometry KW - Instrumented Indentation Testing (IIT) KW - Centrifugal Adhesion Testing (CAT) PY - 2021 AN - OPUS4-53986 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Beck, Uwe A1 - Griepentrog, Michael A1 - Hertwig, Andreas A1 - Hielscher-Hofinger, S. A1 - Lange, Thorid A1 - Weise, Matthias T1 - Uncertainty budgets in surface techno-logy: step height, layer thickness, indentation hardness, adehesive strength N2 - The object (sample) and the measurement/testing procedure may always have unknown degrees of freedom, i.e. instead of 𝐯 ≥ n – 1 in many cases 𝐯 ≫ n - 1 may apply, in particular in the micro- and nano-world! T2 - 10. VDI-Fachtagung, Messunsicherheit und Prüfprozesse CY - Erfurt, Germany DA - 10.11.2021 KW - Methodology in metrology KW - Methodology in testing KW - Spectroscopic Ellipsometry KW - Instrumented Indentation (IIT) KW - Centrifugal Adhesion Testing (CAT) PY - 2021 AN - OPUS4-53739 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Beck, Uwe A1 - Mitzkus, Anja A1 - Sahre, Mario A1 - Lange, Thorid A1 - Weise, Matthias A1 - Bartholmai, Matthias A1 - Schukar, Vivien A1 - Basedau, Frank A1 - Hofman, Detlef A1 - Köppe, Enrico T1 - From on line sensor validation to in-situ monitoring of layer growth: coatings around fibre bragg gratings N2 - The lack of on-line validation procedures for structure-embedded fiber-optical strain sensors, in particular fiber-Bragg-gratings (FBG), resulted in limited applications in structural health monitoring (SHM). Degradation under service conditions and ageing as a result of climatic influences or delamination under load were unsolved Validation issues. This could be overcome by means of an auto-diagnosis procedure based on FBG-sensors coated by electrochemical deposition (ECD) with a magnetostrictive NiFe-coating on top of an adhesive Cu/Cr adhesive layer deposited by physical vapour deposition (PVD) around the FBG strain sensor. This allows at any time under Service a validation of sensor functionality, stability, and reliability. For this purpose, a magnetic strain-proportional reference field is introduced. The optical read-out is realized by the measurement of the Bragg-wavelength shift. The ratio of resulting strain and exciting magnetic reference field should be constant given that the sensor is in proper function. In principle, the magnetostrictive coating around the FBG should also work as on-line magnetic field sensor and other applications in material science. One of these applications is the in-situ monitoring of ECD processes as the deposition of the ECD NiFe-layer on the FBG revealed. Challenges are the monitoring of temperature, deposition stages/thickness, and resulting mechanical stress under given plating conditions. Monitoring problems can be solved by applying a pre-coated FBG to the electrolytic process as the shift of the Bragg wavelength is affected by both the temperature of the electrolyte near the substrate and the stress formation in the growing layer. The experimental FBG set-up and the quantitative determination of temperature- and stress-related strain are described for a nickeliron electrolyte. The in-situ measurement of Bragg wavelength shifts of a pre-coated FBG during electrochemical deposition allows a detailed analysis of stress states due to changes in the growth morphology of the layer. The separation of mechanical and thermal contributions to this shift provides information on the individual Deposition processes in terms of a process fingerprint. T2 - ICMCTF 2021 San Diego/on-line CY - Online meeting DA - 28.04.2021 KW - Fiber- Bragg-gratings (FBG) KW - Physical vapour deposition (PVD) KW - Electrochemical deposition (ECD) KW - Magnetostrictive coating KW - ECD NiFe-layer PY - 2021 AN - OPUS4-52898 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Beck, Uwe A1 - Hielscher-Hofinger, Stefan A1 - Hidde, Gundula A1 - Lange, Thorid A1 - Weise, Matthias A1 - Lerche, D. A1 - Rietz, U. T1 - Adhesion of Coatings vs. Strength of Composite Materials – A Review of Applications Evaluated by Centrifugal Adhesion Testing (CAT) N2 - Sufficient adhesion/tensile strength are basic requirements for any coating/composite material. For coatings, adhesive strength in N/mm2 is of Major interest for various applications such as decorative and water-repellent coatings on wood (paints and varnishes), optical coatings on glass and polymers (reflectors and filters), electrical coatings on semiconductors, glass and polymers (conducting and bondable layers), mechanical coatings on metals and polymers (wear-reduction, scratch-resistance) and adhesion-promoting layers. For composite materials, tensile strength in N/mm2 is also a key quantity for carbon fiber reinforced composites (CFC), laminates and adhesive-bonded joints. Centrifugal adhesion testing (CAT) transfers the single-sample tensile test from a tensile or universal testing machine into an analytical centrifuge as multiple-sample test of up to eight test pieces. The one-sided sample support instead of a two-sided sample clamping and the absence of mounting- and testing-correlated shear forces provides fast and reliable results both for adhesive strength and bonding strength by means of bonded test stamps. For bonding strength, the evaluation of failure pattern from microscopic inspection is required in order to determine the failure pattern according to ISO 10365 such as adhesive failure (AF), delamination failure (DF) and cohesive failure (CF). Hence, one test run by CAT-technology provides either statistics or ranking of up to eight samples at once. For adhesive strength of coatings, a variety of examples is discussed such as ALD-Al203 layers as adhesion promoters, evaporated Ag-layers on N-BK7 glass, sputtered Cr- and Al-layers on Borofloat 33 glass, evaporated Au-films on N-BK7 glass and sputtered SiO2 -layers on CR39 Polymer. Provided adhesive or bonding strength are high enough, the substrate or the joining part may also fail. T2 - Special PSE 2020 CY - Online meeting DA - 07.09.2020 KW - Centrifugal adhesion testing (CAT) KW - Adhesive strength KW - Pull-off test KW - Failure pattern KW - Compound strength PY - 2020 AN - OPUS4-51231 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hielscher-Bofinger, Stefan A1 - Beck, Uwe A1 - Lerche, D. A1 - Rietz, U. T1 - Multiple-sample Testing: Adhesive Strength of Coatings and Bonding Strength of Adhesives evaluated by Centrifugal Adhesion Testing (CAT) N2 - The quantitative determination of adhesion and cohesion properties is a key requirement for adhesive-bonded joints and coated components in both R&D and Quality assurance. Because of the huge variety of layer/substrate Systems in terms of materials and large thickness range, adhesion tests display the same diversity as layer/substrate systems. There are only two tensile testing procedures available, that determine adhesive strength in terms of force per area (N/mm²), the single-sample pull-off test in a tensile testing machine and the multiple-sample-test using the Centrifugal Adhesion Testing (CAT) Technology. The CAT Technology is a testing method which uses centrifugal force as tensile testing force in a multiple-sample arrangement within a drum rotor of a Desktop centrifuge. Hence, the adhesive/bonding strength A/B can be determined on a statistical basis under identical testing conditions for up to eight samples. A variety of examples for bonding strength of adhesives, adhesive strength of coatings and compound strength of composite materials is discussed such as metalto-metal and glass-to-metal bonding, sputtered SiO2-layers on CR39 Polymer and carbon fiber reinforced polymer. T2 - Colloquium Department 6. CY - Berlin, BAM, Germany DA - 03.09.2020 KW - Centrifugal Adhesion Testing (CAT) KW - Adhesive strength KW - Bonding strength KW - Composite strength KW - Interlaboratory comparision PY - 2020 AN - OPUS4-51178 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Beck, Uwe A1 - Hielscher-Hofinger, Stefan A1 - Lange, Thorid A1 - Stockmann, Jörg M. A1 - Weise, Matthias A1 - Rietz, U. A1 - Lerche, D. T1 - Centrifugal force meets materials testing – analytical centrifuge as multipurpose tool for tensile and compressive stress testing N2 - Up until several years ago, tensile and compressive tests have been exclusively carried out as single-sample tests within a tensile, hardness or universal testing machine. The availability of centrifuge technology changed this situation in 2013 in several ways because centrifugal force is used as testing force within a rotational reference frame. Firstly, multiple-sample strength testing became feasible for both tensile load condi-tions, e.g. determination of composite, bonding or adhesive strength, and compressive load conditions, e.g. hardness, compressibility and compactibility. Secondly, there is no need for a two-sided sample clamping and double-cardanic suspensions as samples are simply inserted using a one-sided sample support. Thirdly, shear forces can be avoided by means of guiding sleeves which steer test stamps acting as mass bodies for either tensile or compressive testing. Fourthly, up to eight samples can be tested under identical conditions within a very short period of time, typically within 15 minutes including sample loading and unloading. Hence, either a reliable statistics (of identical samples) or a ranking (of different samples) can be derived from one test run. The bench-top test system is described in detail and demonstrated that centrifugal force acts as testing force in an appropriate way because Euler and Coriolis force do not affect the testing results. Examples for both tensile strength testing, i.e. bonding strength of adhesives-bonded joints and adhesive strength of coatings, and compres-sive strength testing, i.e. Vickers-, Brinell- and ball indentation hardness and deter-mination of spring constants, are presented, discussed and compared with conven-tional tests within tensile, hardness or universal testing machines. At present, a maximum testing force of 6.5 kN can be realized which results at test stamp diameters of 5 mm, 7 mm, and 10 mm in tensile or compressive stress values of 80 MPa, 160 MPa, and 320 MPa. For tensile strength, this is already beyond bonding strength of cold- and warm-curing adhesives. Moreover, centrifuge technology is compliant to standards such as EN 15870, EN ISO 4624, EN ISO 6506/6507 and VDI/VDE 2616. Programmable test cycles allow both short-term stress and log-term fatigue tests. Based on a variety of examples of surface and bonding technology, applications in both fields R&D and QC are presented. Meanwhile, centrifuge technology is also accredited according to DIN EN ISO/IEC 17025. T2 - Intermationa Conference Dispersion Analysis & Materials Testing CY - Berlin, Germany DA - 22.05.2019 KW - Centrifugal Force KW - Compressive Stress KW - Tensile Stress PY - 2019 AN - OPUS4-48310 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Beck, Uwe A1 - Griepentrog, Michael A1 - Hertwig, Andreas A1 - Weise, Matthias T1 - White light interference microscopy, ellipsometry, and instrumented indentation testing as reference procedures N2 - The paper addresses “WHITE LIGHT INTERFERENCE MICROSCOPY, ELLIPSOMETRY, AND INSTRUMENTED INDENTATION TESTING AS REFERENCE PROCEDURES“ and is subdivided in the following sections: 1. Measurement vs. testing vs. reference procedures, 2. White light interference microscopy (WLIM) for determination of step height h, 3. Spectroscopic ellipsometry (SE) for determination of layer thickness d and 4. Instrumented indentation testing (IIT) for determination of indentation hardness HIT. The following points are discussed in more detail: methodology of measurement and testing, uncertainty budgets for direct (WLIM), model-based (SE) and formula-based (IIT) reference procedures by means of specific examples. It is shown that standardization efforts are connected to reference procedures. T2 - Referenzverfahren CY - BAM, Berlin, Germany DA - 21.02.2018 KW - Reference procedures KW - Uncertainty budgets KW - White light interference microscopy KW - Spectroscopic ellipsometry KW - Instrumented indentation testing PY - 2018 AN - OPUS4-44256 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Beck, Uwe A1 - Hertwig, Andreas A1 - Winkler, J. T1 - Preliminary work item (PWI) 23131 on standardization of ellipsometry N2 - The paper addresses the PRELIMINARY WORK ITEM (PWI) 23131 ON STANDARDIZATION OF ELLIPSOMETRY and the following points are discussed in more detail: Historical background of ellipsometry, Technical/industrial importance of ellipsometry and Standardization activities on ellipsometry. T2 - ISO TC 107 and JWG 4 meeting CY - Levi, Finland DA - 23.01.2018 KW - Standardization KW - Ellipsometrie KW - Modelling KW - Accreditation PY - 2018 AN - OPUS4-43959 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Beck, Uwe A1 - Fischer, Daniel A1 - Hertwig, Andreas A1 - Hidde, Gundula A1 - Stockmann, Jörg M. A1 - Weise, Matthias T1 - Ellipsometric imaging of low-contrast surface modifications and depolarization contrast imaging (DCI) of particulate accumulations N2 - Imaging of surfaces regarding topographical, morphological, micro-structural, and chemical features is a key requirement for quality control for the identification of contaminated, degraded, damaged or deliberately modified surface areas vs. clean, virgin, undamaged or unmodified regions. As optical functions may represent any of these changes on the micro- and nano-scale, imaging ellipsometry (IE) is the technique of choice using either intensity, phase, or/and amplitude contrast for visualization of low-contrast surface modifications [1, 2]. Defects or surface and film features whether native or artificial, intended or unintended, avoidable or unavoidable as well as surface pattern are of interest for quality control. In contrast to microscopic techniques operated at normal incidence, ellipsometry as oblique-incidence technique provides improved contrast for vertically nano-scaled add-on or sub-off features such as ultra-thin transparent films, metallic island films, carbon-based thin films, laser modification or laser induced damage, dried stain, cleaning agent or polymeric residue. Two-sample reference techniques, i.e. referenced spectroscopic ellipsometry (RSE) may further increase sensitivity and decrease measurement time. In case of particulate accumulations depolarization contrast imaging (DCI) may improve the lateral resolution beyond the Abbe limit. This has been proven for silica spheres as reference in terms of single particles, particulate accumulations or particulate monolayers and layer stacks. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) were used for reference measurements of particle diameter, particle height, or particulate layer/accumulation thickness. It has been shown that single silica particles of 250 nm in diameter, i.e. at least a factor of 4 better than the lateral resolution limit as of now, can be visualized on even substrates. However, the ellipsometric measurement of particle diameters of this size needs further efforts interpretation. T2 - Workshop Ellipsometry 2018 CY - Chemnitz, Germaný DA - 19.03.2018 KW - Low-contrast surface modifications KW - Particulate distributions KW - Imaging ellipsometry(IE) KW - Depolarization contrast imaging (DCI) PY - 2018 AN - OPUS4-44548 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Beck, Uwe A1 - Baier, Jennifa A1 - Hidde, Gundula A1 - Sahre, Marion A1 - Weise, Matthias T1 - Particles in PVD-coatings: Imperfection or functional add-on feature? N2 - The application of PVD-coatings ranges from mechanical engineering, i.e. thicker tribological coatings, to precision optics, i.e. thinner optical coatings. For physical vapor deposition (PVD) technologies such as evaporation, sputtering, ion beam assisted/driven deposition, vacuum is a prerequisite for two reasons: at first process-related ones (evaporation source, plasma discharge, and mean free path) and at second coating-related ones (pure, perfect, and dense films). Usually, the goal is a homogenous coating of defined stoichiometry and micro-structure without any imperfection. However, the implementation of micro- or nano-particles may occur accidentally or delibe-rately. Independent of the particle origin, there are two fundamental rules regarding coating functionality: at first, the larger the particle diameter to coating thickness ratio the more affected the functionality of the coating, and at second, the larger the material contrast in terms of the functional feature of interest the more affected the coating performance. Hence, embedded particles have to be avoided for the majority of thin films by all means. The unintended implementation of particles usually results in a malfunction of the coating from the beginning or is at least considered as a weak point of the coating creating a time-dependent defect under service conditions. The intended implementation of particles on surfaces and in coatings may create add-on features, topographic ones and functional ones, however, the facts mentioned hold true. Examples of particle-initiated coating defects are demonstrated in dependence on the origin and the field of application. Strategies for deliberate attachment/embedding of particles on surfaces/in coatings are discussed regarding process compatibility and coating integrity. For industrial applications, both the validation of process compatibility of particle injection and the plasma resistance of particles under vacuum and plasma conditions have to be confirmed. Further points of interest are the homogeneity of particle distribution and the avoidance of particle agglomeration which is still a crucial point for dry dispersed particles. So far, technical applications are limited to PVD hybrid coatings, plasma dispersion coatings are still a challenge except for applications where homogeneity is not required as in case of product authentication. T2 - ICMCTF 2018, International Conference on Metallurgical Coatings and Thin Films CY - San Diego, CA, USA DA - 23.04.2018 KW - PVD-coatings KW - PVD-processes KW - Unintended particle generation KW - Particles as imperfections KW - Deliberate particle implementation KW - Particles as add-on features PY - 2018 AN - OPUS4-44973 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Beck, Uwe A1 - Fischer, Daniel A1 - Hertwig, Andreas A1 - Mitzkus, Anja A1 - Sahre, Mario A1 - Weise, Matthias A1 - Köppe, Enrico A1 - Bartholmai, Matthias A1 - Basedau, Frank A1 - Hofmann, Detlef A1 - Schukar, Vivien A1 - Kormunda2, M. T1 - Multi-functional coatings for optical sensor applications: Surface plasmon resonance & magneto-optical coupling N2 - Multi-functional coatings are a key requirement for surface engineering. General demands are adhesion and long-term stability under service conditions. The modification of surfaces by means of PVD-, ECD- or hybrid processes allows an add-on functionalization of surfaces by a huge diversity of materials with both lateral and vertical micro-/nano-designs. This fact is a prerequisite for micro- and sensor-systems in lab-on-chip and sensor-on-chip technology. Two layer-based sensor principles are presented, i.e. surface plasmon resonance enhanced spectroscopic ellipsometry (SPREE) for detection of hazardous gases and magneto-optical sensors on smart-coated fiber Bragg gratings (FBG) for structural health monitoring (SHM). The interdependence of substrate features, coating properties, and layer design is discussed firstly for gas sensitivity and selectivity of SPREE-sensors and secondly for sensitivity and selectivity of magneto-strictive coatings to mechanical strain or external magnetic fields resulting in an optical displacement of the Bragg wavelength of FBG-sensors. Moreover, generic features such long-term stability, crucial process-related fabrication conditions, and effects of operational and environmental parameters are discussed with respect to the sensor performance. It has been shown that appropriate layer design and adapted selection of layer materials (SnOx/Au, Fe/Ni:SnOx/Au; Ni/NiFe-Cu-Cr) result in improved sensor parameters and may enable new sensor applications. T2 - SVC TechCon 2018 CY - Orlando, FL, USA DA - 05.05.2018 KW - Multi-functional coatings for sensors KW - Surface plasmon resonance enhanced ellipsometry (SPREE) KW - Gas monitoring KW - Magneto-optical coupling (MOC) KW - Structural health monitoring (SHM) PY - 2018 AN - OPUS4-44976 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Beck, Uwe A1 - Hertwig, Andreas A1 - Winkler, J. T1 - Standardization of ellipsometry N2 - The talk addresses the STANDARDIZATION OF ELLIPSOMETRY and the following points are discussed in more detail: historical background of ellipsometry, history of International Conferences on Ellipsometry, Workshops Ellipsometry in Germany and Europe, information on German/European Working Group Ellipsometry, technical/industrial importance of ellipsometry, applications on non-ideal material systems and standardization activities on ellipsometry. T2 - DIN NA Dünne Schichten für die Optik, Mainz CY - Mainz, Germany DA - 06.06.2018 KW - Standardization KW - Ellipsometry KW - Modelling KW - Accreditation PY - 2018 AN - OPUS4-45167 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Beck, Uwe A1 - Hidde, Gundula A1 - Lange, Thorid A1 - Gargouri, H. A1 - Kärkkänen, I. A1 - Naumann, F. T1 - Plasma Activation and Plasma-assisted ALD Surface Modification of Polymers for Improved Bonding and Adhesive Strength N2 - Bonding strength is crucial on polymers of low surface energy, for clean surfaces limited to 0.5, 1, and 2 MPa for PTFE, PP, and PE. Plasma treatment may improve bonding strength by a factor of 2 (PTFE) or 5 (PP and PE). The efficiency of treatment is usually 10% as both low pressure and atmospheric pressure processes show low topographic conformity. Besides, lifetime of activation/modification is rather short. Hence, bonding has to be carried out immediately after plasma treatment. The concept of plasma-assisted ALD (atomic layer deposition) interlayers was introduced in the project HARFE of SENTECH (modification/deposition/in-situ monitoring) and BAM (bonding, characterization, testing). ALD deposition has a high surface conformity and for dielectric films of Al2O3 also a good long-term stability given that the films are dense enough. Based on TMA and O2/O3 precursors, ALD layer stacks from 60 to 375 monolayers were prepared under different conditions. For a transfer time of 24 hours from deposition to measurement, bonding strength could be increased up to 5 MPa (PTFE) respectively 10 MPa (PP, PE). The huge potential of ALD layers as adhesive interlayers was demonstrated for Al2O3 on stainless steel with bonding strength beyond 15 MPa, i.e. interface strength within the ALD stack is also in this range. This is a prerequisite for subsequent PVD/CVD-deposition in hybrid systems. By means of the SI ALD LL system of SENTECH thermal and plasma-supported ALD processes can be alternatively realized. Ellipsometric in-situ monitoring provides monolayer sensitivity and reveals that the efficient bonding of the lower ALD layers on the polymer has to be further improved. Testing of bonding strength was realized by CAT (centrifugal adhesion testing) technology. It was shown that ALD modification correlates with the increase of surface energy and bonding strength. T2 - PSE 2018 - 16th Conference on Plasma Surface Engineering CY - Garmisch-Partenkirchen, Germany DA - 17.09.2018 KW - Plasma activation KW - Plasma-assisted ALD modification KW - Adhesive ALD interlayer KW - Bonding strength KW - Adhesive strength PY - 2018 AN - OPUS4-46015 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Beck, Uwe A1 - Hertwig, Andreas A1 - Kormunda, M. A1 - Ryšánek, P. A1 - Ivanov, L. T1 - Characterisation of magnetron sputtered SnZnOx by means of spectroscopic ellipsometry - how can we analyse TCO materials optically? N2 - Transparent conductive oxide (TCO) films are a vital part of a large part of modern technology. The production of TCO materials has sparked much development in plasma coating technology. Quality control measurements of these layers are therefore important in many fields of optics and electronics such as high efficiency thin film photovoltaics. In this presentation, we report on optical measurements of ZnSnOx layers generated by DC/RF magnetron plasma co-sputtering. By changing the respective power on two different targets, the overall power, the gas composition and post-treatment, the properties of this type of layers can be varied in a number of parameters. The optical, electrical, and chemical properties of TCO layers are the technically most important properties together with the layer thickness. The dielectric function of layers is accessible by means of spectroscopic ellipsometry, which also yields the very important value for the layer thickness at the same time. It would be a significant step forward in quality control to use this non-destructive method also as a fast test for electrical properties. Therefore, we report on the optical properties connected to the production parameters, and also on our preliminary results connecting the optical dielectric function (in the visible and near infrared) to the electrical conductivity of the layers. We discuss the effect of deposition parameters on the optical properties of the layers and present an approach for correlating optical and electrical properties. Further, we discuss the question of accuracy of optical properties gained from model-fit-based optical methods and the use of different parameterised models for the dielectric function to achieve this. T2 - PSE 2018 - 16th Conference on Plasma Surface Engineering CY - Garmisch-Partenkirchen, Germany DA - 17.09.2018 KW - Mixed Oxides KW - TCO KW - Quality Control KW - Ellipsometry KW - Optical Constants PY - 2018 AN - OPUS4-46388 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Beck, Uwe A1 - Hielscher, Stefan A1 - Lange, Thorid A1 - Rietz, U. A1 - Lerche, D. T1 - State-of-the-Art in Multiple-Sample Evaluation of Adhesive and Bonding Strength N2 - The paper addresses the “State-of-the-Art in Multiple-Sample Evaluation of Adhesive and Bonding Strength” and the following points are discussed in more detail: 1. Motivation (coatings, varnishes, tapes, laminates, CFRP, adhesive-bonded joints) 2. Conventional single-sample testing (evaluation of adhesive and bonding strength; failure pattern) 3. Multiple-sample handling (MSH), bonding (MSB), and testing: centrifugal adhesion testing (CAT) (multiple-sample approach, tensile test within a centrifuge) 4. Application examples of CAT-Technology™ (laminates, optical coatings, CFRP joints) Finally, a summary is given regarding status quo and benefits of CAT-technology under tensile stress conditions whereas examples of testing in a centrifuge under compressive stress conditions are mentioned in the outlook. T2 - The 5th International Conference Competitive Materials and Technology Processes CY - Miskolc-Lillafüred, Hungary DA - 08.10.2018 KW - Centrifugal Adhesion Testing KW - CAT KW - Multiple-sample handling (MSH) KW - Multiple-sample bonding (MSB) KW - Tensile strength of laminates KW - Tensile strength of coatings KW - Adhesive strength KW - Bonding strength PY - 2018 AN - OPUS4-46336 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Beck, Uwe A1 - Hiratsuka, M. A1 - Spindler, Ch. A1 - Ohtake, N. A1 - Hertwig, Andreas A1 - Becker, J. A1 - Gäbler, J. A1 - Neubert, Th. A1 - Vergöhl, M. A1 - Winkler, J. A1 - Eypert, C. T1 - Interlaboratory comparison: optical property classification of carbon-based films by ellipsometry N2 - The paper addresses the “INTERLABORATORY COMPARISON: OPTICAL PROPERTY CLASSIFICATION OF CARBON-BASED FILMS BY ELLIPSOMETRY” and the following points are discussed in more detail: Established classification for mechanical properties, Complementary classification for optical properties, Ellipsometry for determination of optical constants n-k plane as material fingerprint, Samples, participants & set-ups (samples: Japan, participants: Japan, Germany, France, set-ups: Japan, Germany, USA) and Results of interlaboratory comparison: thickness, n & k. T2 - ISO TC 107 Meeting Tokyo CY - Tokio, Japan DA - 17.01 2017 KW - Interlaboratory Comparison KW - Optical Property KW - Carbon-based Films KW - Ellipsometry PY - 2017 AN - OPUS4-39028 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Beck, Uwe A1 - Fischer, Daniel A1 - Hertwig, Andreas A1 - Köppe, Enriko A1 - Bartholmai, Matthias A1 - Gaal, Mate A1 - Schukar, Vivien A1 - Kreutzbruck, Marc T1 - LAYER-based Sensors for Monitoring: Surface Plasmon Resonance, Air-coupled UltraSonics, Magneto-optical Coupling N2 - The talk addresses layer-based sensors for monitoring applications. In particular, sensor principles surface plasmon resonance (SPR), air-coupled ultrasonic, and magneto-optical coupling are discussed. Optical sensors on planar substrates are prepared by sol-gel, CVD- and PVD deposition techniques, ultrasonic sensors on planar and curved substrates are made by means of PVD processes, and magnetostrictive coatings for magneto-optical sensors are deposited on fibre-based Bragg gratings (FBGs) using PVD and ECD techniques. For all kinds of sensors design and function are explained and discussed, i.e. regarding sensitivity. It is shown that a) SPR enhanced ellipsometry is a promising tool for gas monitoring of hazardous gases, that b) thermos-acoustic and piezo-electric pulse-echo techniques are relevant for damage inspection of hidden volume defects of CFRPs, and that c) magnetostrictive-optical sensors with self-calibrating (magnetic reference field) function are useful for structural health monitoring in terms of strain sensors. T2 - Vortrag im National Institute of Standards and Technology, Ceramics Division, Nanoscale Strength Measurement and Standards CY - NIST Gaithersburg, Maryland, USA DA - 28.04.2017 KW - Layer-based sensors KW - Surface plasmon resonance (SPR), KW - Air-coupled ultrasonics KW - Magneto-optical coupling KW - Gas monitoring KW - Damage inspection KW - Structural health monitoring PY - 2017 AN - OPUS4-40465 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Beck, Uwe A1 - Hertwig, Andreas A1 - Hielscher, Stefan A1 - Weise, Matthias T1 - Characterization of Materials: Uncertainty Budgets in Measurement and Testing N2 - The comprehensive knowledge of material properties as engineered and the material behavior in use is of huge importance for the functionality and reliability of processes and products. Hence, the accurate determination of material properties is a prerequisite for the applicability of a given material. Nowadays, macroscopic product features are originated by material properties on the microscopic and nanoscopic scale. This is a general challenge for uncertainty budgets in measurement and testing based on a conformity assesment. Testing labs accreditated according to DIN EN ISO/IEC 17025 have to meet these demands. This paper focuses on the measurement of physical quantities (measurand with value and unit) and on the testing of material properties (qualitative, semi-quantitative or quantitative characteristics) of solid state materials. For both measurement and testing, the expression of uncertainty according to GUM is essential. Regarding the object/sample one has to subdivide in surface and bulk features, from the measurement/testing point of view destructive vs. nondestructive procedures have to be distinguished. Moreover, direct mesurement/testing and model-based determination of quantities/properties of interest require different approaches regarding the expression of uncertainty. For surface quantities and properties as discussed here, further considerations have to be made with respect to localized (lateral extension, native or artificial) or stratified (homogeneity and isotropy) material features vs. mapping (integration area) and imaging (lateral resolution and field of analysis) specifications of the measurement/testing procedure. The concept of uncertainty budgets and the expression of uncertainty is introduced and discussed in more detail for the nondestructive model-based determination of thickness by spectroscopic ellipsometry (SE), the destructive determination of adhesion by means of centrifugal adhesion testing (CAT). It is shown that the expression of uncertainty for these examples and real materials requires different approaches resulting in either quantitity values with unit or qualitative/quantititative attributes with calculated/estimated uncertainties in agreement with GUM. T2 - The 4th International Conference on Competitive Materials and Technology Processes, ic-cmtp4, 2016 CY - Miskolc-Lillafüred, Hungary DA - 03.10.2016 KW - Measurement and testing KW - Uncertainty budgets KW - Expression of uncertainty PY - 2016 AN - OPUS4-37841 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -