TY - CONF A1 - Vogl, Jochen A1 - Rienitz, O. T1 - Using information from CC Tables for supporting CMC claims N2 - Core capability tables list the skills and experiences, which at least partially are needed to successfully carry out a specific analytical task within the IAWG. The required skills and experiences, so-called core capabilities (CC), are identified for each analytical procedure. The summarized CC tables are listed in the appendix of each report on the corresponding key comparison or pilot study. These CC tables enable us to demonstrate that we have the analytical procedure we claim under control by means of other Key Comparison, which do not exactly meet the claimed calibration and measurement capability. This is especially important for: a) fields where no Key Comparison is available, b) Revision of CMC claims or c) when a participation in a Key Comparison was not possible. T2 - CCQM IAWG Meeting CY - Paris, France DA - 18.04.2016 KW - metrology KW - traceability PY - 2016 AN - OPUS4-36066 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vogl, Jochen T1 - The triple isotope calibration approach BT - A new calibration approach for obtaining absolute isotope ratios of multi-isotopic elements N2 - The calibration of isotope ratio measurements is an ongoing challenge since instrumental isotope fractionation (IIF) has been detected in mass spectrometry (MS). There is a variety of approaches which either bypass IIF such as delta measurements or refer to reference materials (RMs) and thus shifting the problem of calibration to somebody else: the RM producer. For certifying isotope RMs with absolute isotope ratios only a few approaches are available, namely the isotope mixture approach, the double spike approach, the mass bias regression model and total evaporation in TIMS. All of them require either enriched isotopes, isotope RMs of another element or an RM for correcting residual error. As the enriched isotopes required for the isotope mixture and the double spike approach need to be fully characterized beforehand, all mentioned calibration approaches require a standard. Here, a new and standard-free calibration approach for obtaining absolute isotope ratios of multi-isotopic elements has been developed. The underlying principle is that each MS suffers from IIF and thus yields a specific isotope fractionation line in a three-isotope diagram. When applying a second MS featuring a different ionization mechanism, we obtain a second isotope fractionation line with a different slope in the same three-isotope diagram. In both cases the absolute isotope ratios range somewhere on the isotope fractionation line. Consequentially, the intersect of both lines yield the absolute isotope ratios of the measured sample. This theory has been tested by measuring Cd and Pb isotope ratios of suitable isotope RMs with a TIMS and an ICP-MS, both equipped with multi-collector array. During the measurements the ionization conditions were changed such that different extent of the isotope fractionation has been achieved. With the resulting data set the theory described above could be verified. The obtained absolute isotope ratios were metrologically compatible with the certified isotope ratios. The remaining average bias of -5 ‰ can be reduced with further improvements. The calibration approach is universal and can be applied to any multi-isotopic element and it is not limited by the type of the mass spectrometer. T2 - Virtual Goldschmidt 2021 CY - Online meeting DA - 04.07.2021 KW - Absolute isotope ratio KW - Traceability KW - Metrology KW - Calibration KW - Uncertainty KW - Triple isotope fractionation PY - 2021 AN - OPUS4-53023 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vogl, Jochen T1 - Sr isotope ratio analysis N2 - The measurment of Sr isotope ratios is described and examples from food authenticity, provenancing of cement and pietas are provided. T2 - Workshop & Training "Isotope Ratio Analysis" CY - Pathum Thani, Thailand DA - 06.12.2023 KW - Conventional isotope ratios KW - Gypsum KW - Cement KW - Cheese PY - 2023 AN - OPUS4-59168 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vogl, Jochen T1 - Roadmap for the purity determination of pure metallic elements N2 - High purity materials can serve as a realisation of the Système International d’Unitès (SI) unit amount of substance for the specific element. Solutions prepared from such high purity materials using gravimetric preparation and the concept of molar mass are used as calibration solutions in many fields of analytical chemistry. Calibration solutions prepared this way provide the traceability to the SI and are the metrological basis in elemental analysis. The preparation and characterization of such primary pure substances, representing the realisation of the SI unit amount of substance, is undertaken only by a small number of National Metrology Institutes (NMI) and Designated Institutes (DI). Many other NMIs and DIs, however, prepare elemental calibration solutions as calibrants for their measurement services, such as the certification of matrix Reference Materials or the provision of reference values for Proficiency Testing schemes. The elemental calibration solutions used for this purpose are not a direct service to customers, such as preparing secondary calibration solutions, but provide the source of traceability for the other services. Hence, it is necessary for the NMI or DI to obtain data on the purity of the pure metals or other materials used to prepare the solutions with measurement uncertainties meeting the needs of the above described services. This is commonly undertaken as a “fit for purpose” assessment, appropriate for the uncertainty requirement of the service provided to customers. As a consequence, total purity measurements are a long-term strategy of CCQM-IAWG. Several studies were conducted (CCQM-P107, CCQM-K72 and CCQM-P149) on the measurement of the purity of zinc. From these studies, several conclusions can be drawn for the purity assessment of a pure (metallic) element. These conclusions will be put together in this document in order to assist all NMIs/DIs in performing a purity assessment, whenever needed. T2 - CCQM IAWG Meeting CY - Paris, France DA - 24.04.2017 KW - CCQM KW - Metrology KW - Purity assessment PY - 2017 AN - OPUS4-40034 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vogl, Jochen T1 - Roadmap for purity determination N2 - A Roadmap for the purity Determination of pure metallic elements is presented. The roadmap distinguishes between different approaches for the purity determination and list theindividual steps for each Approach which are necessary to successfully apply These approaches. T2 - CCQM IAWG Meeting CY - Daejeon, South Korea DA - 04.10.2016 KW - Traceability KW - Purity determination PY - 2016 AN - OPUS4-38590 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vogl, Jochen T1 - Road-map for purity determination N2 - From several CCQM studies (CCQM-P107, CCQM-K72 and CCQM-P149) conclusions can be drawn for the purity assessment of a pure (metallic) element. These conclusions will be put together in this document in order to assist all NMIs/DIs in performing a purity assessment, whenever needed. T2 - CCQM IAWG Meeting CY - Paris, France DA - 18.04.2016 KW - Purity KW - Metrology KW - Traceability PY - 2016 AN - OPUS4-36063 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vogl, Jochen A1 - Rienitz, O. T1 - Real-world examples of how to calculate a KCRV N2 - In this presentation the different ways are presented, which are used to calculate in practice the key comparison reference value. T2 - EURAMET TC Metrology in Chemistry Meeting CY - Geel, Belgium DA - 03.02.2016 KW - key comparison KW - CCQM KW - Degree of equivalence PY - 2016 AN - OPUS4-35573 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vogl, Jochen A1 - Rienitz, Olaf A1 - Noordmann, Janine A1 - Meyer, Christian T1 - Platin- und Palladium-Analytik mit ID-ICPMS N2 - Zertifizierung von Pt und Pd-Spikes und deren Anwendung auf die Quantifizierung von Pd und Pt in Kfz-Emissionen T2 - 15. Edelmetallforum CY - Freising, Germany DA - 14.03.2016 KW - PGE KW - Emissionen KW - IDMS KW - ICPMS PY - 2016 AN - OPUS4-35572 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vogl, Jochen A1 - Rienitz, O. T1 - Plan for comparison on absolute Cu isotope ratios by applying the isotope mixture approach N2 - The reference method for obtaining absolute isotope ratios still is the isotope mixture approach. Due the huge efforts required the full isotope mixture approach is applied only by a few institutes worldwide. To enable an IRWG key comparison with a sufficiently large number of participants a proposal for absolute cu isotope ratios is presented where participants will be provided with the enriched isotopes, the isotope mixtures and the samples. In parallel a pilot study will be organized where alternative approaches for obtaining absolute Cu isotope ratios can be applied. T2 - CCQM IRWG Meeting CY - Sevres, France DA - 24.04.2023 KW - Absolute isotope ratio KW - Traceability KW - Metrology PY - 2023 AN - OPUS4-57401 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vogl, Jochen T1 - Plan for comparison on absolute Cu isotope ratios by applying the isotope mixture approach N2 - Based on a previously circulated questionnaire, the plan for a key comparison is presented which focuses on the determination of absolute copper isotope ratios by the means of synthetic isotope mixtures. T2 - IRWG Meeting CY - Online meeting DA - 12.05.2022 KW - Absolute isotope ratio KW - Traceability KW - CCQM PY - 2022 AN - OPUS4-55161 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vogl, Jochen T1 - Pb isotope ratio analysis N2 - The determination of Pb isotope ratios by TIMS and ICP-MS is discussed and applications from archaeology are provided. T2 - Workshop & Training "Isotope Ratio Analysis" CY - Pathum Thani, Thailand DA - 06.12.2023 KW - Isotope reference material KW - Provenance KW - Silver artefacts KW - Curse tablets PY - 2023 AN - OPUS4-59167 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vogl, Jochen A1 - Kazlagic, Anera A1 - Abad Andrade, Carlos Enrique A1 - Winckelmann, Alexander T1 - New applications and reference materials in isotope analysis N2 - The presentations gives a short introduction into isotope analysis illustrated by examples from archaeology, food provenancing and metrology. In the main part current projects on the provenance determination of cement, the intercalibration of Mg isotope reference materials and the development of a new calibration approach for isotope measurements are presented. T2 - Seminar der Abteilung 1 CY - Online meeting DA - 19.01.2021 KW - Isotope reference material KW - Absolute isotope ratio KW - Metrology KW - Traceability KW - Triple isotope fractionation KW - Archaeometry KW - Cement PY - 2021 AN - OPUS4-52460 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vogl, Jochen T1 - Metrology in Chemistry - Basics and international structure N2 - Basics in Metrology in Chemistry are explained and the international structure of the metrology network is presented. T2 - Workshop & Training "Isotope Ratio Analysis" CY - Pathum Thani, Thailand DA - 06.12.2023 KW - Metrology in Chemistry KW - Traceability KW - Uncertainty PY - 2023 AN - OPUS4-59163 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vogl, Jochen T1 - Measurement Uncertainty in Isotope Ratio Measurements N2 - The importance for measurement uncertainty in isotope ratio measurements is expalined and different approaches for calculating measurement uncertainty for absolute isotope ratios, isotope deltas and conventional isotope ratios are presented. T2 - Workshop & Training "Isotope Ratio Analysis" CY - Pathum Thani, Thailand DA - 06.12.2023 KW - Isotope delta KW - Absolute isotope ratio KW - Conventional isotope ratio PY - 2023 AN - OPUS4-59169 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vogl, Jochen A1 - Irrgeher, J. T1 - IUPAC Commission on Isotopic Abundances and Atomic Weights its history, role, and work N2 - This presentation provides a short introduction to the Commission on Isotopic Abundances and Atomic Weights (CIAAW). It describes the role of the Commission and provides an insight into its work and the corresponding principal tasks. Finally, it provides the reader with the latest achievements and with the most recent publications. T2 - IUPAC Virtual General Assembly CY - Online meeting DA - 25.07.2023 KW - Absolute isotope ratio KW - Atomic weights KW - Metrology KW - Traceability KW - Isotope reference material PY - 2023 AN - OPUS4-58013 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Raab, A. A1 - Vogl, Jochen A1 - Solovyev, N. A1 - El-Khatib, Platt A1 - Costas-Rodriguez, M. A1 - Schwab, K. A1 - Griffin, E. A1 - Platt, B. A1 - Theuring, F. A1 - Vanhaecke, F. T1 - Isotope signature of iron, copper and zinc in mouse models (L66 and 5XFAD) and their controls used for dementia research N2 - Introduction: The influence of copper, iron and zinc concentrations on the formation of ß-amyloid plaques and neurofibrillary tangles in Alzheimer’s disease (AD) is widely discussed in the community. The results from human and animal studies so far are mixed with some studies showing a correlation and others not. From a number of studies, it is known that disease state and isotopic composition of essential elements can be coupled. Aim: The aim of the study was to identify changes in element content and isotopic composition in two transgenic mouse models used in AD research compared to their genetic WT relatives and to establish whether element content and isotopic signature between different laboratories is comparable. Methods: ß-amyloid (5xFAD) and tau overexpressing (L66) mice together with their matching wild-types were bred at dedicated facilities in accordance with the European Communities Council Directive (63/2010/EU). Serum and brain were sampled after sacrifice and the samples distributed among the participants of the study. The tissues were acid digested for total element determination and high-precision isotope ratio determination. Element content was determined by either sector-field or quadrupole-based inductively coupled plasma mass spectrometry (ICPMS). For the determination of isotope ratios multi-collector ICPMS was used. Results: Total copper content was significantly higher for L66 and their matched WT compared to 5xFAD and WT. Brains of L66 mice contained more Fe in brain than their WT, Zn and Cu were not significantly different between L66 and WT. Whereas 5xFAD mice had a slightly lower Cu and slightly higher Zn concentration in brain compared to WT. The isotopic signature in brain of L66 mice for Fe was different from their controls, whereas Zn isotope ratios were influenced in 5xFAD mice compared to their WT. The Cu isotopic ratio did not seem to be influenced in either strain. In serum, the shifts were less pronounced. Conclusion: Even though neither Tau-protein nor amyloid precursor protein are known to be metal-dependent / -containing proteins, the overexpression of both influences the Fe, Cu and Zn metabolism in brain and to some extent also in serum as can be seen not only using total element determination but probably more clearly studying the isotopic signature of Fe, Cu and Zn. T2 - The International Conference of Trace Elements and Minerals (ICTEM) 2022 CY - Aachen, Germany DA - 05.06.2022 KW - Isotope ratio KW - Isotope delta value KW - Metrology KW - Alzheimer disease KW - Measurement uncertainty PY - 2022 AN - OPUS4-55204 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Raab, A. A1 - Solovyev, N. A1 - El-Kathib, Ahmed A1 - Vogl, Jochen A1 - Costas-Rodriguez, M. A1 - Vanhaecke, F. A1 - Schwab, K. A1 - Griffin, E. A1 - Platt, B. A1 - Theuring, F. T1 - Isotope signature of iron, copper and zinc in mouse models (L66 and 5XFAD) and their controls used for dementia research N2 - Introduction: The influence of copper, iron and zinc concentrations on the formation of ß-amyloid plaques and neurofibrillary tangles in Alzheimer’s disease (AD) is widely discussed in the community. The results from human and animal studies so far are mixed with some studies showing a correlation and others not. From a number of studies, it is known that disease state and isotopic composition of essential elements can be coupled. Aim: The aim of the study was to identify changes in element content and isotopic composition in two transgenic mouse models used in AD research compared to their genetic WT relatives and to establish whether element content and isotopic signature between different laboratories is comparable. Methods: ß-amyloid (5xFAD) and tau overexpressing (L66) mice together with their matching wild-types were bred at dedicated facilities in accordance with the European Communities Council Directive (63/2010/EU). Serum and brain were sampled after sacrifice and the samples distributed among the participants of the study. The tissues were acid digested for total element determination and high-precision isotope ratio determination. Element content was determined by either sector-field or quadrupole-based inductively coupled plasma mass spectrometry (ICPMS). For the determination of isotope ratios multi-collector ICPMS was used. Results: Total copper content was significantly higher for L66 and their matched WT compared to 5xFAD and WT. Brains of L66 mice contained more Fe in brain than their WT, Zn and Cu were not significantly different between L66 and WT. Whereas 5xFAD mice had a slightly lower Cu and slightly higher Zn concentration in brain compared to WT. The isotopic signature in brain of L66 mice for Fe was different from their controls, whereas Zn isotope ratios were influenced in 5xFAD mice compared to their WT . The Cu isotopic ratio did not seem to be influenced in either strain. In serum, the shifts were less pronounced. Conclusion: Even though neither Tau-protein nor amyloid precursor protein are known to be metal-dependent / -containing proteins, the overexpression of both influences the Fe, Cu and Zn metabolism in brain and to some extent also in serum as can be seen not only using total element determination but probably more clearly studying the isotopic signature of Fe, Cu and Zn. T2 - International Conference of Trace Elements and Minerals CY - Aachen, Germany DA - 05.06.2022 KW - Isotope delta value KW - Copper KW - Zinc KW - Iron KW - Dementia PY - 2022 AN - OPUS4-58230 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vogl, Jochen A1 - Oelze, Marcus A1 - Rosner, M. A1 - Rienitz, O. T1 - Isotope reference materials N2 - The variation of isotope ratios is increasingly used to unravel natural and technical questions. In the past, the investigation and interpretation of such variations was the field of a limited number of experts. With new upcoming techniques and research topics in the last decades, such as provenance or food authenticity studies, the number of published isotope data strongly increased. Instrumental developments such as the enhancement of inductively coupled plasma mass spectrometers (ICP-MS) from an instrument for simple quantitative analysis to highly sophisticated isotope ratio machines influenced this process significantly. While in former times only experts in mass spectrometry were able to produce reliable isotope data, nowadays many laboratories, never been in touch with mass spectrometry before, produce isotope data with an ICP-MS. Isotope reference materials (iCRM) are indispensable to enable a reliable method validation or in rare cases even SI-traceability. The fast development and the broad availability of ICP-MS also lead to an expansion of the classical research areas and new elements are under investigation. Irrespective of the investigated element or the knowledge of the user all isotope ratio applications require reference materials either for correction of instrumental isotope fractionation, for method validation or to provide a common accepted basis as needed for delta measurements. This presentation will outline the basic principles and illustrate the urgent need for new iCRMs. Consequently, the production and certification of iCRMs will be discussed and illustrated by examples of already completed certification projects. Finally, plans for future iCRMs to be produced at BAM will be presented. T2 - ICP-MS Anwender*innentreffen 2022 CY - Leoben, Austria DA - 05.09.2022 KW - Absolute isotope ratio KW - Traceability KW - Metrology KW - Comparability KW - Uncertainty KW - Isotope reference materials KW - Delta scale PY - 2022 AN - OPUS4-55681 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vogl, Jochen A1 - Rienitz, O. A1 - Rosner, M. A1 - Tatzel, M. A1 - Brandt, B. A1 - Henehan, M. J. A1 - Kasemann, S. A. A1 - Kraft, R. A1 - Malinovskiy, D. A1 - Meixner, A. A1 - Noordmann, J. A1 - Rabb, S. A1 - Schüssler, J. A. A1 - Tütken, M. A1 - Vocke, R. D. T1 - Isotope ratios and delta values with minimal measurement uncertainties -measuring magnesium using MC-ICP-MS N2 - Multi-collector inductively coupled plasma-mass spectrometry (MC-ICP-MS) has evolved significantly since its introduction in 1992. The second and third generation instruments now allow isotope ratio measurements at unprecedented precisions, 0.001 % or better. However, precision alone is not enough for producing accurate and reliable isotope ratio measurements. Metrological considerations such as the selection of suitable calibration strategies, proper assessment of instrumental biases, and the estimation of overall measurement uncertainty remain critical to the measurement process. Properly assessed, measurement uncertainty then provides the interval within which a result can be considered both accurate and precise. All mass spectrometric measurements are affected by instrumental mass discrimination and produce isotope ratios that are biased relative to their “true” ratio. To produce accurate and traceable isotope ratio measurements, it is imperative that certified isotope reference materials (iCRMs) be used for calibration and validation purposes. iCRMs reporting absolute isotope ratios are an analyst’s first choice, particularly when its uncertainty is sufficient for the intended use. However, when smaller uncertainties are required to resolve subtle differences between samples, delta-scale measurements become important. Here, the difference between an isotope ratio measured in a sample and in an internationally accepted isotope reference material (iRM) is determined. This deviation can be positive or negative relative to the iRM, is called a delta value, and is often expressed in per mil units. This presentation will highlight the potential for MC-ICP-MS to produce isotope ratio measurements with minimal uncertainties by examining three applications involving Mg isotopes: 1) the certification of a set of iCRMs for their absolute isotope ratio using a gravimetric isotope mixture approach; 2) the comparison of these iCRMs with currently accepted Mg delta-scale reference materials through intercalibration, and 3) the determination of isotope fractionation exponents for geochemical applications. T2 - 4th International Conference on Frontiers in Mass Spectrometry CY - Kottayam, Kerala, India DA - 04.12.2019 KW - Triple isotope fractionation KW - Absolute isotope ratio KW - Delta value KW - Mangesium PY - 2019 AN - OPUS4-50004 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vogl, Jochen T1 - Isotope ratio working group at CCQM N2 - The presentation gives the reasons for initiation of an isotope ratio working group at CCQM level, describes the process and provides the auduince with the initial working plan. T2 - EURAMET TC-MC Workshop on Isotope Ratio Analysis CY - Bern, Switzerland DA - 05.02.2020 KW - Metrology KW - Absolute isotope ratio KW - Isotope ratio KW - Delta value PY - 2020 AN - OPUS4-50344 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vogl, Jochen T1 - Isotope ratio measurements and certification of iRMs at BAM N2 - This presentation gives a short overview of isotope ratio measurements being carried out in the past few years at BAM in different fields such as plant metabolism, food web structures and archaeology. The corresponding isotope reference materials which have been certified at BAM in parallel are presented as well. Additionally an outlook is being provided on future iRM projects. T2 - Meeting of the Isotope Ratio Working Groupt of CCQM CY - Ottawa, Canada DA - 04.10.2018 KW - Isotope reference material KW - Delta value KW - Isotope amount ratio KW - Traceability KW - Uncertainty PY - 2018 AN - OPUS4-47159 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vogl, Jochen T1 - Isotope Ratio Measurements and Certification of iCRMs at BAM N2 - A short overview on isotope ratio measurements at BAM and related CRM activities is given. The current isotope CRM range offered by BAM and future iCRM projects are presented. T2 - CCQM IRWG Meeting CY - Sevres, France DA - 24.04.2023 KW - Absolute isotope ratio KW - Reference material KW - Metrology KW - Traceability PY - 2023 AN - OPUS4-57399 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vogl, Jochen T1 - Isotope Ratio Measurement - Quantities and calibration N2 - The quantities and the terminoly in isotope ratio measurements is presented, followed by explaining calibration approaches for isotope ratio measurements. Sources of error and bias are presented and special focus is given on single detector mass spectrometry. T2 - Workshop & Training "Isotope Ratio Analysis" CY - Pathum Thani, Thailand DA - 06.12.2023 KW - Isotope fractionation KW - Matrix separation KW - Interferences KW - Noise KW - Optimization PY - 2023 AN - OPUS4-59165 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vogl, Jochen T1 - Isotope Ratio Analysis N2 - Basic information on isotope ratio analysis is provided. Isotope fractionation is discussed and the measurement process is described. Additionally, practical examples are provided. T2 - Workshop & Training "Isotope Ratio Analysis" CY - Pathum Thani, Thailand DA - 06.12.2023 KW - Isotope fractionation KW - Mass spectrometry KW - Terminology PY - 2023 AN - OPUS4-59164 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vogl, Jochen A1 - Koenig, Maren T1 - Isotope dilution mass spectrometry applied as primary method of measurement with examples from the ENVCRM project N2 - The presentation describes the application of isotope dilution mass spectrometry as a primary method of measurement with all Advantages and disadvantges. This is exempflified for the candidate reference materials within the EnvCRM Project. T2 - Workshop Matrix Reference Materials for Environmental Analysis CY - Gebze, Turkey DA - 16.05.2018 KW - Reference material KW - Soil KW - Heavy metals PY - 2018 AN - OPUS4-45896 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vogl, Jochen T1 - Isotope analysis N2 - The variation of isotope ratios is increasingly used to unravell natural and technical questions. In the past the investigation and interpretation of such variations was the field of a limited number of experts. With new upcoming techniques and research topics in the last decades, such as provenance and authenticity of food, the number of published isotope data strongly increased. Instrumental developments such as the enhancement of inductively coupled plasma mass spectrometers (ICPMS) from an instrument for simple quantitative analysis to highly sophisticated isotope ratio machines influenced this process significantly. While in former times only experts in mass spectrometry were able to produce reliable isotope data, nowadays many laboratories, never been in touch with mass spectrometry before, produce isotope data with an ICPMS. Especially for such user isotope reference materials (IRM) are indispensible to enable a reliable method validation. The fast development and the broad availability of ICPMS also lead to an expansion of the classical research areas and new elements are under Investigation. This presentation shows the basics and principles for isotope ratio determination using ICP-MS. Additionally, it provides three specific examples for isotope Ratio applications: isotope dilution mass spectrometry; provenancing of archaeoligical artifeacts by lead isotope Ratio Analysis and studies on boron uptake in bell pepper plants. T2 - ICP-MS Kurs (BAM Akademie) CY - Berlin, Germany DA - 19.04.2017 KW - Lead isotopes KW - Delta values KW - Boron isotopes KW - Archaeology KW - Plant metabolism PY - 2017 AN - OPUS4-40030 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vogl, Jochen T1 - IRWG strategy update N2 - An update of the IRWG strategy for the period 2023-2030 is given. The status and the futuere work of the task group on quantities, symbols and units is discussed. The present status of IRWG comparisons is shown and the need for specific key comparisons is discussed. T2 - CCQM IRWG Meeting CY - Sevres, France DA - 24.04.2023 KW - Isotope ratio KW - Traceability KW - Metrology PY - 2023 AN - OPUS4-57400 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vogl, Jochen T1 - IRWG strategy update N2 - This talk presents a strategy update of the Isotope Ratio Working Group of CCQM. The focus is on future comparisons and the promotion of international comparability. T2 - IRWG Meeting CY - Online meeting DA - 12.05.2022 KW - Isotope ratio KW - Traceability KW - Metrology PY - 2022 AN - OPUS4-55160 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vogl, Jochen T1 - Implementation of ISO Guide 34 into the quality management system of BAM N2 - Presentation of the BAM quality management System with focus on the ISO Guide 34 implementation. This presentation is one part of the re-evaluation of BAM carried out by the Technical Committee of EURAMET. T2 - TC-Q Meeting CY - Dublin, Ireland DA - 12.04.2017 KW - Quality system KW - Re-evaluation KW - Metrology in chemistry KW - EURAMET KW - CCQM PY - 2017 AN - OPUS4-40031 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vogl, Jochen T1 - IDMS Training N2 - Based on its proven records especially in reference material certification, isotope dilution mass spectrometry (IDMS) is considered as one of the most powerful and most accurate methods for determining amounts of substance. Contrary to other calibration approaches, IDMS does not directly suffer from long-time changes or drifts in instrument sensitivity. Moreover, provided isotopic exchange between the sample and spike is ensured, losses of analyte do not affect the analytical result. Both advantages are based on the fact that IDMS only requires isotope ratio measurements and isotope ratios are largely unaffected by instrumental drift, setup or by matrix, unless an isobaric interference is present. The Consultative Committee for Amount of Substance (CCQM), the world's highest institution for metrology in chemistry, considers IDMS as the most important “Primary Method of Measurement” for amount determination. The total combined uncertainty, according to ISO and EURACHEM guidelines, can easily be calculated via the IDMS equations. Applying it correctly, IDMS has the potential to be a primary method of measurement yielding SI traceable values in the most direct way with combined uncertainties significantly smaller than obtainable by other methods. In general it can be stated that IDMS is the most important reference method for elemental and elemental species analysis, offering highest accuracy and precision or smallest measurement uncertainties, when properly applied. Thus IDMS represents by far the best suited reference method for RM characterisation. Due to its universal applicability IDMS offers sufficient potential to follow future needs in analytical chemistry as well as in the RM sector. This presentation will demonstrate the basic principle of IDMS and will show its Pros and Cons as well as its pitfalls. Possible sources of errors and bias are mentioned and correction models will be discussed. Notice will be given to metrological aspects such as traceability and uncertainty. Differences in the application of thermal ionization mass spectrometry and inductively coupled plasma mass spectrometry are discussed as well as differences between different types of mass spectrometers. This will be illustrated by practical examples from various fields. T2 - Workshop and practical training on isotope dilution mass spectrometry CY - Berlin, Germany DA - 22.02.2016 KW - Isotope dilution mass spectrometry KW - Primary method of measurement KW - Certification PY - 2016 AN - OPUS4-40029 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vogl, Jochen A1 - Noireaux, J. A1 - D'Agostino, G. A1 - Hill, S. A1 - Gendre, R. A1 - Cankur, O. A1 - Ghestem, J.-P. A1 - Haraldson, C. A1 - Irrgeher, J. A1 - Jacimovic, R. A1 - Jotanovic, A. A1 - Naykki, T. A1 - Proefrock, D. A1 - Rienitz, O. A1 - Umbricht, G. T1 - Herausforderungen bei der Analytik von Technologie-kritischen Elementen (TCE) in Abfällen N2 - Technologie-kritische Elemente (TCE) sind unentbehrliche Materialien für High-Tech Produkte wie Smartphones, Notebooks und Monitors. Ihr Bedarf wird voraussichtlich aufgrund des gesellschaftlichen Wandels hin zu einer grünen Ökonomie exponentiell ansteigen. Dieser Wandel wird vor allem auch durch erneuerbare Energien und Elektromobilität geprägt (European Green Deal). Diese Entwicklung in Verbindung mit einer nahezu fehlenden TCE Produktion in Europa setzt den Markt unter Druck und führt zu steigenden Preisen. Die Sicherung des TCE Nachschubs wurde in der gegenwärtigen Gesundheitskrise noch dringender und wurde daher auch zu einem der Hauptthemen des COVID-19 Recovery Plan, der eine Stärkung der europäischen Resilienz und Autonomie zum Ziel hat. Ein nachhaltige Lösung ist das Recycling der Abfall- bzw. Wertstoffe und letztendlich eine Circular Economy. Allerdings ist die Analyse von Abfallströmen schwierig und erfordert geeignete analytische Lösungen, die SI-rückführbare und somit vergleichbare Messergebnisse im gesamten Recyclingprozess ermöglichen. Die dafür erforderlichen, für TCE zertifizierte, Referenzmaterialien und nötige standardisierte Verfahren fehlen bisher nahezu vollständig. In diesem Beitrag werden die analytischen Herausforderungen, wie z.B. die extreme Heterogenität der Materialien, Schwierigkeiten beim Probenaufschluss und das Fehlen von Referenzmaterialien diskutiert. Und es wird das EMPIR-Projekt MetroCycleEU vorgestellt, dessen Ziel es ist Referenz- und Routineverfahren für ausgewählte TCE (Co, Ga, Ge, In, Ta, Nd, Pr, Dy, Gd, La, Au, Pt, Pd, Rh) zu entwickeln und Referenzmaterialien für Platinen, LEDs und Li-Batterien bereitzustellen. T2 - Workshop Nachhaltige Prozesse für eine Circular Economy CY - Berlin, Germany DA - 23.09.2021 KW - TCE KW - Circular economy KW - Metrology KW - Traceability KW - Uncertainty PY - 2021 AN - OPUS4-53371 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pramann, A. A1 - Vogl, Jochen A1 - Flierl, L. A1 - Rienitz, O. T1 - Determination of absolute (SI‐traceable) isotope ratios: The use of Gravimetric Isotope Mixtures N2 - The presentation is brief overview on how to use gravimetric isotope mixtures to determine SI traceable isotope ratios. There is no mass spectrometer on earth that directly measures isotope ratios. Mass spectrometers will always measure signal intensity ratios instead. The actual problem is that the measured intensity ratios differ more or less from the isotope ratios. The difference can be up to more than 10 % in case of lithium while it‘s below 1 % in case of the heavier elements like lead or uranium. Consequently, the signal intensity ratios are expressed for example in V/V depending on the type of mass spectrometer you are using, while the isotope ratios are expressed in mol/mol. This phenomenon is called Instrumental Isotopic Fractionation (or short IIF) but the more common name is still mass bias (even though this name is not entirely correct). To convert the measured into the isotope ratio usually a simple multiplication with a so-called correction (or short K) factor is done. Therefore, the problem is to determine the K factor. In absence of isotope reference materials the golden route is via gravimetric isotope mixtures, which will be explained within the presentation. T2 - CCRI-CCQM Workshop on the use of mass spectrometry in radionuclide metrology: Opportunities and challenges - Video Tutorial CY - Online meeting DA - 14.02.2023 KW - Absolute isotope ratio KW - Traceability KW - Uncertainty KW - Isotope mixtures PY - 2023 AN - OPUS4-57172 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vogl, Jochen T1 - Detector deadtime N2 - Deadtime effects for counting detectors in ICP-MS and deadtime correction are discussed. Approaches for determining the deadtime are presented. T2 - Workshop & Training "Isotope Ratio Analysis" CY - Pathum Thani, Thailand DA - 06.12.2023 KW - Counting detector KW - Detector deadtime KW - Isotope ratio KW - Dual mode detector PY - 2023 AN - OPUS4-59166 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vogl, Jochen T1 - Delta values, Delta zero reference materials and uncertainties N2 - Discussion of Delta values, Delta scales, delta Zero reference materials and measurement uncertainties for delta-values under metrological aspects. T2 - CCQM Isotope Ratio Task Group CY - Delft, Netherlands DA - 27.10.2017 KW - Traceability KW - Measurement uncertainty KW - Delta scale KW - Reference material PY - 2017 AN - OPUS4-42743 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vogl, Jochen A1 - Vocke, B. T1 - Delta values & isotope ratios - potential CCQM comparisons N2 - The talk presents several potential CCQM comparisons for delta values and isotope ratios with a focus on metals and semi-metals. T2 - CCQM IRWG Meeting CY - Paris, France DA - 18.04.2018 KW - Isotope amount ratio KW - Traceability KW - Uncertainty PY - 2018 AN - OPUS4-45895 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vogl, Jochen T1 - Cu project on calibration approaches for absolute isotope ratios N2 - This presentations summarizes the difficulties in the purification of enriched copper isotopes by high vacuum subimation. It shows as well thelimitations for a CCQM key comparison on this topic. T2 - CCQM Isotope Ratio Work Group Meeting CY - Bern, Switzerland DA - 09.10.2019 KW - Absolute isotope ratio KW - Isotope purification KW - Metal sublimation KW - Gravimtric isotope mixtures PY - 2019 AN - OPUS4-49518 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Brauckmann, C. A1 - Pramann, A. A1 - Rienitz, O. A1 - Schulze, A. A1 - Phukphatthanachai, P. A1 - Vogl, Jochen T1 - Combining Isotope Dilution and Standard Addition - Elemental Analysis in Complex Samples N2 - A new method combining isotope dilution mass spectrometry (IDMS) and standard addition has been developed to determine the mass fractions w of different elements in complex matrices: (a) silicon in aqueous tetramethylammonium hydroxide (TMAH), (b) sulfur in biodiesel fuel, and (c) iron bound to transferrin in human serum. All measurements were carried out using inductively coupled plasma mass spectrometry (ICP–MS). The method requires the gravimetric preparation of several blends (bi)—each consisting of roughly the same masses (mx,i) of the sample solution (x) and my,i of a spike solution (y) plus different masses (mz,i) of a reference solution (z). Only these masses and the isotope ratios (Rb,i) in the blends and reference and spike solutions have to be measured. The derivation of the underlying equations based on linear regression is presented and compared to a related concept reported by Pagliano and Meija. The uncertainties achievable, e.g., in the case of the Si blank in extremely pure TMAH of urel (w(Si)) = 90% (linear regression method, this work) and urel (w(Si)) = 150% (the method reported by Pagliano and Meija) seem to suggest better applicability of the new method in practical use due to the higher robustness of regression analysis. T2 - CITAC Best Paper Award Ceremony CY - Online meeting DA - 21.06.2022 KW - Isotope dilution mass spectrometry KW - Standard addition KW - ICP-MS KW - Blank characterization KW - Silicon KW - Sulfur KW - Transferrin KW - Tetramethylammonium hydroxide KW - Biodiesel fuel KW - Human serum PY - 2022 AN - OPUS4-55032 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vogl, Jochen T1 - CCQM-P213: BAM procedure for obtaining Cu delta values N2 - BAM participated in the CCQM pilot study P213 for obtaining copper isotope delta values. This presentations provides details on the MC-ICP-MS based measruement procedure, which has been applied to obtain such copper delta values. T2 - IRWG Meeting CY - Online meeting DA - 12.05.2022 KW - Isotope delta value KW - Copper KW - Metrology KW - Traceability PY - 2022 AN - OPUS4-55162 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vogl, Jochen T1 - CCQM-P213: BAM procedure for obtaining Cu delta values N2 - BAM participated in the CCQM pilot study P213 for obtaining copper isotope delta values. This presentations provides details on the MC-ICP-MS based measruement procedure, which has been applied to obtain such copper delta values. T2 - IRWG Meeting 2022 CY - Online meeting DA - 20.09.2022 KW - Isotope ratio KW - Copper KW - Metrology KW - Traceability KW - Uncertainty PY - 2022 AN - OPUS4-55864 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vogl, Jochen T1 - CCQM-P149 Statistical evaluation of results N2 - The results for CCQM-P149 "Purity Determination of high purity zinc" are displayed and three different statistical approaches for the calculation of the reference value are compared. T2 - CCQM IAWG Meeting CY - Paris, France DA - 24.04.2017 KW - Purity KW - Metrology KW - Comparison KW - Impurities PY - 2017 AN - OPUS4-40033 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vogl, Jochen T1 - CCQM IRWG draft strategy for all elements except for noble gases and H, C, N, O N2 - The presentation describes the draft strategy for metalloids and semi-metals within the IRWG at CCQM. This includes the definition of the measurements space, a suitable set of key comparisons and pilot studies and a proposal for a harmonized CMC application. T2 - EURAMET TC-MC Workshop on Isotope Ratio Analysis CY - Bern, Switzerland DA - 05.02.2020 KW - CMC KW - Measurement space KW - Metrology KW - Isotope ratio PY - 2020 AN - OPUS4-50345 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vogl, Jochen T1 - Applicability of CCQM-P149 to support CMCs N2 - The presentation describes the limitations of CCQM-P149 to be used for supporting CMCs and it gives possibilities and applications where CCQM-P149 can provide additional Support. T2 - CCQM IAWG Meeting CY - Daejeon, South Korea DA - 04.10.2016 KW - CCQM KW - CMC KW - Purity assessment PY - 2016 AN - OPUS4-38586 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vogl, Jochen T1 - Applicability of CCQM-P149 to support CMCs N2 - CCQM-P149 is an attempt to obtain a snapshot on actual procedures the NMIs and DIs within CCQM-IAWG applied to the purity characterization of their “fit for purpose” elemental Standards. This presentation describes how the results of CCQM-P149 may be used to underpin calibration and measurement capabilities being claimed in the BIPM database. T2 - CCQM IAWG Meeting CY - Paris, France DA - 18.04.2016 KW - metrology KW - purity KW - traceability PY - 2016 AN - OPUS4-36064 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vogl, Jochen T1 - Absolute isotope ratios - a proposed research topic N2 - An introduction into absolute isotope ratios is given, with application fields ranging from fundamental science to geochronology and forensics. This is followed by a proposal for developing new calibration approaches for obtaining absolute isotope ratios at unrivaled uncertainty levels. This new developments will set the basis for improvements in all scientific fields. T2 - EURAMET TC-MC Workshop on Isotope Ratio Analysis CY - Bern, Switzerland DA - 05.02.2020 KW - Absolute isotope ratio KW - Isotope fractionation KW - Metrology KW - Fundamental science PY - 2020 AN - OPUS4-50346 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vogl, Jochen A1 - Noordmann, J. A1 - Rosner, M. A1 - Goenaga-Infante, H. A1 - Štrok, M. A1 - Pramann, A. A1 - Vanhaecke, F. A1 - Meisel, T. A1 - Pröfrock, D. A1 - Prohaska, T. A1 - Vocke, R.D. A1 - Richter, S. T1 - Absolute Isotope Ratios N2 - Measurement results and scientific models leading to important decisions in forensics, food fraud or climatology are based on isotope ratio data. Molar masses of multi-isotopic elements are as well based on isotope ratio data. Thus, in the case of Si, isotope ratios directly impact the redefinition of the SI base units kilogram and mole. Therefore, new strategies are required leading to new primary isotope reference materials, whose isotope ratios are traceable to the SI. This in turn will ensure the comparability of isotope ratio data and will render the traceability exception requested by the CCQM superfluous. Such new procedures will be developed for the key elements S, Si, Ca, Sr and Nd at relative uncertainty levels of ≤ 0.01 %. T2 - EURAMET TC-MC Meeting CY - Vienna, Austria DA - 05.02.2018 KW - Metrology in chemistry KW - Isotope amount ratio KW - SI traceability KW - Atomic weight KW - Molar mass KW - Synthetic isotope mixtures PY - 2018 AN - OPUS4-44644 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -