TY - JOUR A1 - Kind, Thomas T1 - Amplitudes variation of GPR rebar reflection due to the influence of concrete aggregate scattering JF - The e-journal of nondestructive testing & ultrasonics N2 - Dense GPR measurements of rebar reflection amplitudes Show relative variations, which can be in the order of more than 10% - 20%. Former investigations demonstrated that these variations are caused by the heterogeneity of concrete, i.e. due to the inclusion of aggregates in concrete. These amplitude variations make it difficult to analyse single reflection amplitudes in order to determine the rebar diameter or to estimate the concrete deterioration state. In a systematic study we have quantified the statistical variation of the rebar reflection amplitude for concrete covers of 6 cm, 9 cm, 12 cm, 15 cm and 18 cm, for two different grading curves and for the rebar diameters 12 mm and 28 mm. Also the influence of the wavelength has been investigated by using antennas with different centre frequencies in relation to the aggregate size. The results are discussed with regard to a quantitative amplitude evaluation of GPR measurements and also the potential of using these variations for a characterization of concrete material properties. T2 - NDT-CE 2015 - International symposium non-destructive testing in civil engineering CY - Berlin, Germany DA - 15.09.2015 KW - Ground penetrating radar KW - Concrete KW - Rebar KW - Aggregate scattering PY - 2015 UR - http://www.ndt.net/?id=18402 SN - 1435-4934 VL - 20 IS - 11 SP - 412 EP - 420 PB - NDT.net CY - Kirchwald AN - OPUS4-40007 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Priebe, Nsesheye Susan A1 - Rogge, A. A1 - Schmidt, W. T1 - A modified cementitious system for sub-Saharan Africa N2 - Supplementary cementitious materials (SCMs) are largely used all over the world. The leading SCMs are fly ash (FA) and slag. However, such materials originate from industries that are not well established in sub-Saharan Africa (SSA). Therefore, it becomes extremely challenging and expensive to build up sustainable cement and concrete. For SSA, agriculture is one of the leading economic sectors. Agricultural by-products such as rice husk ash (RHA), can be a potential binder material beneficial for use in a cementitious system. RHA combined with limestone filler (LSF) is an option that can be practised for rice producing countries in Africa. T2 - PhD Day CY - Berlin, Germany DA - 14.07.2015 KW - Supplementary cementitious materials KW - Rice husk as KW - Cement KW - Concrete KW - Sustainable PY - 2015 N1 - Geburtsname von Priebe, Nsesheye Susan: Msinjili, N. S. - Birth name of Priebe, Nsesheye Susan: Msinjili, N. S. AN - OPUS4-41029 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Niederleithinger, Ernst A1 - Wolf, Julia A1 - Mielentz, Frank A1 - Wiggenhauser, Herbert A1 - Pirskawetz, Stephan T1 - Embedded ultrasonic transducers for active and passive concrete monitoring JF - Sensors N2 - Recently developed new transducers for ultrasonic transmission, which can be embedded right into concrete, are now used for non-destructive permanent monitoring of concrete. They can be installed during construction or thereafter. Large volumes of concrete can be monitored for changes of material properties by a limited number of transducers. The transducer design, the main properties as well as installation procedures are presented. It is shown that compressional waves with a central frequency of 62 kHz are mainly generated around the transducer's axis. The transducer can be used as a transmitter or receiver. Application examples demonstrate that the transducers can be used to monitor concrete conditions parameters (stress, temperature, …) as well as damages in an early state or the detection of acoustic events (e.g., crack opening). Besides application in civil engineering our setups can also be used for model studies in geosciences. KW - Ultrasound KW - Transmission KW - Concrete KW - Damages KW - Cracks KW - Stress KW - Monitoring KW - Acoustic emission KW - Transducers KW - Coda wave interferometry PY - 2015 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-345632 DO - https://doi.org/10.3390/s150509756 SN - 1424-8220 VL - 15 IS - 5 SP - 9756 EP - 9772 PB - MDPI CY - Basel AN - OPUS4-34563 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Grohmann, Maria A1 - Müller, Sabine A1 - Niederleithinger, Ernst T1 - Reverse time migration: Introduction of a new imaging technique for ultrasonic measurements in civil engineering T2 - Proceedings of NDT-CE 2015 - International symposium non-destructive testing in civil engineering N2 - Ultrasonic echo testing is widely used in non-destructive testing in civil engineering to investigate concrete structures, to measure thickness, and to locate and characterise built-in components or inhomogeneities. Currently, synthetic aperture focusing techniques are mostly used for imaging. These algorithms are highly developed but have some limitations. For example, it is not possible to image the lower boundary of built-in components like tendon ducts or vertical reflectors. We adopted reverse time migration for non-destructive testing in civil engineering in order to improve the imaging of complicated structures in concrete. By using the entire wavefield, including waves reflected more than once, there are fewer limitations compared to synthetic aperture focusing technique algorithms. As a drawback, the required computation is significantly higher than that for the techniques currently used. Simulations for polyamide and concrete structures showed the potential for non-destructive testing. The simulations were followed by experiments at a polyamide specimen. Here, having acquired almost noise-free measurement data to test the algorithm, we were able to determine the shape and size of boreholes with sufficient accuracy. After these successful tests, we performed experiments at a reinforced concrete foundation slab. We obtained information from the data by reverse time migration, which was not accessible by traditional imaging. The imaging of the location and structure of the lower boundary of the concrete foundation slab was improved. Furthermore, vertical reflectors inside the slab were imaged clearly, and more flaws were found. It has been shown that reverse time migration is a step forward in ultrasonic testing in civil engineering. T2 - NDT-CE 2015 - International symposium non-destructive testing in civil engineering CY - Berlin, Germany DA - 15.09.2015 KW - Ultrasound KW - Imaging KW - Reverse time migration KW - Reflection seismics KW - Concrete PY - 2015 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-345406 SN - 1435-4934 SP - 1 EP - 10 PB - Technische Universität Berlin / Bundesanstalt für Materialforschung und -prüfung AN - OPUS4-34540 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -