TY - JOUR A1 - Riedel, Jens A1 - Larsson, H. A1 - Temps, F. A1 - Hartke, B. T1 - Resonance dynamics of DCO (<(X over tilde>(2)A') simulated with the dynamically pruned discrete variable representation (DP-DVR) N2 - Selected resonance states of the deuterated formyl radical in the electronic ground state X^2A´ are computed using our recently introduced dynamically pruned discrete variable representation [H. R. Larsson, B. Hartke, and D. J. Tannor, J. Chem. Phys. 145, 204108 (2016)]. Their decay and asymptotic distributions are analyzed and, for selected resonances, compared to experimental results obtained by a combination of stimulated emission pumping and velocity-map Imaging of the product D atoms. The theoretical results show good agreement with the experimental kinetic energy distributions. The intramolecular vibrational energy redistribution is analyzed and compared with previous results from an effective polyad Hamiltonian. Specifically, we analyzed the part of the wavefunction that remains in the interaction region during the decay. The results from the polyad Hamiltonian could mainly be confirmed. The C=O stretch quantum number is typically conserved, while the D-C=O bend quantum number decreases. Differences are due to strong anharmonic coupling such that all resonances have major contributions from several zero-order states. For some of the resonances, the coupling is so strong that no further zero-order states appear during the dynamics in the interaction region, even after propagating for 300 ps. KW - Reaction dynamics KW - Spectroscopy KW - Quantum state PY - 2018 DO - https://doi.org/10.1063/1.5026459 SN - 0021-9606 VL - 148 IS - 20 SP - 204309-1 EP - 204309-15 PB - AIP publishing CY - New York AN - OPUS4-45345 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bierstedt, Andreas A1 - van Wasen, Sebastian A1 - Riedel, Jens T1 - Laser-spark ionization mass spectrometry N2 - A versatile ionization scheme for atmospheric pressure MS is presented. It is based on a quasi-continuous laser-induced plasma (LIP), generated by a 26 kHz pulsed DPSS-laser, which is ignited in front of the MS inlet. Analytes are determined with different sampling regimes, comprising either an ambient desorption/ionization mechanism, a liquid-phase or gas-phase sample introduction. The MS signal closely resembles the ionization behavior of APCI-like plasma-based sources, such as DBD or DART. Though LIPs are known to efficiently atomize/ionize any sample material, mass spectra of intact molecular ions are recorded, exhibiting low fragment-ion content. To understand this contradictory behavior, the plasma properties are investigated that lead to the formation of molecular ions. Comprehensive studies include optical emission spectroscopy, shadowgraph imaging and mass spectrometry diagnostics. The results show that the ionization of analyte does not occur in the plasma itself, but in the cold adjacent gas layer. The pulsed character of LIPs induces an expanding shockwave, which concentrically expands around the plasma core and sweeps the molecules toward the plasma edges, where they are ionized either directly by the self-emission of the hot core or via interaction with secondary reactants. However, this unidirectional transport causes a rarefaction inside the plasma center, which leads to a decrease in plasma intensity and number density. Thus, a restoration of the former gaseous medium by other dynamically equilibrated diffusion processes would be favorable. Besides gas replenishing, we demonstrate the beneficial use of an acoustical standing wave inside an ultrasonic resonator on the performance of the LIP. T2 - European Mass Spectrometry Conference 2018 CY - Saarbrücken, Germany DA - 11.03.2018 KW - Laser-spark ionization KW - Laser-induced plasma KW - Ambient mass spectrometry KW - DPSS laser PY - 2018 AN - OPUS4-44492 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - van Wasen, Sebastian A1 - Bierstedt, Andreas A1 - Volmer, D. A1 - Riedel, Jens T1 - Airborne laser-spark ion source for direct microfluidic coupling N2 - The development and improvement of new ionization techniques for mass spectrometry often requires dedicated, specific sampling approaches. Recently, a novel ionization scheme for ambient MS has been introduced based on a quasi-continuous laser-induced plasma, which was ignited directly before the MS inlet. This setup combines the general advantages of ambient ionization, provides electro neutrality, sufficient duty cycle and a ubiquitous plasma medium. A high repetition rate DPSS laser (Conqueror 3-LAMBDA, Nd:YVO4, 1 - 500 kHz, average output power: 12 W at 50 kHz, Compact Laser Solutions GmbH, Germany) and the corresponding optomechanical system were installed on an optical breadboard above the inlet of a LCQ DecaXP ion trap mass spectrometer. The quasi-continuous airborne plasma was ignited inside the sprayed sample in front of the inlet via focused laser irradiation. The introduction of liquid samples into laser-induced plasmas requires higher plasma power during solvent evaporation as compared to gaseous samples. This increased demand was approached via a two-fold strategy: Firstly, an alternative, more powerful, laser plasma driven by the fundamental instead of the second harmonic wavelength was implemented, which provided a 10-fold increase of signal intensity, while maintaining the same reagent ion pattern as the previous plasma. Protonated water clusters [(H2O]nH]+, NH4+ as well as charge transfer promoting ion O2+, dominated the reagent ion mass spectrum. Secondly, a miniaturized nebulizer was used to minimize the size of the plasma quenching solvent droplets. The result of these improvements was a new and very stable ion source for direct microfluidic coupling. A variety of samples demonstrated the performance of the ion source. A laser-driven plasma was shown to be a powerful ion source for gaseous and solid samples. For the first time, liquid samples were examined using the novel source. In addition to demonstrating an improved strategy for igniting the laser plasma, this contribution also covers the miniaturization of the spray source for enhanced ionization, while minimizing sample consumption via a microfluidic spray systems. T2 - International Mass Spectrometry Conference 2018 CY - Florence, Italy DA - 26.08.2018 KW - Airborne KW - Laser-spark KW - Laser-induced plasma KW - Microfluidic KW - Mass Spectrometry PY - 2018 AN - OPUS4-45839 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - van Wasen, Sebastian A1 - Bierstedt, Andreas A1 - Riedel, Jens T1 - Airborne laser-spark for ambient desorption/ionization of liquids N2 - The development and enhancement of new ionization techniques for mass spectrometry often needs to be custom-tailored for specific sampling approaches. Here, a direct sampling ionization technique is presented for ambient mass spectrometry. Ambient mass spectrometry based techniques are typically used to analyze samples in their native states without sample pretreatment. This new design is based on a quasi-continuous airborne plasma which is ignited inside the particulate air via a focused laser irradiation. Desorption and ionization of the analyte molecules are achieved by the laser plasma without reaching the plasma. The ionization process is induced by interaction with nascent ionic fragments, electrons and ultraviolet photons in the plasma vicinity. Previously, this method was solely used for the characterization of solid and gaseous analytes. The sample introduction was occurred via thermal desorption and headspace analysis. This study focuses on the potential applicability of liquid samples. In comparison to previous approaches, the usage of liquid samples has an impact on the stability of typically used plasma of 532 nm. It was necessary to realize an alternative plasma using light of the fundamental wavelength of 1064 nm. That new plasma resulted in a significant more stable and bright plasma and the first laser plasma ionization spectrum was recorded for an analyte in the condensed phase with a mass spectrometer of type LCQ DecaXP. T2 - European Mass Spectrometry Conference 2018 CY - Saarbrücken, Germany DA - 11.03.2018 KW - Laser-spark KW - Laser-induced plasma KW - Ambient mass spectrometry KW - Ambient desorption/ionization KW - DPSS laser PY - 2018 AN - OPUS4-44493 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ashokkumar, Pichandi A1 - Bell, Jérémy A1 - Buurman, Merwe A1 - Rurack, Knut T1 - Analytical platform for sugar sensing in commercial beverages using a fluorescent BODIPY "light-up" probe N2 - Because of the globally increasing prevalence of diabetes, the need for accurate, efficient and at best miniaturized automated analytical systems for sugar detection in medical diagnostics and the food industry is still urgent. The development of molecular probes for sugars based on boronic acid receptors offers an excellent alternative to the kinetically slow enzyme-based sugar sensors. Moreover, by coupling such chelating units with dye scaffolds like BODIPYs (boron–dipyrromethenes), highly fluorescent sugar sensing schemes can be realized. In this work, a boronic acid-functionalized BODIPY probe was developed, which binds selectively to fructose’s adjacent diols to form cyclic boronate esters. Placement of an amino group in direct neighborhood of the boronic acid moiety allowed us to obtain a broad working range at neutral pH, which distinguishes the probe from the majority of systems working only at pH > 8, while still meeting the desired sensitivity in the micro-molar range due to a pronounced analyte-induced fluorescence increase. To enhance the applicability of the test in the sense described above, integration with a microfluidic chip was achieved. Here, fructose was selectively detected by fluorescence with similar sensitivity in real time on chip, and an assay for the straightforward detection of sugar in (colored) sodas without sample clean-up was established. KW - BODIPY dyes KW - Boronic acid KW - Fluorescence KW - Microfluidics KW - Sugars PY - 2018 DO - https://doi.org/10.1016/j.snb.2017.09.201 SN - 0925-4005 VL - 256 SP - 609 EP - 615 PB - Elsevier CY - Amsterdam AN - OPUS4-43102 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Riedel, Jens A1 - You, Yi A1 - Bierstedt, Andreas A1 - van Wasen, Sebastian A1 - Bosc-Bierne, Gaby A1 - Weller, Michael G. T1 - Airborne Laser-Induced Plasma as an Ambient Desorption/Ionization Source for Mass Spectrometry and its Characterization N2 - Laser-induced plasma (LIP) has drawn significant amount of attentions in the past decades, particular in elemental analyses for solid or liquid samples. Through proper focusing of the highly energetic laser beam, the plasma can also be ignited in the ambient air, where airborne analytes can be ionized. Such an effect enabled the use of airborne LIP as an ambient ionization source for mass spectrometric analyses. In contrast to other ambient desorption/ionization sources, airborne LIP does not require a specific discharge medium or expensive gas stream. Meanwhile, the airborne LIP produces reagent ion species for both proton-transfer and charge-transfer reactions in addition to the vacuum ultraviolent photons that are capable of promoting single photon ionization, which can be utilized to ionize polar and non-polar analytes. In order to gauge the analytical performance of airborne LIP, it is critical to understand the undergoing chemistry and physics during and after the plasma formation. Due to the ambient nature of airborne LIP, the variations of air composition and flow strongly affect the plasma behaviors. Preliminary result suggested the addition of a laminar flow of nitrogen gas favored the formation of protonated species (MH+) against the molecular ones (M+). Although the gas addition approach cannot fully tune the ionization process towards the specific production of pseudo-molecular species versus molecular ones, the alternation of molecular ion formation can be used for analyte recognitions through post processing of the ion patterns. The pulsed character of the used lasers makes the reagent ion equilibrium both transient- and highly fluid-dynamically controlled. The acoustic shock-waves induced by the airborne LIP get affected by an applied gas streams towards the plasma center, influencing the molecular-ion and ion-ion interactions in the near proximity of the plasma. To understand the airborne LIP formation, the temporally and spatially resolved optical emission spectra were recorded. The results will be correlated to time-resolved mass-spectrometric investigations of the ion profile during different stages of the plasma formation. As one example, the formation of pyrylium ion originating from aromatic compounds will be highlighted. T2 - SciX 2018 CY - Atlanta, GA, USA DA - 21.10.2018 KW - Laser-Induced Plasma KW - Ambient Desorption/Ionization KW - Mass Spectrometry KW - Characterization PY - 2018 AN - OPUS4-46376 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hoffmann, Holger A1 - Knizia, Christian A1 - Kuhne, Maren A1 - Panne, Ulrich A1 - Schneider, Rudolf T1 - LC–ELISA as a contribution to the assessment of matrix effects with environmental water samples in an immunoassay for estrone (E1) N2 - Estrone (E1), a metabolite of the estrogenic hormones 17β-estradiol (β-E2) and 17α-estradiol (α-E2), is itself a potent estrogen which can have a significant impact on the hormonal balance. Due to ist high potential for adverse effects on human health and aquatic life even at pg/L to ng/L levels, its appearance in water should be monitored. E1 has also been considered a marker substance for the presence of other estrogens. This study presents a newly developed direct competitive enzymelinked immunosorbent assay (ELISA) for quantification of E1 in environmental water samples using new monoclonal antibodies. The quantification range of the ELISA is 0.15 μg/L to 8.7 μg/L E1, and the limit of detection is around 60 ng/L for not pre-concentrated water samples. A pre-concentration step after careful selection of suitable phases for SPE was developed, too. The influence of organic solvents and natural organic matter on the ELISA was assessed. The high selectivity of the monoclonal antibody was demonstrated by determining the cross-reactivity against 20 structurally related compounds. For the assessment of matrix effects, a concept (“LC–ELISA”) is thoroughly exploited, i.e., separating complex samples by HPLC into 0.3 min fractions and determination of the apparent E1 concentration. Furthermore, fractions with interferences for nontarget/suspected-target analysis can be assigned. A dilution approach was applied to distinguish between specific interferences (cross-reactants) and non-specific interferences (matrix effects). In the determination of 18 environmental samples, a good agreement of the E1 concentration in the respective fractions was obtained with mean recoveries of 103 % to 132 % comparing ELISA to LC–MS/MS. KW - Validierung KW - Immunoassay KW - Matrixeffekte KW - Abwasser KW - Oberflächenwasser KW - ELISA KW - LC-MS/MS KW - Hormone KW - Endokrine Disruptoren PY - 2018 DO - https://doi.org/10.1007/s00769-018-1351-7 SN - 1432-0517 SN - 0949-1775 VL - 23 IS - 6 SP - 349 EP - 364 PB - Springer CY - Heidelberg AN - OPUS4-46891 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bierstedt, Andreas A1 - Panne, Ulrich A1 - Riedel, Jens T1 - Confinement and enhancement of an airborne atmospheric laser-induced plasma using an ultrasonic acoustic resonator N2 - Optical elemental analysis in the gas phase typically relies on electrically driven plasmas. As an alternative approach, laser-induced plasmas (LIPs) have been suggested but have so far been only scarcely used. Here, a novel signal enhancement strategy for laser-based airborne plasma optical Emission spectroscopy for gas phase analytics is presented. In contrast to an electrically driven plasma, in the laser-induced analogue dynamic matter transport equilibrium builds up. The latter results in a rarefied density regime in the plasma core itself, surrounded by an area of compressed matter. The central rarefaction leads to a decrease in plasma intensity and analyte number density, both of which are detrimental for analytical purposes. Since the repetitive ignition of LIPs is a transient process, a restoration of the former gaseous medium by other dynamically equilibrated diffusion processes would be favourable. The presented combination of an airborne LIP and an ultrasonic acoustic resonator yields a fourfold signal enhancement while the Background contribution of ubiquitous air is at the same time effectively suppressed. Since the entire enhancement effect occurs without contact, no additional sources for abrasive sample contamination are introduced. KW - DPSS laser KW - Laser-induced plasma KW - High repetition rate KW - Ultrasonic acoustic resonator KW - Optical emission spectroscopy PY - 2018 DO - https://doi.org/10.1039/C7JA00297A SN - 0267-9477 SN - 1364-5544 VL - 33 IS - 1 SP - 135 EP - 140 PB - Royal Society of Chemistry CY - London AN - OPUS4-43619 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Panne, Ulrich A1 - Braun, Ulrike A1 - Schartel, Bernhard A1 - Weidner, Steffen A1 - Rurack, Knut A1 - Thünemann, Andreas A1 - Sturm, Heinz T1 - Polymerwissenschaften@BAM - Sicherheit macht Märkte N2 - Die Bundesanstalt für Materialforschung und -prüfung (BAM) ist eine Ressortforschungseinrichtung, die zum Schutz von Mensch, Umwelt und Sachgüter, forscht, prüft und berät. Im Fokus aller Tätigkeiten in der Materialwissenschaft, der Werkstofftechnik und der Chemie steht dabei die technische Sicherheit von Produkten und Prozessen. Dazu werden Substanzen, Werkstoffe, Bauteile, Komponenten und Anlagen sowie natürliche und technische Systeme erforscht und auf sicheren Umgang oder Betrieb geprüft und bewertet. Schwerpunkt des Vortrages sind multimodale Polymeranalytik, nanoskalige Sensormaterialien und die Charakterisierung von technischen Eigenschaften von Polymeren sowie ihre Alterung und Umweltrelevanz. T2 - Institutsvortrag CY - Fraunhofer IAP, Potsdam, Germany DA - 18.05.2018 KW - Polymerwissenschaften PY - 2018 AN - OPUS4-45243 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Löhr, Konrad A1 - Traub, Heike A1 - Wanka, Antje Jutta A1 - Panne, Ulrich A1 - Jakubowski, Norbert T1 - Quantification of metals in single cells by LA-ICP-MS: Comparison of single spot analysis and imaging N2 - LA-ICP-MS is increasingly used for single cell analysis in two different detection modes using either the imaging mode with subcellular resolution or alternatively single spot analysis of cells with a larger laser spot size. This study compares the analytical figures of merit of both detection modes (signal to noise, precision, accuracy, throughput), as well as ease of operation and data evaluation. Adherent 3T3 fibroblast cells were stained with two metal dyes (mDOTA-Ho, Ir-DNA-intercalator) and several dozen cells were measured using both modes. We found a ten times higher throughput for single spot analysis, which has as well a straightforward data analysis, shortening the total analysis time further. The signal to noise ratio for single spot analysis was found to be slightly better compared to the signal to noise of pixels in imaging. The mean metal intensity per single cell differed by only 10% between both modes and obtained distributions were found to show no statistically significant differences. Using matrix matched calibration based on standards spotted onto nitrocellulose membrane, we achieved detection limits (10s) of 12 fg for Ir and 30 fg for Ho and quantified 57 +/-35 fg Ir and 1192 +/- 707 fg Ho per single cell. Compared to a conventional ICP-MS measurement of a digest of about 60000 cells, 54% of Ir content and 358% Ho content was found using quantitative LA-ICP-MS. The difference might be a consequence of the two metal dyes binding to different structures of the cell and therefore might behave differently in sample preparation for conventional and LA-ICP-MS. KW - Cells KW - Laser ablation KW - ICP-MS KW - Metals KW - Quantification PY - 2018 DO - https://doi.org/10.1039/c8ja00191j SN - 0267-9477 VL - 33 IS - 9 SP - 1579 EP - 1587 PB - RSC Royal Society of Chemistry CY - London AN - OPUS4-46441 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Traub, Heike A1 - Phukphatthanachai, Pranee A1 - Vogl, Jochen A1 - Jakubowski, Norbert A1 - Panne, Ulrich T1 - Quantification of sulphur in copper metals by isotope dilution LA-ICP-MS using polyethylene frits N2 - Sulphur is one of the relevant impurities in copper and its alloys affecting their material properties. To ensure the quality of copper products, fast direct solid sampling techniques are very attractive. However, for the calibration suitable matrix reference materials are required. For the certification of such reference materials appropriate, SI-traceable analytical methods are essential. Therefore, a procedure was developed to quantify total sulphur in copper by combining the classical isotope dilution (ID) technique and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). Here, for the first time, polyethylene (PE) frits were used to prepare appropriate solid samples for the sulphur quantification in copper metals (alloyed/unalloyed) by isotope dilution LA-ICP-MS. The properties of the PE frit meet the requirements as porous material with high absorption efficiency, thermal and chemical resistance as well as low sulphur blank. Different copper reference materials were used to develop and validate the procedure. The copper samples were spiked with 34S, digested with nitric acid and then the digests were absorbed on PE frits. After drying, the frits were analysed by LA-ICP-IDMS using a Nd:YAG laser at 213 nm coupled to an ICP sector field mass spectrometer. It could be demonstrated, that the sample solution dispersed on the frits did not influence the 32S/34S ratio significantly even though the sulphur intensities were fluctuating along the scanned lines. Relative standard deviations of the isotope ratios were below 5 % in average between three line scans (except for the pure spike solution and procedure blank). The measurement results were validated by comparing them with the results obtained by conventional ICP-IDMS after analyte-matrix separation. Plotting the mass fraction of sulphur in copper obtained by LA-ICP-IDMS versus those obtained by ICP-IDMS yields a linear curve with a correlation coefficient of 0.9999 showing a strong agreement between both techniques. The metrological traceability to the SI from the kg down to the sulphur mass fraction in copper is established by an unbroken chain of comparisons, each accompanied by an uncertainty budget. Thus, the measurement results are considered reliable, acceptable and comparable within the stated measurement uncertainty. T2 - 14th European Workshop on Laser Ablation (EWLA) CY - Pau, France DA - 26.06.2018 KW - ICP-MS KW - Laser ablation KW - Isotope dilution KW - Copper PY - 2018 AN - OPUS4-45569 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Phukphatthanachai, Pranee A1 - Vogl, Jochen A1 - Traub, Heike A1 - Jakubowski, Norbert A1 - Panne, Ulrich T1 - A new approach of using polyethylene frits for the quantification of sulphur in copper metals by isotope dilution LA-ICP-MS and comparison with conventional IDMS techniques N2 - Polyethylene (PE) frits were used to quantify sulphur in copper and its alloys by isotope dilution combined with LA-ICP-MS as an alternative approach to conventional sample preparation: the copper samples were spiked, the spiked samples were dissolved, the resulting solutions were absorbed in the PE frits and finally the PE frits were analysed by LA-ICP-MS. A prerequisite for such a support material is a low sulphur blank and thus PE was selected for this purpose. The absorption efficiency of the PE frits was studied for varying sulphur amounts ranging from 2 mg S to 80 mg S showing that more than 99.5% of the loaded sulphur was absorbed by the frit. The so prepared PE frits were measured by LA-ICP-MS and yielded a good linearity (R2 ¼ 0.999) for the sulphur ion intensities corresponding to sulphur amounts up to 40 mg S; the associated sensitivity is approximately 3.4 x 10⁴ cps μg⁻¹ for ³²S. For the validation of the developed procedure the reference materials BAM-M376a, BAM-228 and BAM-227 were applied such that 2 μg S, 5 μg S and 11 μg S were absorbed in the PE frits, respectively. These samples were pre-quantified for the adsorbed sulphur amount by external calibration LA-ICP-MS yielding sulphur amounts of 0.9 μg, 5.1 μg and 8.5 μg (quantified for ³²S only), respectively. Relative Standard deviations of the isotope ratios were below 5% in average (n ¼ 3 lines) in all cases (except for the pure spike solution). These samples were then analysed by LA-ICP-IDMS and the measurement results were validated by comparing them with the results obtained by conventional ICP-IDMS. The obtained relative expanded measurement uncertainties ranged between 10% and 26%. Pearson's coefficient was used to express the correlation between both techniques; the obtained value was 0.999 demonstrating a strong correlation. Contrary to most published LA-ICP-IDMS procedures, the developed procedure enables SI-traceability for the measurement results. The metrological traceability to the SI for the sulphur mass fractions in copper was established by an unbroken chain of comparisons, each accompanied by an uncertainty budget. Thus, the measurement results are considered reliable, acceptable and comparable within the stated measurement uncertainty. The metrological traceability chain from the kg down to mass fraction in the samples obtained by LA-ICP-IDMS is presented as well. KW - Laser ablation KW - IDMS KW - Traceability KW - Uncertainty KW - Purity PY - 2018 DO - https://doi.org/10.1039/c8ja00116b SN - 0267-9477 SN - 1364-5544 VL - 33 IS - 9 SP - 1506 EP - 1517 PB - Royal Society of Chemistry CY - Cambridge AN - OPUS4-45899 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Neamtu, Mariana A1 - Nadejde, C. A1 - Hodoroaba, Vasile-Dan A1 - Schneider, Rudolf A1 - Verestiuc, L. A1 - Panne, Ulrich T1 - Functionalized magnetic nanoparticles: Synthesis, characterization, catalytic application and assessment of toxicity N2 - Cost-effective water cleaning approaches using improved Treatment technologies, for instance based on catalytic processes with high activity catalysts, are urgently needed. The aim of our study was to synthesize efficient Fenton-like photo-catalysts for rapid degradation of persistent organic micropollutants in aqueous medium. Iron-based nanomaterials were chemically synthesized through simple procedures by immobilization of either iron(II) oxalate (FeO) or iron(III) citrate (FeC) on magnetite (M) nanoparticles stabilized with polyethylene glycol (PEG). Various investigation techniques were performed in order to characterize the freshly prepared catalysts. By applying advanced oxidation processes, the effect of catalyst dosage, hydrogen peroxide concentration and UV-A light exposure were examined for Bisphenol A (BPA) conversion, at laboratory scale, in mild conditions. The obtained results revealed that BPA degradation was rapidly enhanced in the presence of low-concentration H2O2, as well as under UV-A light, and is highly dependent on the surface characteristics of the catalyst. Complete photo-degradation of BPA was achieved over the M/PEG/FeO catalyst in less than 15 minutes. Based on the catalytic performance, a hierarchy of the tested catalysts was established: M/PEG/FeO > M/PEG/FeC > M/PEG. The results of cytotoxicity assay using MCF-7 cells indicated that the aqueous samples after treatment are less cytotoxic. KW - Bisphenol A KW - Magnetic nanocatalyst KW - Endocrine disruptor KW - Nanoparticle KW - Photodegradation KW - Fenton PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-448297 DO - https://doi.org/10.1038/s41598-018-24721-4 SN - 2045-2322 VL - 8 SP - Article 6278, 1 EP - 11 PB - Springer Nature CY - London AN - OPUS4-44829 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mekonnen, Tessema Fenta A1 - Panne, Ulrich A1 - Koch, Matthias T1 - New photodegradation products of the fungicide fluopyram: Structural elucidation and mechanism identification N2 - Identifying the fate of agrochemicals is important to understand their potential risk for living organisms. We report here new photodegradation products (PPs) of the fungicide fluopyram. The PPs were produced by irradiating a fluopyram standard in 0.1% acetonitrile aqueous media by a 150-W medium pressure Hg-lamp that emits wavelengths between 200–280 nm. The structural elucidation of PPs was achieved by combining the retention time, isotopic pattern, targeted fragmentation, and accurate mass measurements using liquid chromatography-tandem mass spectrometry (LC-MS/MS) and high resolution-MS (HRMS). In addition to previously known PPs, seven new PPs of fluopyram were identified in this work: mainly dihydroxyl and hydroxylimide fluopyram as well as mono, di, and trihydroxyl lactam. Additionally, two PPs were found to be formed by rearrangement after the loss of H2C=CH2. Hence, the results of the work contribute to extending the current knowledge regarding the photoinduced fate of agrochemicals, and fluopyram in particular. KW - Photodegradation KW - Transformation products KW - LC-MS/MS KW - HRMS KW - Fungicide PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-466347 DO - https://doi.org/10.3390/molecules23112940 SN - 1420-3049 VL - 23 IS - 11 SP - 2940, 1 EP - 13 PB - MDPI CY - Basel AN - OPUS4-46634 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Neamtu, M. A1 - Nadejde, C. A1 - Hodoroaba, Vasile-Dan A1 - Schneider, Rudolf A1 - Panne, Ulrich T1 - Singlet oxygen generation potential of porphyrin-sensitized magnetite nanoparticles: Synthesis, characterization and photocatalytic application N2 - Singlet oxygen generation potential of two novel free-base-porphyrin photocatalysts was investigated. The freebase-porphyrin-sensitized Fe3O4 magnetic nanoparticles (MNPs) were tested for the degradation of the model pollutant Bisphenol A (BPA) in aqueous solution, for the first time. MNPs with either cubic or spherical shape were synthesized using the sonochemical approach, followed by sensitizing with photoactive 4,4′,4′′,4′′′- (Porphine-5,10,15,20-tetrayl)tetrakis(benzoic acid) (TCPP). The resulted photocatalysts were characterized in detail by scanning and transmission electron microscopy, Brunauer–Emmett–Teller analysis, spectral techniques and vibrating sample magnetometry. The electron spin resonance experiments have confirmed the high activity of the photocatalysts through the efficient formation of singlet oxygen in solution. The optimum operational parameters for BPA degradation were established as follows: 1.0 μmol L−1 BPA, 1.0 g L−1 of photocatalyst, 100 μmol L−1 H2O2, under UVA irradiation. In these conditions, the results for both photocatalysts revealed that after only 10 min of reaction, over 64% and ca. 90% of BPA have been removed from solution in the absence and presence of H2O2, respectively. Whereas after 60 minutes of treatment, only 24% of BPA in real wastewater effluent samples were removed under UVA irradiation in the absence of H2O2, showing the high complexity of real wastewater. Moreover, both photocatalysts were successfully used for BPA removal in three consecutive runs, without significant loss of catalytic features. KW - Bisphenol A KW - Magnetpartikel KW - Photooxidation KW - Singulettsauerstoff KW - TEM KW - SEM KW - Brunauer-Emmett-Teller KW - Katalysator KW - Abwasser KW - ESR PY - 2018 DO - https://doi.org/10.1016/j.apcatb.2018.03.079 SN - 0926-3373 VL - 232 SP - 553 EP - 561 PB - Elsevier B.V. CY - Amsterdam, NL AN - OPUS4-45267 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - García Fernández, J. A1 - Sánchez-González, C. A1 - Bettmer, J. A1 - Llopi, J. A1 - Jakubowski, Norbert A1 - Panne, Ulrich A1 - Montes-Bayón, M. T1 - Quantitative assessment of the metabolic products of iron oxide nanoparticles to be used as iron supplements in cell cultures N2 - Iron nanoparticles (NPs) metabolism is directly associated to human health due to their use as anemia treatment and should be studied in detail in cells. Here we present a speciation strategy for the determination of the metabolic products of iron oxide nanoparticles coated by tartaric and adipic acids in enterocytes-like cell models (Caco-2 and HT-29). Such methodology is based on the use of SDS-modified reversed phase high performance liquid chromatography (HPLC) separation using inductively coupled plasma-mass spectrometry (ICP-MS) as Fe selective detector. Post-column isotope dilution analysis is used as quantification tool by adding Fe-57 as isotopically enriched standard. To assess the separation capability of the method, two different iron nanostructures: iron sucrose nanoparticles -Venofer®- used as model suspension and iron tartrate/adipate-modified nanoparticles, both of about 4 nm (core size) were evaluated. The two nanostructures were injected into the system showing good peak profiles and quantitative elution recoveries (>80%) in both cases. In addition, both nanoparticulate fractions could be based-line separated from ionic iron species, which needed to be complexed with 1mM citrate to elute from the column. Exposed cells up to 0.5mM of iron tartrate/adipate-modified nanoparticles were specifically treated to extract the internalized NPs and the extracts examined using the proposed strategy. The obtained results revealed the presence of three different fractions corresponding to nanoparticle aggregates, dispersed nanoparticles and soluble iron respectively in a single chromatographic run. Quantitative experiments (column recoveries ranging from 60 to 80%) revealed the presence of the majority of the Fe in the nanoparticulated form (>75%) by summing up the dispersed and aggregate particles. Such experiments point out the high uptake and low solubilization rate of the tartrate/adipate NPs making these structures highly suitable as Fe supplements in oral anemia treatments. KW - Fe nanoparticles metabolism KW - Cells KW - HPLC-ICP-MS KW - Species-unspecific on-line isotope dilution PY - 2018 DO - https://doi.org/10.1016/j.aca.2018.08.003 SN - 0003-2670 VL - 1039 SP - 24 EP - 30 PB - Elsevier CY - Amsterdam AN - OPUS4-46817 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Emteborg, H. A1 - Florian, D. A1 - Choquette, S. A1 - Ellison, S. L. R. A1 - Fernandes-Whaley, M. A1 - Mackay, L. A1 - McCarron, P. A1 - Panne, Ulrich A1 - Sander, S. G. A1 - Kim, S.-K. A1 - Held, A. A1 - Linsinger, T. A1 - Trapmann, S. T1 - Cooperation in publicly funded reference material production N2 - The meeting was organised by the European Commission’s Joint Research Centre and held at the JRC-Geel site on 22–23 February 2018. It was a follow-up of a similar meeting held in 2009. The objective of the meeting was to exchange information about ongoing publicly funded reference material (RM) production, identify areas of interest for future specific RMs, including certified reference material (CRM) developments, investigate potential areas of collaboration, and to identify areas which may be of a lower importance in the future for a specific RM producer. The benefit of exchanging such information is to avoid duplication of efforts in RM production, make better use of public funds by potentially matching competencies, and to address problems that are common to publicly funded RM producers. T2 - Meeting regarding cooperation in publicly funded reference material production, European Commission's Joint Research Centre CY - Geel, Belgium DA - 22.02.2018 KW - Public funding KW - Reference materials PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-470206 DO - https://doi.org/10.1007/s00769-018-1349-1 SN - 0949-1775 SN - 1432-0517 VL - 23 IS - 6 SP - 371 EP - 377 PB - Springer CY - Berlin AN - OPUS4-47020 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Panne, Ulrich A1 - Gornushkin, Igor B. A1 - Riedel, Jens A1 - Schneider, Rudolf A1 - Emmerling, Franziska T1 - "Keine Dienstmagd" - Analytical Sciences in Action N2 - Analytical Sciences has developed from Ostwald’s “unentbehrlichen Dienstmagd” to a chemical discipline at the core of many of today’s fundamental and applied scientific problems and innovations. An atomic or molecular understanding of basic processes in chemistry, soft matter physics, materials and life science is enabled only through new analytical methods and instrumentation. Similar observations can be found for pressing sociopolitical conflicts of the future: A rational discussion of global climate change or new energy sources is only possible with reliable analytical results. Progress in Analytical Sciences is only possible if the underlying interdisciplinary character is acknowledged and valued. The talk will illustrate the scope of modern Analytical Science through examples from process analysis relevant to modern process intensification and industry 4.0 to bioanalysis and the use of synchrotron radiation to elucidate fundamental reactions materials. T2 - MChG Talk CY - Technische Universität München, Germany DA - 27.11.2018 KW - Analytical Sciences PY - 2018 AN - OPUS4-46940 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Abad Andrade, Carlos Enrique A1 - Florek, S. A1 - Becker-Ross, H. A1 - Huang, M.-D. A1 - de Oliveira Guilherme Buzanich, Ana A1 - Radtke, Martin A1 - Lippitz, Andreas A1 - Hodoroaba, Vasile-Dan A1 - Schmid, Thomas A1 - Heinrich, Hans-Joachim A1 - Recknagel, Sebastian A1 - Jakubowski, Norbert A1 - Panne, Ulrich T1 - Zirconium permanent modifiers for graphite furnaces used in absorption spectrometry: understanding their structure and mechanism of action N2 - The mechanism of action of zirconium permanent modifiers on graphite surfaces was investigated in order to understand its influence on the analytical signal in atomic and molecular absorption spectrometry (AAS/MAS). For this, the molecule formation of CaF was studied, which is used for the indirect analytical determination of fluorine in high-resolution continuum source graphite furnace molecular absorption spectrometry (HR-CS-GFMAS). The kinetics of this reaction was established by monitoring its molecular spectrum at different atomisation temperatures. An Arrhenius plot showed a pseudo-first order reaction with respect to fluorine (n = 1). An intermediate state was isolated, and its structure was elucidated by spectroscopic methods: scanning electron microscopy with energy dispersive X-ray spectroscopy (SEMEDX), X-ray photoelectron spectroscopy (XPS), X-ray absorption spectroscopy (XANES and EXAFS), and Raman microspectroscopy. We propose here a mechanism, where ZrO2 acts as a heterogeneous catalyst: after a pyrolytic step, an intermediate state of ZrO(OCaF) is activated, and at higher temperatures, CaF(g) is released from the zirconium-coated graphite surface. No evidence of the formation of zirconium carbide was found. Consequently, as the CaF formation is catalysed by a heterogeneous catalyst, surface modifications with ZrO2 nanoparticles and ZrO xerogels were investigated in order to increase the surface area. Their influence was evaluated in the molecule formation of CaF, CaCl, CaBr, and CaI. Graphite furnace modification with zirconium oxide nanoparticles proves to be the best choice for fluorine analysis with a signal enhancement of more than eleven times with respect a non-coated graphite furnace. However, the influence of zirconium modifications in the analytical signals of Cl, and I is lower than the F signals or even negative in case of the Br. Understanding zirconium modifiers as heterogeneous catalysts offers a new perspective to AAS and MAS, and reveals the potential of surface analytical methods for development of improved permanent modifiers and graphite furnace coatings. KW - Zirconium KW - HR-CS-MAS KW - Graphite furnace KW - Nanoparticles KW - Xerogel KW - Calcium monofluoride KW - Absorption spectrometry PY - 2018 UR - https://pubs.rsc.org/en/content/articlelanding/2018/ja/c8ja00190a DO - https://doi.org/10.1039/C8JA00190A SN - 0267-9477 VL - 33 IS - 12 SP - 2034 EP - 2042 PB - Royal Society of Chemistry AN - OPUS4-46775 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -