TY - CONF A1 - Priebe, Nsesheye Susan A1 - Gluth, Gregor A1 - Simon, Sebastian A1 - Schröder, H.-J. A1 - Kühne, Hans-Carsten T1 - Evaluation of brick clays from various deposits in central Germany for use as SCMs N2 - The development of low carbon cements has gained great importance over the last decades. In the effort to limit the carbon content related to its production, cement is often replaced with supplementary cementitious materials (SCMs). Commonly used SCMs such as fly ash and slag have undergone extensive research, but are currently limited in supply and availability. Among the researched SCMs, calcined clays have proven to be a suitable alternative pozzolan due to their worldwide availability and extremely low calcination temperatures when compared to clinker. This poster presents the results from an ongoing project, aimed at obtaining pozzolans, available in sufficient quantities for Portland-pozzolana cement production in Germany. The poster shows the analyses of seven brick clays from various deposits in central Germany. The chemical and mineral composition of the brick clays was evaluated through inductively coupled plasma – optical emission spectroscopy (ICP-OES), X-ray diffraction (XRD), and thermogravimetric analysis (TG/DTG). The particle size distribution (PSD) was also evaluated by laser granulometry. The results show that the brick clays contain a substantial amount of kaolinite, illite and smectite minerals, the relative proportions differing significantly between deposits. The suitable calcination temperature range of the clays is also evaluated through TG/DTG analysis to obtain the optimum degree of dehydroxylation from which the bricks clays can be suitable for use as a pozzolan. T2 - 2nd International Conference on Calcined Clays for Sustainable Concrete CY - Havana City, Cuba DA - 04.12.2017 KW - Cement KW - CO2 reduction KW - Supplementary cementitious materials KW - Calcined clay KW - Kaolinite KW - Illite KW - Smectite PY - 2017 N1 - Geburtsname von Priebe, Nsesheye Susan: Msinjili, N. S. - Birth name of Priebe, Nsesheye Susan: Msinjili, N. S. AN - OPUS4-43719 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schmidt, R. A1 - Hodoroaba, Vasile-Dan T1 - SEM or TEM for the characterization of nanoparticles? N2 - Scanning Electron Microscopy (SEM) or Transmission Electron Microscopy (TEM) ? This is a question, nowadays discussed in EM labs of research and industry involved in the characterization and metrology of nanoparticles. The Scanning principle is adapted to TEM, the Transmission mode is adapted to Ultra High Resolution SEM. Can modern SEM replace TEM, reach atomic resolution even without Cs corrector or nm lateral resolution for energydispersive X-ray spectroscopy (EDX)? Due to the development of a New Cold Field Emission (NCFE) electron source Hitachi SEMs SU9000 and SU8200 can deliver routinely sub-nm image resolution and EDX mappings at very high count rates and a lateral EDX resolution of a few nm. A TiO2 sample provided by BAM was analysed at 30kV using low kV STEM – simultaneously with the Through-the-lens (TTL) SE detector, the Bright Field transmitted and Dark Field transmitted signals. By this method a pixel precise information of the particles surface using SE, its chemical nature using DF-STEM and its crystalline structure using Bright Field signal is given in one 40sec scan. The advantage of this observation mode compared to Ultra Low Voltage imaging is outlined. T2 - Microscopy Conference 2017 CY - Lausanne, Switzerland DA - 21.08.2017 KW - SEM KW - TEM KW - Nanoparticles PY - 2017 UR - http://www.mc2017.ch/ AN - OPUS4-43890 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Reuther, R. A1 - Marvin, H. A1 - Müller, P. A1 - Löschner, K. A1 - Hodoroaba, Vasile-Dan A1 - Stintz, M. A1 - Kammer, F. v. d. A1 - Köber, R. A1 - Rauscher, H. T1 - A new tiered analytical approach and e-Tool for material classification to support the implementation of the EU Nano-Definition N2 - The EC recommendation for the definition of nanomaterial [2011/696/EU] requires the quantitative size determination of constituent particles in samples down to 1 nm. Accordingly, a material is a nanomaterial if 50 % or more of the particles are in the size range 1-100 nm. The fact that engineered nanomaterials already exist in many industrial and consumer products challenges the development of measurement methods to reliably identify, characterize and quantify their occurrence as substance and in various matrices. The EU FP7 NanoDefine project [www.nanodefine.eu] has addressed this challenge by developing a robust, readily implementable and cost-effective measurement strategy to obtain quantitative particle size distributions and to distinguish between nano and non-nano materials according to the EU definition. Based on a comprehensive evaluation of existing methodologies and intra- and inter-lab comparisons, validated measurement methods and instrument calibration procedures have been established to reliably measure the size of particles within 1-100 nm, and beyond, including different shapes, coatings and chemical compositions in industrial materials and consumer products. Case studies prove their applicability for various sectors, including food, pigments and cosmetics. Main outcome is the establishment of an integrated tiered approach including rapid screening (tier 1) and confirmatory methods (tier 2), and a user manual to guide end-users, such as manufacturers, in selecting appropriate methods. Another main product is the “NanoDefiner” e-Tool allowing the standardised / semi-automated selection of appropriate methods for material classification according to the EU definition. Results also contribute to standardization efforts, such as CEN TC 352 or ISO TC 229. T2 - EuroNanoForum 2017 CY - Valletta, Malta DA - 21.06.2017 KW - Nanomaterial classification KW - Nanoparticles KW - EC definition of nanomaterial KW - Tiered approach PY - 2017 UR - http://euronanoforum2017.eu/ AN - OPUS4-43993 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Haferkamp, Sebastian A1 - Fischer, Franziska A1 - Kraus, Werner A1 - Emmerling, Franziska T1 - In situ monitoring of a mechanochemical Knoevenagel condensation N2 - Mechanaochemistry is an effective method to yield pure compounds within a short reaction time. Mechanochemical C-C bond forming reactions gained increasing interest in the past decade. Among those the Knoevenagel condensation is an important reaction for synthezing a,b-unsaturated compounds. The information on the underlying mechanisms of mechanochemical reactions are scarce. In situ investigations using Raman spectroscopy and synchroton XRD either alone or in combination address this challenge. We present the in situ results of a Knoevenagel condensation with p-nitrobenzaldehyde and malononitrile under neat grinding conditions. T2 - BESSY II User Meeting CY - Berlin, Germany DA - 13.12.2017 KW - Mechanochemistry KW - In situ KW - Knoevenagel condensation KW - C-C coupling PY - 2017 AN - OPUS4-44142 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Haferkamp, Sebastian A1 - Fischer, Franziska A1 - Kraus, Werner A1 - Emmerling, Franziska T1 - In situ monitoring of mechanochemical Knoevenagel condensations N2 - Mechanaochemistry is an effective method to yield pure compounds within a short reaction time. Mechanochemical C-C bond forming reactions gained increasing interest in the past decade. Among those the Knoevenagel condensation is an important reaction for synthezing a,b-unsaturated compounds. The information on the underlying mechanisms of mechanochemical reactions are scarce. In situ investigations using Raman spectroscopy and synchroton XRD either alone or in combination address this challenge. We present the in situ results of a Knoevenagel condensation with p-nitrobenzaldehyde and malononitrile under neat grinding conditions. T2 - Adlershofer Forschungsforum CY - Berlin, Germany DA - 10.11.2017 KW - Mechanochemistry KW - Knoevenagel condensation PY - 2017 AN - OPUS4-44140 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Haferkamp, Sebastian A1 - Fischer, Franziska A1 - Kraus, Werner A1 - Emmerling, Franziska T1 - In situ investigation of a mechanochemical Knoevenagel condensation N2 - Mechanaochemistry is an effective method to yield pure compounds within a short reaction time. Mechanochemical C-C bond forming reactions gained increasing interest in the past decade. Among those the Knoevenagel condensation is an important reaction for synthezing a,b-unsaturated compounds. The information on the underlying mechanisms of mechanochemical reactions are scarce. In situ investigations using Raman spectroscopy and synchroton XRD either alone or in combination address this challenge. We present the in situ results of a Knoevenagel condensation with p-nitrobenzaldehyde and malononitrile under neat grinding conditions. T2 - PRORA CY - Berlin, Germany DA - 30.11.2017 KW - C-C coupling KW - Knoevenagel condensation KW - In situ PY - 2017 AN - OPUS4-44141 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Koch, Claudia T1 - Standardization in emerging technologies - The case of additive manufacturing N2 - Additive Manufacturing provides an important enabling technology for the digital transformation of the economy. As an emerging technology it has seen a remarkable development over the last three decades. Nevertheless, it is far from a broad adoption with several barriers to overcome yet. One of the major challenges is the lack of standards. The critical role of standardization for innovation is generally recognized, still the topic too often has been neglected in strategic roadmapping exercises for emerging technologies. Too little is known about the complex dynamics and interrelations of standardization and innovation. The anticipation of standardization needs and the timely and efficient implementation of standards is challenging. This paper aims at contributing to a better understanding of the role that standards play in the multi-dimensional system of innovation. It analyzes the trajectories of innovation in Additive Manufacturing in a systematic and holistic way, focusing on standardization activities with regard to coordination, stakeholders involved, the timing and types of standards developed. Putting standardization in context of the multi-dimensional innovation system of Additive Manufacturing the research shows where standards can support the diffusion of an emerging technology. T2 - ITU Kaleidoscope Academic Conference: Challenges for a data-driven society CY - Nanjing, China DA - 27.11.2017 KW - 3D-Printing KW - Additive Manufacturing KW - Emerging technologies KW - Standardization KW - Standards KW - Technological innovation PY - 2017 AN - OPUS4-49082 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bartholmai, Matthias A1 - Johann, Sergej A1 - Wu, Cheng-Chieh A1 - Neumann, Patrick P. A1 - Hüllmann, Dino A1 - Krentel, Daniel A1 - Kluge, Martin A1 - Kohlhoff, Harald A1 - Lilienthal, A.J. T1 - Airborne remote gas sensing and mapping N2 - Leaking methane (CH4) from infrastructures, such as pipelines and landfills, is critical for the environment but can also pose a safety risk. To enable a fast detection and localization of these kind of leaks, we developed a novel robotic platform for aerial remote gas sensing. Spectroscopic measurement methods for remote sensing of selected gases lend themselves for use on mini-copters, which offer a number of advantages for inspection and surveillance over traditional methods. No direct contact with the target gas is needed and thus the influence of the aerial platform on the measured gas plume can be kept to a minimum. This allows to overcome one of the major issues with gas-sensitive mini-copters. On the other hand, remote gas sensors, most prominently Tunable Diode Laser Absorption Spectroscopy (TDLAS) sensors have been too bulky given the payload and energy restrictions of mini-copters. Here, we present the Unmanned Aerial Vehicle for Remote Gas Sensing (UAV-REGAS), which combines a novel lightweight TDLAS sensor with a 3-axis aerial stabilization gimbal for aiming on a versatile hexacopter. The proposed system can be deployed in scenarios that cannot be addressed by currently available robots and thus constitutes a significant step forward for the field of Mobile Robot Olfaction (MRO). It enables tomographic reconstruction of gas plumes and a localization of gas sources. We also present first results showing its performance under realistic conditions. T2 - 5th International Conference on Smart Monitoring, Assessment and Rehabilitation of Civil Structures (SMAR 2019) CY - Potsdam, Germany DA - 27.08.2019 KW - Localization of gas sources KW - Mobile Robot Olfaction KW - Tomographic reconstruction of gas plumes KW - Tunable Diode Laser Absorption Spectroscopy (TDLAS) KW - UAV-REGAS PY - 2017 AN - OPUS4-48789 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Asadujjaman, Asad A1 - Ahmadi, Vahid A1 - Yalcin, M. A1 - ten Brummelhuis, N. A1 - Bertin, Annabelle T1 - Functional polymer based on 2,6-diaminopyridine with tunable UCST behaviour in water/alcohol mixture N2 - Thermoresponsive polymers are of great importance in numerous applications such as bioseparation, drug delivery, diagnostic and microfluidic applications.[1-2] Only a few thermoresponsive polymers have been reported that present an Upper Critical Solution Temperature (UCST), i.e. phase separate from solution upon cooling, in a relevant temperature range and “green” solvents such as water or ethanol.[3] Indeed, polymers with UCST behavior below 60°C in alcohol or water/alcohol mixtures are extremely promising for the preparation of “smart” materials for sensing. In this work, two novel functional polymers of based on a 2,6-diaminopyridine motif were synthesized by free-radical polymerization. Their UCST-type transition temperature is tunable by varying either their concentration in solution or the type of solvent. Insights into this phenomenon are investigated using turbidimetry and temperature dependent dynamic light scattering. T2 - Konferenz CY - Lisbon, Portugal DA - 06.03.2017 KW - Thermoresponsive polymers KW - UCST-type polymers PY - 2017 AN - OPUS4-39579 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Asadujjaman, Asad A1 - Wagner, Sabine A1 - Rurack, Knut A1 - Bertin, Annabelle T1 - Switching of nanoparticles' fluorescence between "ON" and "OFF" states by a thermoresponsive polymeric layer N2 - Fluorescent nanoparticles that “light up”/”dim down” by applying external stimuli are of particular interest in the fields of sensing, diagnostics, photonics, protective coatings and microfluidics. The current challenge for these materials is to combine for instance fluorescence and its response to a stimulus such as temperature in a precise manner. Here we present such a system based on a core/shell/shell architecture consisting of a silica core with a fluorescent layer and a thermoresponsive shell. The silica core nanoparticles were first coated with a fluorescent shell using surface initiated reversible addition-fragmentation chain transfer (RAFT) polymerization. The fluorescent nanoparticles were then completely engulfed by a switchable protective coating made of thermoresponsive poly(N-isopropylacrylamide). The fluorescence of the nanoparticles could be “switched on” at room temperature and “switched off” with increasing environmental temperature because of the presence of the thermoresponsive layer. Insights into this phenomenon will be given based on temperature dependent fluorescence measurements and dynamic light scattering. T2 - Hybrid materials Konferenz CY - Lisbon, Portugal DA - 06.03.2017 KW - Core/shell/shell KW - Thermoresponsive polymers KW - Fluorescence materials PY - 2017 AN - OPUS4-39581 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Keller, Julia A1 - Lörchner, Dominique A1 - Koch, Matthias T1 - Simulating biotransformation reactions of citrinin by electrochemistry/mass spectrometry N2 - Mycotoxins can be found worldwide in food and feed and cause a variety of mold-related health risks which makes it necessary to further examine their metabolic fate in human and other mammals. Beside standard in vitro assays with liver cell preparations an increasing interest in new simulation methods are playing a growing role. The online coupling of electrochemistry with mass spectrometry (EC/MS) is one of these novel techniques, successfully applied in pharmacological and drug research for several years now. The primary objective of this study was to investigate the capability of EC/MS to elucidate metabolic pathways of the mycotoxin citrinin as relevant food contaminant. For this purpose, a coulometric flow through cell equipped with a glassy carbon working electrode was used by applying a ramped potential between 0 and 2 V vs Pd/H2. The electrochemically generated oxidation products analyzed by EC/MS were compared to those obtained from in vitro assays. To receive a comprehensive assessment of EC/MS other non-microsomal oxidation techniques such as Fenton-like reaction and UV irradiation were applied. Several hydroxylated derivatives of citrinin were generated by EC/MS and Fenton-like reaction which are similar to microsomal biotransformation products. These data show that EC/MS is a versatile tool that can be easily applied in mycotoxin research to support metabolic investigations of known and unknown mycotoxins. T2 - ANAKON CY - Tübingen, Deutschland DA - 03.04.2017 KW - Electrochemistry KW - Citrinin KW - Mass spectrometry PY - 2017 AN - OPUS4-39765 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rades, Steffi A1 - Ortel, Erik A1 - Wirth, Thomas A1 - Holzweber, Markus A1 - Pellegrino, F. A1 - Martra, G. A1 - Hodoroaba, Vasile-Dan T1 - Tracing fluorine at the surface and in the bulk of TiO2 nanoplatelets by means of SEM-EDX, AES and ToF-SIMS N2 - The synthesis of TiO2 nanoplatelets with fluorine-containing reactants is carried out using titanium (IV) butoxide as precursor and concentrated HF as shape controller, the final product requires a working up in order to eliminate or at least to reduce the amount of residual fluorides, which is realized here by well-defined thermal treatment of the samples. Bulk and surface sensitive methods namely scanning electron microscopy with energydispersive X-ray spectroscopy (SEM-EDX), Auger electron spectroscopy (AES) and time-of-flight secondary ion mass spectrometry (ToF-SIMS) have been applied to trace the presence of any fluorides in dependence on different information depths and measurement sensitivities of these methods. T2 - EMAS 2017 - 15th European Workshop on MODERN DEVELOPMENTS AND APPLICATIONS IN MICROBEAM ANALYSIS and IUMAS-7 Meeting CY - Konstanz, Germany DA - 07.05.2017 KW - Nanoparticles KW - Surface analysis KW - ToF-SIMS KW - AES KW - SEM-EDX PY - 2017 AN - OPUS4-40265 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rades, Steffi A1 - Ortel, Erik A1 - Wirth, Thomas A1 - García, Sarai A1 - Gómez, Estibaliz A1 - Blanco, Miren A1 - Alberto, Gabriele A1 - Martra, Gianmario A1 - Hodoroaba, Vasile-Dan T1 - Surface and in-depth analysis of functionalization of TiO2 nanoparticles for self-assembly in multiple layers N2 - Parameters of TiO2 coatings can greatly influence their final performance in largescale applications such as photocatalytic measurements, orthopedic and/or dental prostheses, cell cultures, and dye-sensitized solar cells. From different film deposition procedures, self-assembly of TiO2 NPs in multiple layers was selected for systematic characterization. EDX, AES and ToF-SIMS analysis have been carried out in order to evaluate the functionalization of several types of TiO2 NPs differing in size, shape and surface area. T2 - EMAS 2017 - 15th European Workshop on MODERN DEVELOPMENTS AND APPLICATIONS IN MICROBEAM ANALYSIS and IUMAS-7 Meeting CY - Constance, Germany DA - 07.05.2017 KW - Functionalization KW - Surface analysis KW - Nanoparticles KW - Thin films PY - 2017 AN - OPUS4-40266 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan A1 - Mielke, Johannes A1 - Dohányosová, P. A1 - Müller, P. A1 - López-Vidal, S. T1 - Improved Deposition of Nanoparticles vy Electrospray Analaysis with SEM/TEM and EDS N2 - Although there are many experimental techniques for measuring particle sizes and size distributions, electron microscopy (EM) is still considered as the gold standard in this field, especially when it comes to particle sizes in the nanorange (1 nm – 100 nm). Furthermore, high-resolution X-ray spectroscopy (EDS) can be applied to individual nanoparticles. To be able to extract accurate information from the EM micrographs and EDS elemental maps that are representative for the material under investigation, one needs to assure the representativity of the particles as sampled on the substrate and their homogeneous spatial distribution, to avoid operator bias when selecting the imaged area. Furthermore, agglomeration should be avoided as far as possible. Several sample preparation techniques exist since a long time, the most common way being suspending the particles in a liquid and depositing them on the grid. However, this procedure includes the drying of larger solvent amounts on the substrate itself, which can affect the spatial distribution of the deposited particles. One possibility to overcome this problem is the use of an electrospray system, where the suspension of particles is sprayed onto the substrate in charged droplets that are so small that they either dry off on the substrate immediately without affecting the position of particles, or even already during their flight time to the substrate. No dedicated commercial instruments are available for the preparation of TEM grids yet, only electrostatic deposition of aerosols on TEM grids has been reported so far. To test the prototype and assess its performance, several materials have been sprayed onto TEM grids and the resulting particle distributions were compared to more traditional sample preparation strategies like the “drop on grid” method. Operation parameters such as the sample flow-rate, capillary – substrate distance, electric field strength and sampling period length have been optimised. It was found that the particles deposited by electrospray generally show a much more homogeneous spatial distribution on the substrate and a substantial increase of the number of single particles, which are much better suited to an automatic image evaluation procedure than the agglomerated particles observed otherwise. The applicability of the technique to a broad range of materials is demonstrated by various examples, but also the influence of the substrate, the choice of the particular TEM grid, on the obtained spatial particle distribution is assessed. T2 - EMAS 2017 - 15th European Workshop on MODERN DEVELOPMENTS AND APPLICATIONS IN MICROBEAM ANALYSIS and IUMAS-7 Meeting CY - Konstanz, Germany DA - 07.05.2017 KW - Electrospray deposition KW - TEM grids KW - Nanoparticles KW - Agglomeration PY - 2017 AN - OPUS4-40257 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Tvrdoňová, M. A1 - Ascher, Lena A1 - Jakubowski, Norbert A1 - Vaculovičová, M. A1 - Moravanská, A. A1 - Vaněčková, T. A1 - Vaculovič, T. T1 - A new strategy of reagents labeling (NPs) used in immunoassay with LA-ICP-MS N2 - Laser ablation with inductively coupled plasma is still more used in life science as biology and biomedicine and the utilization of metals and proteins determination simultaneously is also growing up. We have developed a new strategy of labeling of antibody (it can specific binds to proteins) by nanoparticles and quantum dots which is composed of thousands of atoms and thus increases the sensitivity enormously and of course decreases the Limit of detection, compare to lanthanoids labeling. The ability of successfully tagged antibodies bound to Antigen (protein) was proved by dot blot on membrane imaged by LA-ICP-MS. T2 - Euroanalysis 2017 CY - Stockholm, Sweden DA - 28.08.2017 KW - Immunoassay KW - LA-ICP-MS KW - Labeling KW - Nanoparticle PY - 2017 AN - OPUS4-43168 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rühlmann, Madlen A1 - Büchele, Dominique A1 - Ostermann, Markus A1 - Schmid, Thomas T1 - Determination of plant essential nutrients in soils using DP-LIBS N2 - LIBS (laser-induced breakdown spectroscopy) is known as a fast and simultaneous multi-element analysis with little or no sample preparation. In the last few years there has been a growing interest in applications of LIBS in the field of agriculture. As part of the National Research Strategy BioEconomy 2030 the German Federal Ministry of Education and Research (BMBF) started an innovation programme called BonaRes. BonaRes consists of ten interdisciplinary research project associations which are dealing with soil as a sustainable resource for the bio-economy. One of these research projects is I4S (intelligence for soil) which has the goal to develop an integrated system for site-specific soil fertility management. This system includes a sensor platform, which contains different sensors, like XRF, VIS-NIR, Gamma and LIBS. The main task of LIBS measurements in this project is the real time determination of the elemental contents of nutrients in soils, like calcium, magnesium, potassium. For this purpose, a special setup has been designed. The sample uptake operates with the help of a rotatable sample plate which circulates with different velocities to simulate the application on the field. To provide a higher intensity and a better reproducibility of the obtained signal, a double-pulse Nd:YAG laser was used. In order to minimize dust formation from the soil during the operation of the laser, a dust removal by suction has been integrated. When using relative methods such as LIBS, a suitable calibration curve is needed for absolute quantification. With the help of 16 certified reference soils, calibration curves for different elements were initially calculated and used for the quantification of seven soil samples from different testing grounds in Germany. The complex matrix of soils, as well as the influence of moisture and grain size in soils makes the absolute quantification by LIBS challenging. To overcome these influences, a calibration curve based on multivariate analysis (partial least square regression) was generated. T2 - Adlershof Forschungsforum CY - Berlin, Germany DA - 10.11.2017 KW - Fertility management KW - Multivariate KW - Soil KW - LIBS PY - 2017 AN - OPUS4-43154 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gawlitza, Kornelia A1 - Bartelmeß, Jürgen A1 - Bartholmai, Matthias A1 - Neumann, Patrick P. A1 - Johann, Sergej A1 - Tiebe, Carlo A1 - Banach, Ulrich A1 - Noske, Reinhard A1 - Rurack, Knut T1 - Fluorescence sensor for the long-term monitoring of gaseous ammonia N2 - Ammonia and its reaction products can cause considerable damage of human health and ecosystems, increasing the necessity for reliable and reversible sensors to monitor traces of gaseous ammonia in ambient air directly on-site or in the field. Although various types of gas sensors are available, fluorescence sensors have gained importance due to advantages such as high sensitivity and facile miniaturization. Here, we present the development of a sensor material for the detection of gaseous ammonia in the lower ppm to ppb range by incorporation of a fluorescent dye, which shows reversible fluorescence modulations as a function of analyte concentration, into a polymer matrix to ensure the accumulation of ammonia. A gas standard generator producing standard gas mixtures, which comply with the metrological traceability in the desired environmentally relevant measurement range, was used to calibrate the optical sensor system. To integrate the sensor material into a mobile device, a prototype of a hand-held instrument was developed, enabling straightforward data acquisition over a long period. T2 - Colloquium of Optical Spectrometry (COSP) 2017 CY - Berlin, Germany DA - 27.11.2017 KW - Ammonia gas sensor KW - Fluorescence KW - Air quality monitoring KW - Standard gas generator KW - Miniaturized sensor device PY - 2017 AN - OPUS4-43143 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Heinrich, Thomas A1 - Hupatz, H. A1 - Lippitz, Andreas A1 - Schalley, C. A1 - Unger, Wolfgang T1 - NEXAFS and XPS investigations of a dual switchable rotaxane multilayer N2 - A multilayer consisting of two different rotaxanes was investigated with different analytical methods. The rotaxanes can be switched with two different stimuli - chemical and photochemical. XPS indicates that our layer-by-layer approach worked and a layer growth with every deposition step is present. NEXAFS showed that both stimuli cause an increase of the multilayer's preferential orientation. T2 - BESSY User Meeting CY - Berlin, Germany DA - 13.12.2017 KW - NEXAFS KW - XPS KW - Rotaxanes PY - 2017 AN - OPUS4-43616 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sobol, Oded A1 - Steiner, S. A1 - Albe, K. A1 - Froemling, T. A1 - Unger, Wolfgang T1 - The characterization of oxygen diffusion in (Na1/2Bi1/2)TiO3 piezo-ceramics by Time-of-Flight secondary ion mass spectrometry (ToF-SIMS) N2 - The ferroelectric ceramic NBT and its solid solutions with barium titanate (BT) are examples for the most promising lead free materials to substitute the dominant Pb(Zr,Ti)O3 (PZT). Lead based material should generally be disregarded due to environmental and health reasons. However, there is no class of lead-free piezoelectric materials that can replace PZT entirely. Not only the often inferior ferroelectric properties but also the lack of understanding of the defect chemistry of NBT is still a challenge for the replacement of lead containing piezo-ceramics. Just recently it could be shown by Li et al. that NBT obtains extraordinarily high oxygen ionic conductivity when doped with Mg as acceptor. It was actually expected that doping just leads to a hardening of the ferroelectric properties. However, it became clear that the known defect chemical behavior of PZT cannot be extrapolated to NBT materials. Hence, to gain information on general doping effects a better defect chemical investigation is needed. This is particularly important for the applications with high reliability demands to investigate possible degradation and fatigue mechanisms. In the present work Time-of-flight-secondary ion mass spectrometry (ToF-SIMS) was used in order to observe the influence of different acceptor dopants (Fe, Ni, Al) on the oxygen diffusion in NBT. ToF-SIMS holds the ability to gain a full elemental distribution in a sub-micron resolution and was therefore chosen to provide the essential information on the favorable diffusion paths of oxygen in NBT in dependence of the chosen doping element. 18O was used as a tracer for oxygen as its natural abundance is only 0.2%. The doped NBT samples have been annealed for 5 h at 500°C in a 0.2 bar 18O-tracer atmosphere to be able to detect oxygen ion diffusion. ToF-SIMS investigations were conducted on a ToF-SIMS IV (ION TOF GmbH, Münster, Germany) using a Bi+ primary ion beam (25KeV in collimated burst alignment mode with a beam diameter of ~150 nm) and a Cs+ sputter beam (3KeV). The results illustrate the different impact of dopants on the diffusion properties which is evidence for a highly non-linear dependence on dopant type and concentration. T2 - 21st International Conference on Secondary Ion Mass Spectrometry - SIMS21 CY - Krakow, Poland DA - 10.09.2017 KW - ToF-SIMS KW - NBT KW - Piezoceramics PY - 2017 UR - http://sims.confer.uj.edu.pl/boa_poster.php?id=93 AN - OPUS4-42911 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Laquai, René A1 - Müller, Bernd R. A1 - Kasperovich, G. A1 - Haubrich, J. A1 - Requena, G. A1 - Bruno, Giovanni T1 - Distinguishing characteristic defect in additively manufactured Ti-Al6-V4 with synchrotron X-ray refraction radiography N2 - Synchrotron X-ray refraction radiography (SXRR) is proven to identify different kinds of defects in Ti-Al6-V4 samples produces by selective laser melting. Namely, these defect types are empty pores and unprocessed powder, which are characteristic to the regions above and below the optimal laser energy density, respectively. Furthermore, SXRR detects small defects below the spatial resolution. T2 - BESSY User Meeting CY - Berlin, Germany DA - 13.12.2017 KW - Additive manufacturing KW - X-ray refraction KW - Porosity PY - 2017 AN - OPUS4-43446 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kjaervik, Marit A1 - Seim, C. A1 - Streeck, C. A1 - Wansleben, M. A1 - Hornemann, A. A1 - Schwibbert, Karin A1 - Unger, Wolfgang A1 - Vorng, J. L. A1 - Kästner, B. A1 - Dietrich, P. A1 - Thissen, A. A1 - Beckhoff, B. T1 - EMPIR project Metrology vs. Bad Bugs aims to provide urgently needed metrology to quantitatively measure localization and penetration of antibiotics and biocides in bacteria and biofilms N2 - An overview of ongoing reference-free X-ray spectrometry, near-ambient pressure X-ray photoelectron spectroscopy and Fourier-Transform infrared micro-spectroscopy studies on the penetration of biocides/antibiotics into bacteria and biofilms is given. T2 - Ninth Joint BER II and BESSY II User Meeting CY - Berlin, Germany DA - 13.12.2017 KW - Biofilms KW - Alginate KW - XRF KW - FTIR KW - NAP-XPS PY - 2017 AN - OPUS4-43465 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Donsky, I. S. A1 - Lippitz, Andreas A1 - Adeli, M. A1 - Haag, R. A1 - Unger, Wolfgang T1 - 2D nanomaterials with switchable pathogen binding N2 - Graphene derivatives have shown great promise in the field of pathogen binding and sensing. Due to their diverse applications, they show a variety of activities that range from bacterial adhesion to bacterial resistance. Therefore, domination of the graphene-pathogen interactions is highly relevant for producing 2D platforms with the desired applications. In order to gain control over the interactions between graphene and biosystems, mechanisms should be fully understood. The surface functionality of graphene is one of the most important factors that dominates its interactions with biosystems and pathogens. Covalent functionalization is a robust method through which functionality, chemical structure, and subsequently physicochemical properties of graphene are abundantly manipulated. A critical issue for preparing graphene-based 2D materials with a defined surface structure, however, is controlling the functionalization in terms of number, position, and type of functional groups. T2 - 9th Joint BER II and BESSY II User Meeting CY - Berlin, Germany DA - 13.12.2017 KW - Graphene KW - Functionalization KW - XPS KW - C Kedge NEXAFS PY - 2017 AN - OPUS4-43456 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mishurova, Tatiana A1 - Thiede, Tobias A1 - Cabeza, Sandra A1 - Bruno, Giovanni A1 - Kromm, Arne A1 - Nadammal, Naresh T1 - The influence of the support structure on residual stress and distortion in SLM Inconel 718 parts N2 - The effect of support structure and of removal from the base plate on the residual stress state in Selective Laser Melted IN718 parts was studied by means of synchrotron X-ray diffraction. The residual stresses in subsurface region of two elongated prisms in as-built condition and after the cutting from the base plate were determined. One sample was directly built on a base plate and another one on a support structure. Also, the distortion on the top surface due to stress release was measured by contact profilometry. High tensile residual stress values were found, with pronounced stress gradient along the hatching direction. In the sample on support stress redistribution took place after removal of the base plate, as opposed to simple stress relaxation for the sample without support. The sample on support structure showed larger distortion compared to sample without support. We conclude that the use of a support decreases stress values but stress relieving heat treatments are still needed. T2 - User Meeting HZB 2018 CY - Berlin, Germany DA - 14.12.2017 KW - Additive manufacturing KW - Selective laser melting KW - Residual stress KW - Synchrotron X-ray diffraction PY - 2017 AN - OPUS4-43460 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Müller, Anja A1 - Lippitz, Andreas A1 - Dörfel, I. A1 - Ritter, B. A1 - Kemnitz, E. A1 - Unger, Wolfgang T1 - Quantitative chemical depth-profiling by synchrotron-radiation-XPS: Investigation of SrF2-CaF2 core-shell nanoparticles N2 - SrF2 nanoparticles can be doped with trivalent earth metal ions such as Eu3+ and Tb3+ to generate materials exhibiting an intensive red or green fluorescence. A CaF2 shell increases intensity, fluorescence lifetie and quantum yield. The chemical composition of the nanoparticle core-shell region is investigated by XPS at different excitation energies corresponding to different information depths. T2 - Ninth Joint BER II and BESSY II User Meeting CY - Berlin, Germany DA - 13.12.2017 KW - Core-shell nanoparticles KW - Synchrotron-XPS KW - Depth-profiling PY - 2017 N1 - Geburtsname von Müller, Anja: Hermanns, A. - Birth name of Müller, Anja: Hermanns, A. AN - OPUS4-43464 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kulla, Hannes A1 - Becker, Christian A1 - Casati, Nicola A1 - Paulus, Beate A1 - Rademann, Klaus A1 - Emmerling, Franziska T1 - In situ PXRD monitoring of a mechanochemical cocrystal formation in milling jars of different material N2 - We present an in situ PXRD investigation of the mechanochemical cocrystal formation of pyrazinamide with pimelic acid in two milling jar materials. In the steel jar a polymorph transformation presenting an exception of Ostwald’s rule of stages is observed. T2 - BESSY User Meeting 2017 CY - Bessy II (HZB), Berlin, Germany DA - 14.12.2017 KW - In situ KW - XRD KW - Polymorph KW - Cocrystal KW - Milling PY - 2017 AN - OPUS4-43502 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Emmerling, Franziska A1 - Kulla, Hannes A1 - Wilke, Manuel T1 - In situ investigations of mechanochemical reactions - new insights in formation pathways N2 - Mechanochemistry is increasingly used for synthesizing soft matter materials including metal organic compounds and cocrystals. The ever-increasing interest in this method is contrasted by a limited mechanistic understanding of the mechanochemical reactivity and selectivity. Time-resolved in situ investigations of milling reactions provide direct insights in the underlying mechanisms. We recently introduced a setup enabling in situ investigation of mechanochemical reactions using synchrotron XRD combined with Raman spectroscopy. The specific combination allows to study milling processes comprehensively on the level of the molecular and crystalline structure and thus obtaining reliable data for mechanistic studies. In situ Raman spectroscopy coupled with thermography revealed a low temperature increase during milling reactions due to the mechanical impact and clear temperature increases because of the reaction heat. Based on the data, temperature rises as postulated in the magma plasma and hot spot theory can be excluded for soft matter milling syntheses. Our results indicate that in situ investigation of milling reactions offer a new approach to tune and optimize mechanochemically synthesized compounds. T2 - Wissenschaftsforum Chemie CY - Berlin, Germany DA - 10.09.17 KW - Mechanochemistry KW - In situ PY - 2017 AN - OPUS4-43563 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Keller, Julia A1 - Haase, H. A1 - Koch, Matthias T1 - Electrochemistry coupled with LC/MS for production and characterization of mycotoxin oxidation products N2 - Mycotoxins cause a variety of mold-related health risks which makes it necessary to further examine their metabolic pathways in human and other mammals. Beside standard in vitro assays with liver cell microsomes an increasing interest in new and rapid simulation techniques are playing a growing role in mycotoxin research. Herein, the coupling of electrochemistry with liquid chromatography and mass spectrometry (EC/LC/MS) is presented as fast and simple method to investigate the oxidative fate of mycotoxins. For this case study, two food relevant mycotoxins (zearalenone and citrinin) were selected. Experiments were performed by using an electrochemical flow through cell integrated in the flow path of the autosampler of the chromatographic system. The reaction mixture was separated by a RP-C18 column and analyzed by a single quadrupole MS (Figure 1). Oxidation products were generated by applying potentials of 400, 800, 1200 and 1600 mV vs Pd/H2 using a glassy carbon working electrode. Different oxidation reactions like hydroxylation, dehydrogenation and dimerization lead to a diverse product pattern of the investigated mycotoxins. In a comparative study, electrochemical generated reaction products were compared with metabolites produced by human and rat liver microsomes in vitro. The obtained data show that EC/LC/MS is a versatile and promising tool in mycotoxin research to support metabolic investigations of known and unknown mycotoxins. T2 - Tag der Chemie CY - Berlin, Germany DA - 03.07.2017 KW - Electrochemistry KW - Mycotoxins PY - 2017 AN - OPUS4-42980 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Iznaguen, Hassan A1 - Piechotta, Christian A1 - Ostermann, Markus A1 - Traub, Heike T1 - Homogeneity of dispersed brominated flame retardants (HBCD) in polystyrene by LA-ICP-MS and XRF N2 - To investigate the release or migration of flame retardants from polypropylene (PP) and polysytrene (PS) samples with a defined content of flame retardants as additives were prepared and used. Therefore a distinct 1,2,5,6,9,10-hexabromocyclododecane HBCD concentration of 1 wt.% in PS resp. a specified bromodiphenylether (BDE-209) of 0.1 wt.% in PP is defined. For the preparation of the samples granular PP or PS are extruded together with the BFR additives. Even the result of this process may lead to homogenous partitions of the BFR additives. So, the distribution of these additives must be proven before using the samples in an experimental setup for weathering studies. In accordance to the regulation of RoHS (2011/65/EU) , where the use of XRF is recommended for the proof of flame retardants in electronic consumer products, we use this method as a reference to the laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). Therefore we present the correlation of these experiments. The experimental setup for the XRF experiment is like a standard addition: in cavities, which are introduced in the sample plates subsequently, solutions of defined concentration of flame retardants are put in there. According to the idea of standard addition, we get an information of the originating mass fraction of flame retardant in each sample and we can monitor the release and migration of these additives during/after the weathering experiments with high precision. An internal standard of HBCD is added as a marker and can be analyzed after the weathering experiment. T2 - 8th European Weathering Symposium EWS CY - Wien, Austria DA - 20.09.2017 KW - LA-ICP-MS KW - XRF KW - BFR PY - 2017 AN - OPUS4-43313 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gawlitza, Kornelia A1 - Tiebe, Carlo A1 - Banach, Ulrich A1 - Noske, Reinhard A1 - Bartholmai, Matthias A1 - Rurack, Knut T1 - Novel sensor for long-term monitoring of ammonia in gas phase N2 - Pollution through emission of toxic gases is of utmost environmental concern, raising the interest in developing reliable gas sensors. Exemplarily, ammonia and its conversion products can provoke considerable damage on human health and ecosystems. Hence, there is a need for reliable and reversible sensor materials to monitor traces of gaseous ammonia in ambient air, which at best can be used on-site for field measurements. Although various types of sensors such as potentiometric, amperometric, and biological sensors are available for detecting trace amounts of gases, fluorescent sensors have gained importance due to several advantages such as high sensitivity, possible miniaturization, as well as potential multiplexing. Herein, we present the development of a sensor material for gaseous ammonia in the lower ppm or even ppb range using optical fluorescence as transduction mechanism due to its intrinsically high sensitivity and high spatial resolution.[1] Therefore, a fluorescent dye, which shows reversible fluorescence enhancement in the presence of the analyte was incorporated into a polymer matrix, the latter to ensure the accumulation of ammonia. To calibrate the designed optical sensor system a gas standard generator was used, producing standard gas mixtures, which comply with the metrological traceability for ammonia gas standards in the desired environmentally relevant measurement range.[2] Beside the development of a highly sensitive, selective, and reversible sensor, the integration of such systems into mobile sensor devices is addressed. Therefore, a prototype of a miniaturized hand-held instrument was developed enabling a straightforward and long-term read-out of the measurement signal. T2 - 13. Dresdner Sensor Symposium (13. DSS) CY - Dresden, Germany DA - 04.12.2017 KW - Ammonia gas sensor KW - Fluorescence KW - Air quality monitoring KW - Standard gas generator KW - Minitaurized sensor device PY - 2017 AN - OPUS4-43351 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Tiebe, Carlo A1 - Banach, Ulrich A1 - Hübert, Thomas A1 - Gawlitza, Kornelia A1 - Bartholmai, Matthias T1 - Development of a gas standard generator N2 - Pollution through emission of toxic gases is an increasing problem for the environment. It affects similarly agricultural, industrial and urban areas. In future, environmental emissions in ambient air must be monitored at even lower concentrations as nowadays. One environmental relevant compound is ammonia and its conversion product ammonium that have strong negative impact on human health and ecosystems. Most ammonia measurements in ambient air are performed in the range below 1000 nmol·mol-1 and thus there is a need for reliable traceable ammonia gas standards and in addition in situ analytical procedures for monitoring (in ambient air to avoid that thresholds are exceeded). Therefore, the use of reference materials is necessary for development accompanying test or for calibration, e. g. of structure-integrated sensors and mobile multi-gas sensors. The developed gas standard generator produces gas mixtures that comply with the metrological traceability for ammonia gas standards in the desired environmentally relevant measurement range. The method is based on the permeation of ammonia through a membrane at constant temperature and pressure. The resulting ammonia penetrant gas flow is then mixed with a carrier gas flow to generate a gas standard flow of known concentration. The dynamic rage is enlarged by using a two dilution steps. Depending on the permeation rate, generable molar fractions are possible in the range nmol·mol-1 to a few µmol·mol-1. We present the design of an ammonia gas standard generator and first results of the characterisation of its individual components supporting the uncertainty assessment according to GUM for stable gas concentrations in this range. The relative uncertainty of the generated ammonia gas standard is smaller than 4 % (k = 2). T2 - Colloquium of Optical Spectrometry (COSP) CY - Berlin, Germany DA - 27.11.2017 KW - Gas standard generator KW - Permeation method KW - Ammonia PY - 2017 AN - OPUS4-43337 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan T1 - Improved traceability chain of nanoparticle size measurements N2 - The overall objective of project Improved traceability chain of nanoparticle size measurements is to improve the traceability chain for nanoparticle size measurements. The main impact will be achieved by manifold contributions to standard documents for CEN/TC 352 “Nanotechnologies”, which directly addresses the research needs of CEN, CENELEC and ETSI mandated by EC to develop standards for methods and reference materials to accurately measure the size and size distribution of nanoparticles. This will take place in collaboration with ISO/TC229 ‘Nanotechnologies’, ISO/TC24/SC4 ‘Particle characterization’ and ISO/TC201 ‘Surface analysis’/ SC9 ‘Scanning probe microscopy’. T2 - EMPIR 2017 Review Conference CY - Monaco DA - 9.11.2017 KW - Nanoparticles KW - Traceability KW - Electron micrsocopy KW - Size KW - Shape PY - 2017 AN - OPUS4-43019 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zavoiura, Oleksandr A1 - Resch-Genger, Ute A1 - Seitz, O. T1 - RNA detection by FRET systems based on peptide nucleic acid-QD conjugates N2 - Today, 40 % of the world’s population live in areas with a significant risk of dengue infection. Early and reliable diagnosis of dengue virus (DENV) is essential to provide the patients with the required medical care and prevent spreading of the disease. Conventional methods for DENV diagnosis like PCR and virus isolation can be used in laboratory settings, yet are difficult to implement in point-of-care diagnostics, requiring simple, selective, fast, and sensitive detection schemes. We present here a novel approach for the detection of DENV, via its RNA, with optical read-out that relies on RNA-catalyzed fluorophore transfer onto a semiconductor quantum dot (QD) and Förster resonance energy transfer (FRET). For this RNA assay, peptide nucleic acid (PNA) oligomers were used as highly specific capture and reporter probes. PNA exhibits remarkable affinity towards RNA as well as extremely high chemical and enzymatic stability. The capture probe, which is immobilized on a QD acting as FRET donor, bears a nucleophile at the N-terminus and the reporter probe is modified with an organic dye acting as FRET acceptor. The presence of DENV genomic RNA in the sample triggers a transfer of the dye onto the QD, signaled by FRET between the QD and the dye. A unique advantage of this system is the ability of one RNA molecule to trigger multiple transfer reactions, thereby amplifying the fluorescence signal. This assay together with the exceptional brightness of QDs and outstanding hybridization properties of PNA allows for highly specific and sensitive detection of DENV RNA in the sub-nM range. T2 - MAF 2017 CY - Brügge, Belgium DA - 10.09.2017 KW - QD KW - RNA detection KW - PNA KW - Click chemistry PY - 2017 AN - OPUS4-43230 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hiller, Th. A1 - Costabel, S. A1 - Müller-Petke, M. A1 - Kruschwitz, Sabine T1 - Evaluation of different laboratory NMR devices in a tripartite round robin test N2 - Nuclear magnetic resonance (NMR) is a well established laboratory / borehole method to characterize the storage and transport properties of rocks due to its direct sensitivity to the corresponding pore fluid saturation (water or oil) and pore sizes. For petrophysical applications there are several different NMR laboratory devices commercially available varying over a wide range of e.g. magnetic field strength / frequency (2 MHz to 30 MHz), applicable measurement protocols (T1, T2, T1-T2, T2-D, etc.) and sample sizes (2.5 cm to 10 cm in diameter). In this work we present NMR measurements, layed out in a round robin like manner, on a set of 20 sandstone samples. We use three different NMR devices containing two standard setups with homogenous magnetic fields (LIAG and RWTH) and one single-sided setup with gradient field (BGR) to measure T1 and T2 relaxation data. In our evaluation we especially focus on the comparison of the individually inverted relaxation time distributions to quantify the differences arising from different laboratory setups. Diverging results can be deduced on the one hand to the inherit differences between homogeneous and gradient fields but on the other hand also due to quality differences between the two homogeneous setups. Additionally, we also examine the influence of the individually chosen inversion parameters (signal processing, distribution sampling points, error weighting, regularization, etc.) to establish a general standardized best practice recommendation for future petrophysical NMR laboratory measurements. T2 - 77. Jahrestagung der Deutschen Geophysikalischen Gesellschaft CY - Potsdam, Germany DA - 27.03.2017 KW - Nuclear Magnetic Resonance KW - Sandstone PY - 2017 AN - OPUS4-43244 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Johann, Sergej A1 - Bartholmai, Matthias A1 - Neumann, Patrick P. A1 - Tiebe, Carlo A1 - Gawlitza, Kornelia A1 - Bartelmeß, Jürgen T1 - Adaptable multi-sensor device for gas detection N2 - Innovation is the catalyst for the technology of the future. It is important to develop new and better technologies that can continuously monitor the environmental impact, e.g., for air quality control or emission detection. In the recently at BAM developed Universal Pump Sensor Control (UPSC3) module, different components and sensors are fused. The combination of the individual components makes the UPSC3 module an excellent monitoring and reference system for the development and characterization of gas specific sensors. Measurements over long periods are possible, for mixed gas loads or for certain gas measurements. The system is part of a mobile sensor network of several sensor units, which can also be used as standalone systems. The motivation and objective of this research is to develop gas sensors based on fluorescence detection with range of ppm / ppb. For this task a reference system is required, which contains volatile organic compound (VOC) sensors for reference data from different scenarios. The integrated multi-sensor unit can measure different gases through the integrated 3-fold VOC sensor, which can be adapted to the addressed scenario. . The system-integrated flow control, with pump and flow sensor, allows the gas molecules to be transported directly to the VOC sensor. The entire measurement is permanently stored on an integrated memory card. If the previously determined limit range is exceeded, an alarm is generated. The system is an important tool towards further developments in the field of gas sensors and is primarily used for the validation of chemically based gas sensors. T2 - Colloquium of Optical Spectrometry (COSP) 2017 CY - Berlin, Germany DA - 27.11.2017 KW - Gas detection KW - Multi sensor device KW - Pump control KW - VOC PY - 2017 AN - OPUS4-43193 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Neumann, Patrick P. A1 - Johann, Sergej A1 - Tiebe, Carlo A1 - Gawlitza, Kornelia A1 - Bartelmeß, Jürgen A1 - Bartholmai, Matthias A1 - Hüllmann, Dino A1 - Krentel, Daniel A1 - Kluge, Martin A1 - Kohlhoff, Harald A1 - Lilienthal, A.J. T1 - Airborne Remote Gas Sensing and Mapping N2 - Leaking methane (CH4) from infrastructures, such as pipelines and landfills, is critical for the environment but can also pose a safety risk. To enable a fast detection and localization of these kind of leaks, we developed a novel robotic platform for aerial remote gas sensing. Spectroscopic measurement methods for remote sensing of selected gases lend themselves for use on mini-copters, which offer a number of advantages for inspection and surveillance over traditional methods. No direct contact with the target gas is needed and thus the influence of the aerial platform on the measured gas plume can be kept to a minimum. This allows to overcome one of the major issues with gas-sensitive mini-copters. On the other hand, remote gas sensors, most prominently Tunable Diode Laser Absorption Spectroscopy (TDLAS) sensors have been too bulky given the payload and energy restrictions of mini-copters. Here, we present the Unmanned Aerial Vehicle for Remote Gas Sensing (UAV-REGAS), which combines a novel lightweight TDLAS sensor with a 3-axis aerial stabilization gimbal for aiming on a versatile hexacopter. The proposed system can be deployed in scenarios that cannot be addressed by currently available robots and thus constitutes a significant step forward for the field of Mobile Robot Olfaction (MRO). It enables tomographic reconstruction of gas plumes and a localization of gas sources. We also present first results showing its performance under realistic conditions. T2 - Colloquium of Optical Spectrometry (COSP) 2017 CY - Berlin, Germany DA - 27.11.2017 KW - Tunable Diode Laser Absorption Spectroscopy (TDLAS) KW - UAV-REGAS KW - Mobile Robot Olfaction KW - Tomographic reconstruction of gas plumes KW - Localization of gas sources PY - 2017 AN - OPUS4-43204 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bartelmeß, Jürgen A1 - Gawlitza, Kornelia A1 - Bartholmai, Matthias A1 - Rurack, Knut A1 - Kohlhoff, Harald A1 - Kraus, Werner A1 - Mansurova, Maria A1 - Bell, Jérémy T1 - Developments towards the fluorescence based sensing of hazardous gases N2 - Fluorescence based sensing is a versatile approach for the trace analysis outside of the laboratory, requiring suitable sensor materials and their integration into sensing devices. The versatility of fluorophores as probes, especially in terms of the possibility to tailor their optical as well as their recognition properties by synthetic modifications in a wide range, renders them a superior active component for the preparation of optical sensor devices. Recent works at BAM in this field include, for example, the detection of nerve gas agents, illustrating impressively the aforementioned benefits of fluorophores in optical sensing applications. In the interdisciplinary approach presented here, we target hazardous gases such as ammonia, benzene, and hydrogen sulfide, next to others, which pose a major threat to human health and environmental safety and for which the availability of a sensitive and reliable detection method is highly desirable. The dyes presented follow a “turn-on” fluorescence schematic which allows for the selective and sensitive detection of the respective gaseous analyte. The immobilization of the probe in polymeric matrices is then the next step toward the fabrication of a prototype device for molecular sensing. T2 - Colloquium of Optical Spectrometry (COSP) 2017 CY - Berlin, Germany DA - 27.11.2017 KW - Gas sensing KW - Fluorescence KW - KonSens PY - 2017 AN - OPUS4-43209 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kraft, Marco A1 - Würth, Christian A1 - Kaiser, Martin A1 - Muhr, V. A1 - Hirsch, T. A1 - Resch-Genger, Ute T1 - Particle size dependent optical properties of hexagonal β-NaYF4: 2 % Er3+, 20 % Yb3+ upconversion nanoparticles in cyclohexane and water N2 - Hexagonal NaYF4 doped with 20 % Yb3+ and 2 % Er3+ is an efficient upconversion (UC) phosphor for the conversion of 976 nm excitation light to emission at 845 nm, 800 nm, 655 nm, 540 nm and 410 nm light. The emission behavior of nanoparticles made from this material is strongly influenced by particle size, surface chemistry, and microenvironment. Furthermore their UC emission originates from multiphotonic absorption processes, rendering the resulting luminescence spectra and intensities excitation power density (P) dependent. Therefore the rational design of efficient nm-sized UC particles e.g., for applications in the material and life sciences requires reliable spectroscopic tools for the characterization of the optical properties of these materials like the excitation power density (P)-dependent UC quantum yield (QYUC) in dispersion, which presents a measure for the efficiency of the conversion of absorbed into emitted photons. Up to date the P-dependent absolute measurement of QYUC in aqueous media with an excitation wavelength of 976 nm presents a considerable challenge due to the low absorption coefficients of the UC materials and the absorption of water at this wavelength. T2 - International Conference on Advanced Materials and Nanotechnology CY - Queenstown, New Zealand DA - 12.02.2017 KW - Upconversion KW - Quantum yield KW - Lifetime KW - Water KW - Cyclohexane PY - 2017 AN - OPUS4-40093 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Lauer, Franziska A1 - Seifert, Stephan A1 - Kneipp, Janina A1 - Weidner, Steffen T1 - Simplifying the preparation of pollen samples for MALDI-TOF MS classification N2 - Matrix-assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF MS) is a well-implemented analytical technique for the investigation of complex biological samples. In MS, the sample preparation strategy is decisive for the success of the measurements. Here, sample preparation processes and target materials for the investigation of different pollen grains are compared. A reduced and optimized sample preparation process prior to MALDI-TOF measurement is presented using conductive carbon tape as target. The application of conductive tape yields in enhanced absolute signal intensities and mass spectral pattern information, which leads to a clear separation in subsequent pattern analysis T2 - 11. Interdisziplinäres Doktorandenseminar - GdCH Arbeitskreis Prozessanalytik CY - BAM Adlershof, Berlin, Germany DA - 12.03.2017 KW - Sample pretreatment KW - Conductive carbon tape KW - MALDI-TOF MS KW - PCA KW - Pollen PY - 2017 AN - OPUS4-39439 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bertin, Annabelle A1 - Asadujjaman, Asad A1 - Kent, B. T1 - Temperature Sensitive Aggregation Behavior of Poly(Acrylamide-co-Acrylonitrile) in Water N2 - Thermoresponsive polymers have shown great potential in applications such as bioseparation, drug delivery and diagnostic. Only few thermoresponsive polymers that present an upper critical solution temperature (UCST), i.e. phase separate from solution upon cooling, in a relevant temperature range have been reported so far. Herein, a robust UCST-type copolymer of acrylamide (AAm) and acrylonitrile (AN) (poly(AAm-co-AN)) was prepared by reversible addition fragmentation chain transfer (RAFT) polymerization and its thermo-induced aggregation behavior in aqueous media was studied. We propose a model for the temperature-induced aggregation behaviour of UCST-type poly(AAm-co-AN) copolymer in aqueous solution on the basis of turbidity measurements, SLS, DLS, SANS and cryo-TEM. T2 - German Physical Society - Spring Meeting 2017 CY - Dresden, Germany DA - 19.03.2017 KW - Thermoresponsive polymers KW - UCST-type copolymer PY - 2017 AN - OPUS4-39465 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bertin, Annabelle A1 - Asadujjaman, Asad A1 - Ahmadi, Vahid A1 - Yalcin, M. A1 - ten Brummelhuis, N. T1 - Functional polymer based on 2,6-diaminopyridine with tunable UCST behaviour in water/alcohol mixture N2 - Thermoresponsive polymers are of great importance in numerous applications such as bioseparation, drug delivery, diagnostic and microfluidic applications. Only few thermoresponsive polymers that present an upper critical solution temperature (UCST), i.e. phase separate from solution upon cooling, in a relevant temperature range and green solvents such as water or ethanol have been reported. Indeed, polymers with UCST behavior below 60°C in alcohol or water/alcohol mixtures are extremely promising for the preparation of smart materials for sensing. In this work two novel functional polymers of based on a 2,6-diaminopyridine motif were synthesized by free radical polymerization. Their UCST-type transition temperature is tunable by varying either their concentration in solution or the type of solvent. Insights into this phenomenon will be given based on turbidimetry and temperature dependent dynamic light scattering T2 - German Physical Society - Spring Meeting 2017 CY - Dresden, Germany DA - 19.03.2017 KW - Thermoresponsive polymers KW - USCT-type polymers KW - Polymers based on 2,6-diaminopyridine PY - 2017 AN - OPUS4-39466 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Torge, Manfred A1 - Feldmann, Ines A1 - Tagle, R. T1 - SEM and Micro-XRF analysis to investigate stained glass windows N2 - Several restoration projects of stained-glass windows have been performed in Poland since 2010.Chemical analysis of glass samples was performed with SEM/EDX on a FEI ESEM-XL 30, (EDX-EDAX) and with Micro-XRF (M4 Tornado, Bruker).The chemical composition of medieval glass samples and of glass samples of the 19th Century have been determined. T2 - Technart2017 CY - Bilbao, Spain DA - 02.05.2017 KW - SEM KW - Micro-XRF KW - Glass composition PY - 2017 AN - OPUS4-40435 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Marzok, Ulrich A1 - Müller, Ralf A1 - Reetz, R. A1 - Lauven, G. T1 - 3D High-temperature laser profilometry during sintering N2 - Most crucial for components of complex shape or heterogeneous micro structure, precise control of sintering has decisive influence on dimensional accuracy, mechanical integrity and reliability of sintered components. In these cases, only in situ 3D high-temperature shape screening during shrinkage would allow revealing temporary sinter warpage and hereby caused potential defects. Against this background, nokra Optische Prüftechnik und Automation GmbH, HTM Reetz GmbH and BAM developed a testing device for in situ 3D shape screening for ceramic and glass-ceramic tapes up to 1000°C by means of high-temperature laser profilometry. The local repeatability of the sample-sensor distance (sample height profile) is 10 µm at 1000°C. Current work is focused on dropping these restrictions in sample shape and temperature. In a second testing device, currently being in development, samples up to 5 cm x 5 cm x 5 cm can be measured at temperatures up to 1500°C.The presentation illustrates the current state of this work and possible applications of the method. T2 - 92. DKG Jahrestagung CY - Berlin, Germany DA - 19. 03. 2017 KW - Laser profilometry KW - 3D High-temperatue shape screening KW - Sintering PY - 2017 AN - OPUS4-40449 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Cruz Alonso, M. A1 - Fernandez, B. A1 - Alvarez, L. A1 - Gonzalez Iglesias, H. A1 - Traub, Heike A1 - Jakubowski, Norbert A1 - Pereiro, R. T1 - Bioimaging of metallothioneins in ocular tissue sections by LA-ICP-MS using bioconjugated gold nanoclusters N2 - Oxidative stress is produced by an imbalance between free radical production and biological system's ability to detoxify the reactive intermediates and repair the resulting damage. In the human eye the main causes of oxidative stress are the daily exposure to sunlight, chemical insults and the special microenvironment with abundant photo-sensitizers. For this reason, oxidative stress has been associated several ocular diseases, like aged-related macular degeneration (AMD). On the other hand, Metallothioneins (MTs) are a family of low molecular weight (6–7 kDa), cysteine-rich (30%) and metal-binding proteins. The cysteine residues can bind metal atoms such as zinc, copper, and cadmium via thiolate bonds. These proteins have a wide range of functions including defense against oxidative damage, intracellular storage and transport and metabolism of metal ions. The antioxidant properties of MTs reside in their capacity to capture and neutralize free radicals by binding and transferring zinc ions in a redox-dependent fashion, forming the antioxidant system Zinc-Metalothionein (Zn-MT). Highly sensitive analytical tools are required to study the relationship between Zn and MTs in sections from ocular tissues. These methodologies should permit the simultaneous localization (bioimaging) of metals and proteins. Laser ablation (LA) coupled to ICP-MS has shown a huge potential for bioimaging studies in biological tissues. In addition, the use of metal nanoclusters (NCs) as elemental tags will provide signal amplification, compared with other tags traditionally employed (e.g. polymeric tags). To this end, antibodies with gold nanoclusters (AuNCs) will be used in combination with LA-ICP-MS for the detection of different metallothioneins (MT 1/2 and 3) directly into the ocular tissue sections. - Methods: The AuNCs synthesized were bioconjugated with an Anti-MT 1/2 antibody and with Anti-MT 3 antibody. Next, using ocular tissue sections (5 microns thick) from different donors the immunoassays were performed. After the immunoassay protocol, imaging studies were carried out by LA-ICP-MS as well as by fluorescence (confocal microscope) in order to compare both methodologies. - Results: The MTs (measuring the Au signal) and the coordinated metals distribution (Zn and Cu) were successfully carried out in human ocular tissues, including sclera, choroid, retina and retinal pigment epithelium regions. The image patterns found in ocular tissues were in agreement with those reported by conventional immunohistochemistry. - Conclusions: It is possible to know the distribution of MT proteins and different coordinated metals using bioconjugated AuNCs and LA-ICP-MS. Proposed analytical tools could help to better understand the roles of the antioxidant system Zinc-Metalothionein in the eye. T2 - European Winter Conference on Plasma Spectrochemistry EWCPS-2017 CY - St. Anton, Austria DA - 19.02.2017 KW - Bioimaging KW - LA-ICP-MS KW - Nanocluster PY - 2017 AN - OPUS4-39293 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Krause, B. A1 - Sieg, H. A1 - Kästner, Claudia A1 - Meyer, T. A1 - Reichardt, P. A1 - Lichtenstein, D. A1 - Burel, A. A1 - Boehmert, L. A1 - Jungnickel, H. A1 - Tentschert, J. A1 - Laux, P. A1 - Braeuning, A. A1 - Estrela-Lopis, I. A1 - Gauffre, F. A1 - Fessard, V. A1 - Thuenemann, Andreas A1 - Lampen, A. A1 - Luch, A. T1 - Detection of aluminum nanoparticles in biological media and in vitro N2 - Aluminum is the third most abundant element in the earth crust and therefore ubiquitously detectable in the environment. Mostly found in the form of derivatives such as silicates or oxides, it also occurs as metallic aluminum for example as colorant in sweets or in aluminum foil. With regard to potential toxicological effects, the different solubility of metallic aluminum nanoparticles compared to Al2O3 is of high relevance. Formation of ions may facilitate the crossing of blood-tissue barriers. Distribution towards other organs and subsequent re-formation of particulate aluminum due to milieu changes might occur. Therefore, the determination of solubility is required for proper risk assessment. Inductively coupled plasma mass spectrometry (ICP-MS) allows determination of aluminum with a detection limit of about 6 ppb. It could be proven that dissolution and solubility of metallic aluminum is significantly different when compared to Al2O3. Using ICP-MS in the single particle mode, a significant change in the behavior of both aluminum species was detected after undergoing the artificial digestion. Nearly unchanged in the saliva, particles show dissolution and high agglomeration during the gastric state before deagglomerating again in the intestine. Further analysis by time-of-flight secondary ion mass spectrometry (ToF-SIMS) revealed the uptake of both aluminum forms by proliferating and differentiated Caco-2 cells. For both particle forms different ions could be detected. Several aluminum-amino acid complex-derived ions from serine and valine were identified. In the case of Al2O3, Al2O2+, AlOH+, AlH2O+ and Al[(H2O)6]3+ were the main ions found co-localizing within treated cells. T2 - European Winter Conference for Plasma Spectrochemistry 2017 CY - Sankt Anton, Austria DA - 19.02.2017 KW - Aluminum KW - SP-ICP-MS KW - SAXS KW - Artificial digestion KW - Cellular uptake PY - 2017 AN - OPUS4-39201 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bierstedt, Andreas A1 - Riedel, Jens T1 - Improving the performance of the laser-spark ion source for the detection of volatile organic compounds under ambient conditions N2 - Recently, a novel ionization scheme for ambient MS has been introduced. It is based on a quasi-continuous laser induced plasma (LIP), ignited in front of the MS inlet. This setup comprises the advantages of an ambient probe, electro neutrality, a sufficient duty cycle, a ubiquitous plasma medium, low power consumption, the absence of solvents and high sensitivity. To assess its future applicability for the detection of volatile organic compounds, plasma properties and operating conditions are investigated to understand the processes, that lead to the unexpected formation of intact molecular ions. Comprehensive studies include optical Emission spectroscopy, shadowgraphic shockwave visualization and time-of-flight mass spectrometry. T2 - 50. Jahrestagung der Deutschen Gesellschaft für Massenspektrometrie CY - Kiel, Germany DA - 05.03.2017 KW - Laser-spark KW - Laser induced plasma KW - Mass spectrometry KW - Ambient ionization PY - 2017 AN - OPUS4-39309 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Torge, Manfred A1 - Feldmann, Ines A1 - Knabe, Nicole A1 - Toepel, J. T1 - Organic surface coatings on medieval stained glass and microbiological investigation N2 - Mediaeval stained glass has been treated with Polymethylmetacrylate coatings by Kwiatkowski in Poland during the 1950th. Such treated panels were found in the Johannis Church of Toruń (without protective glazing), in the Cathedral of Włocławek (behind a protective glazing), and on glass kept in exhibition cases in the museum of Toruń. Surface coatings have been detected and analyzed. There was no extensive contamination by fungi or bacteria if the glass was either coated or not. T2 - Glass Science in Art and Conservation 2017 CY - Lisbon, Portugal DA - 06.06.2017 KW - Microbiological investigation KW - Medieval stained glass KW - SEM analysis PY - 2017 AN - OPUS4-40573 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Niederleithinger, Ernst T1 - Bridge Monitoring by Passive Seismic Data, First tests at the BLEIB reference structure N2 - Seismic wave velocities are related to elastic moduli and other properties and can serve as indicators for changes in the material. They are conventionally determined by active measurements. Using ideas from seismic interferometry Determination from stacked cross-correlations of registrations of man- made and natural noise (“passive seimics“) is an effective alternative, as these data might be available from vibration monitoring anyway. The validity of this approach is demonstrated by a simple experiment based on recordings of man made noise using accelerometers at the reference structure. The s-wave (or more probable. guided wave) velocity was determined to be 2100 m/s in both active and passive experiments. T2 - Passive Imaging and monitoring in wave physics: from seismology to ultrasound CY - Cargese, France DA - 05.06.2017 KW - Passive Seismics KW - Bridge monitoring KW - Elastic wave velocity PY - 2017 AN - OPUS4-40575 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Neumann, Patrick P. A1 - Kohlhoff, Harald A1 - Hüllmann, Dino A1 - Lilienthal, A.J. A1 - Kluge, Martin T1 - Bringing Mobile Robot Olfaction to the Next Dimension – UAV-based Remote Sensing of Gas Clouds and Source Localization N2 - This presentation introduces a novel robotic platform for aerial remote gas sensing. Spectroscopic measurement methods for remote sensing of selected gases lend themselves for use on mini-copters, which offer a number of advantages for inspection and surveillance. No direct contact with the target gas is needed and thus the influence of the aerial platform on the measured gas plume can be kept to a minimum. This allows to overcome one of the major issues with gas-sensitive mini-copters. On the other hand, remote gas sensors, most prominently Tunable Diode Laser Absorption Spectroscopy (TDLAS) sensors have been too bulky given the payload and energy restrictions of mini-copters. Here, we introduce and present the Unmanned Aerial Vehicle for Remote Gas Sensing (UAV-REGAS), which combines a novel lightweight TDLAS sensor with a 3-axis aerial stabilization gimbal for aiming on a versatile hexacopter. The proposed system can be deployed in scenarios that cannot be addressed by currently available robots and thus constitutes a significant step forward for the field of Mobile Robot Olfaction (MRO). It enables tomographic reconstruction of gas plumes and a localization of gas sources. We also present first results showing the gas sensing and aiming capabilities under realistic conditions. T2 - IEEE International Conference on Robotics and Automation (ICRA) CY - Singapore DA - 29.05.2017 KW - Tunable Diode Laser Absorption Spectroscopy (TDLAS) KW - 3-axis gimbal KW - Mobile Robot Olfaction KW - Tomographic reconstruction of gas plumes KW - Localization of gas sources KW - Aerial platform PY - 2017 AN - OPUS4-40547 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bennetts, V.H. A1 - Neumann, Patrick P. A1 - Kucner, T.P. A1 - Schaffernicht, E. A1 - Fan, H. A1 - Lilienthal, A.J. T1 - Probabilistic air flow modelling using turbulent and laminar characteristics for ground and aerial robots N2 - For mobile robots that operate in complex, uncontrolled environments, estimating air flow models can be of great importance. Aerial robots use air flow models to plan optimal navigation paths and to avoid turbulence-ridden areas. Search and rescue platforms use air flow models to infer the location of gas leaks. Environmental monitoring robots enrich pollution distribution maps by integrating the information conveyed by an air flow model. In this paper, we present an air flow modelling algorithm that uses wind data collected at a sparse number of locations to estimate joint probability distributions over wind speed and direction at given query locations. The algorithm uses a novel extrapolation approach that models the air flow as a linear combination of laminar and turbulent components. We evaluated the prediction capabilities of our algorithm with data collected with an aerial robot during several exploration runs. The results show that our algorithm has a high degree of stability with respect to parameter selection while outperforming conventional extrapolation approaches. In addition, we applied our proposed approach in an industrial application, where the characterization of a ventilation system is supported by a ground mobile robot. We compared multiple air flow maps recorded over several months by estimating stability maps using the Kullback-Leibler divergence between the distributions. The results show that, despite local differences, similar air flow patterns prevail over time. Moreover, we corroborated the validity of our results with knowledge from human experts. T2 - IEEE International Conference on Robotics and Automation (ICRA) CY - Singapore DA - 29.05.2017 KW - Mapping KW - Field robots KW - Environment monitoring and management KW - Aerial systems KW - Perception and autonomy PY - 2017 AN - OPUS4-40549 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Asadujjaman, Asad A1 - Wagner, Sabine A1 - Rurack, Knut A1 - Bertin, Annabelle T1 - Temperature switches “on” and “off” nanoparticle fluorescence in a core/shell/shell architecture N2 - Fluorescent nanoparticles that light “on/off” by applying external stimuli are of particular interest in the fields of sensing, diagnostics, photonics, protective coatings and microfluidics. The current challenge for these materials is for instance to combine fluorescence and its response to a stimulus such as temperature in a precise manner. Here we present such a system based on a core/shell/shell architecture consisting of a silica core with a fluorescent layer and a thermoresponsive shell. In this work the silica core nanoparticles were first coated with a fluorescent shell using surface initiated reversible addition-fragmentation chain transfer (RAFT) polymerization. The fluorescent nanoparticles were then completely engulfed by a switchable protective coating made of thermoresponsive poly(N-isopropylacrylamide). The fluorescence of the nanoparticles could be “switched on” at room temperature and “switched off” with increasing environmental temperature because of the presence of the thermoresponsive layer. Insights into this phenomenon will be given based on temperature dependent fluorescence measurements and dynamic light scattering. T2 - Makromolecular Konferenz CY - Freiburg, Germany DA - 15.02.2017 KW - Thermoresponsive polymers KW - Sensors KW - Core/Shell/Shell PY - 2017 AN - OPUS4-39230 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -