TY - CONF A1 - Hülagü, Deniz A1 - Tobias, Charlie A1 - Gojani, Ardian A1 - Rurack, Knut A1 - Hodoroaba, Vasile-Dan T1 - Analysis of the profile roughness of core-shell microparticles by electron microscopy N2 - A particle roughness analysis tool, based on electron microscopy (EM) images. The influence of various parameters on the calculated roughness was also investigated: the setting of the proper threshold, accelerating voltage, etc. The samples were gradually tilted to extend imaging information of more than only one projection. Furthermore, the measurement uncertainty of the profile roughness of particles associated to various orientations was estimated. T2 - Microscopy and Microanalysis 2021 CY - Online Meeting DA - 01.08.2021 KW - MamaLoCA KW - Particle characterization KW - Electron microscopy KW - Roughness KW - Core-shell particles KW - Image processing PY - 2021 AN - OPUS4-53069 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Smales, Glen Jacob T1 - Structural characterization using small-angle X-ray scattering (SAXS) N2 - A short introduction to small-angle scattering, followed by a "choose your own adventure" style of talk on the characterisation of different materials using SAXS/WAXS. T2 - Operando workshop “SAXS and Ptychography” at the Paul Scherrer Institut CY - Villigen, Switzerland DA - 17.08.2021 KW - SAXS KW - Materials KW - Characterisation PY - 2021 AN - OPUS4-53188 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mrkwitschka, Paul A1 - Kuchenbecker, Petra A1 - Hodoroaba, Vasile-Dan A1 - Rabe, Torsten T1 - Comparative study of suitable preparation methods to evaluate irregular shaped, polydisperse nanoparticles by scanning electron microscopy (SEM). N2 - Reliable characterization of materials at the nanoscale regarding their physio-chemical properties is a challenging task, which is important when utilizing and designing nanoscale materials. Nanoscale materials pose a potential toxicological hazard to the environment and the human body. For this reason, the European Commission amended the REACH Regulation in 2018 to govern the classification of nanomaterials, relying on number-based distribution of the particle size. Suitable methods exist for the granulometric characterization of monodisperse and ideally shaped nanoparticles. However, the evaluation of commercially available nanoscale powders is problematic. These powders tend to agglomerate, show a wide particle size distribution and are of irregular particle shape. Zinc oxide, aluminum oxide and cerium oxide with particle sizes less than 100 nm were selected for the studies and different preparation methods were used comparatively. First, the nanoparticles were dispersed in different dispersants and prepared on TEM-supported copper grids. Furthermore, individual powders were deposited on carbon-based self-adhesive pads. In addition, the samples were embedded by hot mounting and then ground and polished. The prepared samples were investigated by scanning electron microscopy (including the transmission mode STEM-in-SEM) and Dynamic Light scattering. The software package ImageJ was used to segment the SEM images and obtain the particle sizes and shapes and finally the number-based particles size distribution with size expressed as various descriptors. T2 - Ceramics 2021 CY - Online meeting DA - 19.04.2021 KW - Nanoparticles KW - Preparation KW - Characterization PY - 2021 AN - OPUS4-53272 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pauw, Brian Richard A1 - Smales, Glen Jacob T1 - The Meticulous Approach: Fully traceable X-ray scattering data via a comprehensive lab methodology N2 - To find out if experimental findings are real, you need to be able to repeat them. For a long time, however, papers and datasets could not necessarily include sufficient details to accurately repeat experiments, leading to a reproducibility crisis. It is here, that the MOUSE project (Methodology Optimization for Ultrafine Structure Exploration) tries to implement change – at least for small- and wide-angle X-ray scattering (SAXS/WAXS). In the MOUSE project, we have combined: a) a comprehensive laboratory workflow with b) a heavily modified, highly automated Xenocs Xeuss 2.0 instrumental component. This combination allows us to collect fully traceable scattering data, with a well-documented data flow (akin to what is found at the more automated beamlines). With two full-time researchers, the lab collects and interprets thousands of datasets, on hundreds of samples for dozens of projects per year, supporting many users along the entire process from sample selection and preparation, to the analysis of the resulting data. While these numbers do not light a candle to those achieved by our hardworking compatriots at the synchrotron beamlines, the laboratory approach does allow us to continually modify and fine-tune the integral methodology. So for the last three years, we have incorporated e.g. FAIR principles, traceability, automated processing, data curation strategies, as well as a host of good scattering practices into the MOUSE system. We have concomitantly expanded our purview as specialists to include an increased responsibility for the entire scattering aspect of the resultant publications, to ensure full exploitation of the data quality, whilst avoiding common pitfalls. This talk will discuss the MOUSE project1 as implemented to date, and will introduce foreseeable upgrades and changes. These upgrades include better pre-experiment sample scattering predictions to filter projects on the basis of their suitability, exploitation of the measurement database for detecting long-term changes and automated flagging of datasets, and enhancing MC fitting with sample scattering simulations for better matching of odd-shaped scatterers. T2 - S4SAS CY - Online meeting DA - 01.09.2021 KW - X-ray scattering KW - Methodology KW - MOUSE KW - Data organization KW - Automation KW - Traceability PY - 2021 AN - OPUS4-53273 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pauw, Brian Richard T1 - The Dark side of Science N2 - We all may have started out as bright-eyed students trying to do science to the best of our abilities, but over time, some of us have gradually drifted to the dark side. The dark side of science has an impressive publication rate in high-ranking journals, good success with funding agencies, and rocks the world with stellar findings. Unfortunately, these findings aren't real, either by accident or on purpose. As the presenter and his colleagues found, trying to correct or even dispute any of these findings in literature is a supremely complex and time-consuming effort. With no recent reduction in the frequency of such false findings, it is up to us to try to stem the flow. Besides looking at examples, we need to understand the underlying driving forces behind this dark scientific movement. By combining this understanding with a refresher of the core scientific principles, we can then develop the necessary argumentative tools and mechanisms that may prevent our own slide down the slippery slope. This talk will therefore start out with several entertaining examples of probably accidental, as well as definitely deliberate, false scientific findings in literature (and in particular in the field of materials research). We will then take a brief look at the possible causes for these developments, after which some tools will be presented that can help both the fresh as well as the well-seasoned scientist to rise up against the dark side. T2 - DGM special event (invited lecture) CY - Online meeting DA - 23.06.2021 KW - Scientific fraud KW - Reproducibility crisis KW - Bad science KW - Scientific method KW - Publication pressure PY - 2021 AN - OPUS4-53274 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Dalgic, Mete-Sungur T1 - Lösemittelfreie Probenpräparation zur Untersuchung von Polymerblends mittels MALDI-TOF MS N2 - Die Probenpräparation ist ein wichtiger Schritt für die Qualität der Massenspektren in MALDI-TOF MS. Es werden Polymerproben, die lösungsmittelbasiert und lösungsmittelfrei präpariert worden sind, verglichen. Dabei werden die Intensitätsverhältnisse von ternären Mischungen von PEG-, PS- und PMMA-Polymeren beachtet. T2 - 28. Kolloquium - Massenspektrometrische Techniken zur Untersuchung synthetischer Polymere CY - Berlin, Germany DA - 14.05.2024 KW - Polymere KW - Massenspektrometrie KW - Probenpräparation PY - 2024 AN - OPUS4-60032 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Altmann, Korinna A1 - Milczewski, Frank A1 - Ciornii, Dmitri A1 - Hodoroaba, Dan T1 - Preliminary results of an interlaboratory comparison on microplastics organised by plasticsfate N2 - Microplastics are everywhere in the environment, but analytics is challenging. Since harmonisation is missing as well es suitable reference materials, BAM did under th umbrella of VAMAS funded by the EU Horizon 2020 project PlasticsFate a ILC for microplastic detection methods. Methods adressed were IR, Raman, Py-GC/MS and TED-GC/MS. The talk gives a first presentation and evaluation on the results. T2 - CUSP annual meeting and conference CY - Utrecht, Netherlands DA - 12.09.2023 KW - Microplastics KW - TED-GC/MS KW - Polymer 3R KW - Reference material KW - ILC on detection methods PY - 2023 AN - OPUS4-60036 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ermilova, Elena T1 - Hybrid measurement technique for defect characterisation in wide bandgap semiconductors N2 - Climate change and increasing demand for electricity require the use of power electronics based on new wide bandgap (WBG) compound semiconductors. Power electronics devices are used in numerous application areas to control and convert electric energy. These may include generation and distribution of renewable energy for green hydrogen, electrification of transport or 5G communication. WBG electronics have much higher efficiency than the silicon-based ones and can operate at higher power densities, voltages, temperatures and switching frequencies with low energy losses. However, defects in the semiconductors can considerably affect the performance of power electronic devices or make their operation even impossible. The presentation will show the application of spectroscopic and imaging ellipsometry as well as white light interference microscopy for defect characterisation in SiC, GaN and Ga2O3 over a wide wavelength range. We used parameterized modelling of ellipsometric transfer parameters to determine the dielectric properties of bulk materials and thin layers. Imaging ellipsometry offers more information and is an advanced variant of optical microscopy, combining the lateral resolution of optical microscopy with the extreme sensitivity to surface and interface effects of ellipsometry. Surface topography and morphology of different types of defects were additionally investigated with imaging white light interference microscopy. Modern electronic thin film components require complex surface analysis methodologies and hybrid metrology. Hybrid measurement techniques enable fast and non-destructive traceable characterisation of thin film compound semiconductors as well as accurate detection and identification of defects. This methodical approach leads to a better understanding of the materials themselves and of the defect formation mechanisms during manufacturing. This work aims to enable highly reproducible manufacturing of compound semiconductor power electronics as well as operation monitoring to ensure failure-safety of electronic systems in power electronic devices. T2 - Abteilungskolloquium 2023, BAM CY - Berlin, Germany DA - 09.02.2023 KW - Spectroscopic and imaging ellipsometry KW - White light interference microscopy KW - Wide bandgap semiconductors KW - Surface analysis, PY - 2023 AN - OPUS4-59443 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Braun, U. A1 - Altmann, Korinna T1 - Thermoanalytical methods to measure mass in microplastics N2 - The talk adresses the use of thermoanalytical methods in microplastics analysis. T2 - EUROLAB webinar: MICROPLASTICS: regulations, standards and the role of laboratories CY - Online meeting DA - 15.02.2023 KW - TED-GC/MS KW - Thermoanalytical methods KW - Microplastic mass PY - 2023 AN - OPUS4-57009 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Eisentraut, Paul A1 - Braun, U. A1 - Altmann, Korinna T1 - Fast quantitative detection of microplastics using TED-GC/MS, an innovative thermoanalytical method N2 - Im Vortrag wird die BAM vorgestellt und die Motivation für Engagement im Feld der Mikroplastikanalysen dargelegt. Die Herausforderungen bei der Analyse werden aufgezeigt und der Umgang mit ihnen. Das Arbeitsprinzip der TED-GC/MS sowie Leistungsparameter werden erläutert sowie das Vorgehen zur Identifikation und Quantifizierung von Polymeren in er Umwelt. An ausgewählten Beispielen werden interessante Ergebnisse präsentiert und die Mikroplastikreferenzmaterialien der BAM vorgestellt. N2 - In the talk, the BAM is introduced and the motivation for our engagement in the field of microplastic analysis is explained. The challenges in the analysis of microplastics are shown and how we deal with them. The working principle of TED-GC/MS and its performance parameters are presented, as well as the procedure for identifying and quantifying polymers in environmental samples. Interesting results are shown using selected examples. Finally, BAM's microplastic reference materials are highlighted. T2 - National Environmental Monitoring Conference CY - Online meeting DA - 02.08.2021 KW - Microplastic KW - TED-GC/MS KW - Environmental analysis PY - 2021 AN - OPUS4-53081 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Altmann, Korinna T1 - Mikroplastik Detektion mit Thermoanalytischen Methoden: Analytik, Referenzmaterial, Ringversuche N2 - Ich dem Vortrag geht es um die Vorstellung von thermoanalytischen Methoden für die Mikroplastik-Detektion. Verschiedene Kopplungsmöglichkeiten werden gezeigt und die Funktionsweise der TED-GC/MS wird erklärt. Im zweiten Teil werden Referenzmaterialien für die Mikroplastik-Analytik diskutiert. PET -Tabletten des PlasticTrace Projektes werden vorgestellt. Am Ende wird der VAMAS Ringversuch zur Mikroplastik-Detektion gezeigt. T2 - Plastik, Mikroplastik, Nanopartikel, PFAS und Verunreinigungen (Agilent Workshop) CY - Hamburg, Germany DA - 28.05.2024 KW - Mikroplastik KW - TED-GC/MS KW - Polymer 3R KW - Ringversuche KW - Referenzmaterial PY - 2024 AN - OPUS4-60155 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Müller, Anja A1 - Schneider, Markus A1 - Heinrich, Thomas T1 - Surface chemical analysis of engineered nanoparticles by means of transmission x-ray microscopy and mass spectrometry N2 - PTFE/PS core-shell-nanoparticles were characterised by STXM, T-SEM, and ToF-SIMS. Shell-thicknesses were calculated and compared. Preliminary results from ToF-SIMS showed the capabilities of this method. T2 - BAM-BfR Seminar CY - Berlin, Germany DA - 15.02.2018 KW - STXM KW - NEXAFS KW - ToF-SIMS KW - SEM KW - Nanoparticles PY - 2018 N1 - Geburtsname von Müller, Anja: Hermanns, A. - Birth name of Müller, Anja: Hermanns, A. AN - OPUS4-44181 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Weidner, Steffen A1 - Kricheldorf, H. A1 - Scheliga, F. T1 - Cyclic polylactides via ring-expansion polymerization N2 - We will report on a new kind of ring-expansion polymerization (REP) of cyclic esters based of three classes of catalysts. In contrast to REP described previously these new polymerizations are characterized by a self-extrusion of the catalysts resulting in cyclic homopolyesters as the only reaction product. These REP of L-lactide were performed in bulk at temperatures between 100 and 180°C without racemization. A simplified scheme of a REP catalyzed by BuCa or SnBi is presented below. With meso-lactide temperatures down to 60°C were realized. Depending on catalyst, time and temperature with equal quantities of even and odd-numbered cycles a strong predominance of either even or odd-numbered cycles was found. T2 - 255th ACS National Meeting CY - New Orleans, LA, USA DA - 18.03.2018 KW - MALDI-TOF MS KW - Poly(lactide) KW - Polymerisation KW - Catalysts PY - 2018 AN - OPUS4-44833 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan T1 - Lessons on measurement of nanoparticle size and shape learnt from NanoDefine N2 - The EC Recommendation on the definition of nanomaterial1, based solely on size of the constituent particles, foresees development of harmonised measurement methods ensuring ‘consistent results across materials and over time’. The EU/FP7 large research project NanoDefine (http://www.nanodefine.eu) has been exclusively dedicated to support the implementation of this EC Recommendation for the European Union’s legislation. For the first time, measurement techniques able to determine the size of nanoparticles have been evaluated systematically on a well-defined set of quality control materials (spherical, monodisperse) as well as industrial materials of complex shapes and considerable polydispersity. Particularly based on the analytical performance of the measurement techniques as tested on the challenging real-world particulate materials, it was possible to formulate recommendations for use of a new tiered approach consisting of screening and confirmatory techniques. Thus, a consistent framework of guidance for nanomaterial identification according to the EC Definition has been issued in form of the NanoDefiner e-tool (https://labs.inf.fh-dortmund.de/NanoDefiner), with a transparent decision flow scheme and an extensive user manual. Selected examples of analysis and classification as nano-/non-nanomaterials will be given, highlighting the limits of applicability of the available measurement techniques in dependence on sample properties. On some recent relevant developments in sample preparation – as a crucial part for an accurate analysis - will be also reported. T2 - RSC-NPL Symposium: Nanoparticle concentration – critical needs and state-of-the-art measurement CY - London, UK DA - 24.04.2018 KW - Nanoparticles KW - Nanomaterial KW - Particle size distribution KW - EU definition of nanomaterial PY - 2018 AN - OPUS4-44804 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kjaervik, Marit A1 - Schwibbert, Karin A1 - Dietrich, P. A1 - Thissen, A. A1 - Unger, Wolfgang T1 - Surface characterisation of bacteria and biofilms by NAP-XPS N2 - The XPS information depth of approximately 10 nm is in the same size range as the outer membrane of the gram-negative bacteria, which makes XPS a suitable tool for determining the elemental composition of the bacterial surface and monitor changes caused by outer stress like dehydration or exposure to antimicrobials. However, bacteria are inherently in a hydrated state, and therefore only compatible to ultra-high vacuum after extensive sample preparation, which may degrade the sample constituents. This issue is addressed by the development of near-ambient pressure (NAP)-XPS, which enables bacteria and biofilms to be characterised in their native wet state. Artificial biofilms, bacteria and biofilms of Escherichia coli have been characterised with the laboratory NAP-XPS instrument EnviroESCA from SPECS GmbH, at pressures ranging from high vacuum to 12 mbar, and in both humid and dry environment. By studying biological samples in their native wet state, new insight about composition and transport of drugs through cell membranes and the extracellular polymeric substance (EPS) of biofilms can be obtained. In this contribution, the latest progress on biofilm characterisation by NAP-XPS will be presented, and measurement capabilities and limitations will be discussed. T2 - Die Frühjahrstagung der Deutsche Physikalische Gesellschaft CY - Berlin, Germany DA - 12.03.2018 KW - Biofilms KW - E. coli KW - Alginate KW - NAP-XPS PY - 2018 AN - OPUS4-44500 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Beck, Uwe A1 - Hielscher, Stefan A1 - Lange, Thorid A1 - Grunwald, Daniel A1 - Stockmann, Jörg M. A1 - Lerche, D. A1 - Rietz, U. T1 - Die Zentrifuge als universelles Prüfsystem für Beanspruchungen auf Zug und Druck N2 - Mit der Zentrifugentechnologie ist seit einigen Jahren ein neuartiges Mehr-Proben-Prüf-verfahren auf dem Markt etabliert, welches die klassische Zugprüfung in den Trommelrotor einer Tischzentrifuge überträgt. In der Beanspruchung auf Zug ist die Prüfung der Verbundfestigkeit mittels CAT-Technologie (centrifugal adhesion testing) an der BAM seit 2017 nach DIN EN ISO/IEC 17025 akkreditiert, wobei die Verbundfestigkeit von Klebungen direkt bestimmt wird und in Abhängigkeit von den Versagensformen Rückschlüsse auf die Klebfestigkeit von Klebstoffen/Klebebändern oder die Haftfestigkeit von Beschichtungen gezogen werden können. T2 - 13. ThGOT Thementage Grenz- und Oberflächentechnik und 11. Thüringer Biomaterial-Kolloquium CY - Zeulenroda, Germany DA - 13.03.2018 KW - Zentrifugentechnologie KW - Haftfestigkeit KW - Härteprüfung KW - Mehr-Proben-Prüfung KW - Beanspruchung auf Zug und Druck PY - 2018 AN - OPUS4-44570 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Beck, Uwe A1 - Baier, Jennifa A1 - Hidde, Gundula A1 - Sahre, Marion A1 - Weise, Matthias T1 - Particles in PVD-coatings: Imperfection or functional add-on feature? N2 - The application of PVD-coatings ranges from mechanical engineering, i.e. thicker tribological coatings, to precision optics, i.e. thinner optical coatings. For physical vapor deposition (PVD) technologies such as evaporation, sputtering, ion beam assisted/driven deposition, vacuum is a prerequisite for two reasons: at first process-related ones (evaporation source, plasma discharge, and mean free path) and at second coating-related ones (pure, perfect, and dense films). Usually, the goal is a homogenous coating of defined stoichiometry and micro-structure without any imperfection. However, the implementation of micro- or nano-particles may occur accidentally or delibe-rately. Independent of the particle origin, there are two fundamental rules regarding coating functionality: at first, the larger the particle diameter to coating thickness ratio the more affected the functionality of the coating, and at second, the larger the material contrast in terms of the functional feature of interest the more affected the coating performance. Hence, embedded particles have to be avoided for the majority of thin films by all means. The unintended implementation of particles usually results in a malfunction of the coating from the beginning or is at least considered as a weak point of the coating creating a time-dependent defect under service conditions. The intended implementation of particles on surfaces and in coatings may create add-on features, topographic ones and functional ones, however, the facts mentioned hold true. Examples of particle-initiated coating defects are demonstrated in dependence on the origin and the field of application. Strategies for deliberate attachment/embedding of particles on surfaces/in coatings are discussed regarding process compatibility and coating integrity. For industrial applications, both the validation of process compatibility of particle injection and the plasma resistance of particles under vacuum and plasma conditions have to be confirmed. Further points of interest are the homogeneity of particle distribution and the avoidance of particle agglomeration which is still a crucial point for dry dispersed particles. So far, technical applications are limited to PVD hybrid coatings, plasma dispersion coatings are still a challenge except for applications where homogeneity is not required as in case of product authentication. T2 - ICMCTF 2018, International Conference on Metallurgical Coatings and Thin Films CY - San Diego, CA, USA DA - 23.04.2018 KW - PVD-coatings KW - PVD-processes KW - Unintended particle generation KW - Particles as imperfections KW - Deliberate particle implementation KW - Particles as add-on features PY - 2018 AN - OPUS4-44973 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan A1 - Yamamoto, K. A1 - Grulke, E. A. A1 - Maurino, V. T1 - Shape controlled TiO2 nanoparticles as candidates for nano-CRM’s – an ISO case study N2 - Extraction of true, 3D shape (and size) of non-spherical nanoparticles (NPs) is associated with errors by conventional 2D electron microscopy using projection images. Significant efforts within the ISO technical committee TC 229 ‘Nanotechnologies’ are aimed at establishing accurate TEM and SEM measurement of NP size and shape as robust, standard procedures. Study groups have been organizing inter-laboratory comparisons on well-selected NP systems according to the market needs, such as aggregated titania nano-powder for which size and shape distribution of primary crystallites of irregular shape must be measured accurately. To be noticed is e. g. the fact that the measurement procedure allows only manual selection of the particles clearly distinguishable for analysis as well as manual definition of the contour of the imaged NPs. An inter-laboratory exercise on titania NPs (pure anatase, grown by hydrothermal synthesis) of well-defined non-spherical shape, i.e. bipyramidal has been recently started within ISO/TC 229 under similar conditions as for the irregular shaped titania. Overlapped particles were allowed to be considered, as long as they are clearly distinguishable. One decisive NP selection criterion was to analyze only those NPs with a roundness value below 0.7, i.e. the NPs laying on the support foil and, hence, with projection areas clearly deviating from perfect circles (R=1). The overall evaluation (for 15 labs) of the size descriptors (area, Feret, minFeret, perimeter) and shape descriptors (aspect ratio, roundness, compactness, extent) by analysis of variance is just to be finished and included in ISO/WD 21363 Nanotechnologies -- Protocol for particle size distribution by transmission electron microscopy. T2 - NanoWorkshop 2018 (Workshop on reference nanomaterials, current situation and needs: development, measurement, standardization) CY - Berlin, Germany DA - 14.05.2018 KW - Titanium oxide KW - Nanoparticles KW - Shape-controlled KW - Electron microscopy KW - Reference material PY - 2018 AN - OPUS4-44996 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Unger, Wolfgang T1 - Metrology for spatially resolved chemical analysis at the micro and nanometre scales Surface Analysis Working Group (SAWG) - Report for 16th Meeting (2017/18) N2 - Following the 2017 meeting, progress with the Key Comparison CCQM-K153 related to the BET specific surface lead by UNIIM and the Pilot Study P-190 “Thickness Measurement of nm HfO2 Films” lead by KRISS will be discussed. The 16th meeting of SAWG will focus on •survey on CMC claims submitted with reference to K-129 and K-136. •the overall and SAWG specific aspects of the CCQM Strategy process, •a consideration of comparisons on convention methods as recommended by the CCQM Plenary Meeting 2017, •the 2019 CCQM Workshop and paper(s) for Metrologia’s Special Issue, •discussion of future comparisons. T2 - 24th meeting of the CCQM 2018 CY - Paris, France DA - 19.04.2018 KW - Surface chemical analysis KW - Metrology KW - Inter-laboratory comparisons PY - 2018 AN - OPUS4-44998 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Saloga, Patrick E. J. T1 - Messdatenauswertung mittels Origin in der Nanopartikelanalyse N2 - Die Anwendung der Software Origin zur Datenauswertung in der Nanopartikelanalyse wird anhand eines Beispiels vom Importieren der Daten über deren Verarbeitung bis zur graphischen Ausgabe demonstriert. T2 - ADDITIVE Origin Anwendertage 2018 CY - Berlin, Germany DA - 12.03.2018 KW - Silbernanopartikel KW - Origin KW - SAXS PY - 2018 AN - OPUS4-44458 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan T1 - Measurement of nanoparticle size and shape distribution – Current situation and outlook N2 - The EC Recommendation on the definition of nanomaterial, based solely on size of the constituent particles, foresees development of harmonised measurement methods ensuring ‘consistent results across materials and over time’. The EU/FP7 research project NanoDefine has been exclusively dedicated to support the implementation of this EC Recommendation for the European Union’s legislation. For the first time, measurement techniques able to determine the size of nanoparticles have been evaluated systematically on a well-defined set of quality control materials (spherical, monodisperse) as well as industrial materials of complex shapes and considerable polydispersity. Particularly based on the analytical performance of the measurement techniques as tested on the challenging real-world particulate materials, it was possible to formulate recommendations for use of a new tiered approach consisting of screening and confirmatory techniques. Thus, a consistent framework of guidance for nanomaterial identification according to the EC Definition has been issued in form of the NanoDefiner e-tool, with a transparent decision flow scheme and an extensive user manual. Selected examples of analysis and classification as nano-/non-nanomaterials will be given, highlighting the limits of applicability of the available measurement techniques in dependence on sample properties. On some recent relevant developments in sample preparation – as a crucial part for an accurate analysis - will be also reported. Further, ISO/TC 229 ‘Nanotechnologies’ activities aiming at establishing accurate TEM and SEM measurement of NP size and shape as robust, traceable, standard procedures are highlighted. With participation of BAM, study groups have been organizing inter-laboratory comparisons on well-selected NP systems according to the market needs, such as aggregated or shape-controlled titania nano-powder for which size and shape distribution of primary particles must be measured accurately. T2 - Symposium Preparation, Characterization and Processing of Nano and Submicron Powders CY - Berlin, Germany DA - 14.06.2018 KW - Nanoparticles KW - Nanomaterial KW - EC definition KW - Nanoparticle size distribution PY - 2018 AN - OPUS4-45191 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Müller, Anja A1 - Lippitz, Andreas A1 - Swaraj, Sufal A1 - Sparnacci, Katia A1 - Unger, Wolfgang T1 - Progress Talk 3 / Investigating the dimensions of core|shell nanoparticles using scanning transmission X-ray microscopy (STXM) N2 - This presentation deals with the progress between month twelve and nineteen of my PhD thesis. I prepared it, in order to update my supervisor Prof. Kemnitz and my colleagues from the department of chemistry at the Humboldt-Universität zu Berlin (HU). T2 - Working Group Meeting of Prof. Erhard Kemnitz CY - Humboldt-Universität zu Berlin (HU), Germany DA - 30.01.2018 KW - Core-shell nanoparticles KW - Metrology KW - PS KW - PTFE KW - Polymers KW - SEM KW - STXM PY - 2018 N1 - Geburtsname von Müller, Anja: Hermanns, A. - Birth name of Müller, Anja: Hermanns, A. AN - OPUS4-43981 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kjaervik, Marit A1 - Schwibbert, Karin A1 - Unger, Wolfgang A1 - Thissen, A. A1 - Dietrich, P. T1 - Progress on characterisation of biofilms by NAP-XPS N2 - Progress talk on characterisation of biofilms by NAP-XPS in the framework of the MetVBadBugs EURAMET-project T2 - MetVBadBugs 24 M project meeting CY - Turin, Italy DA - 06.02.2018 KW - Biofilms KW - E. coli KW - Alginate KW - NAP-XPS PY - 2018 AN - OPUS4-44065 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Müller, Anja A1 - Swaraj, S. A1 - Sparnacci, K. A1 - Lippitz, Andreas A1 - Unger, Wolfgang T1 - Determining the shell thickness of core-shell nanoparticles using scanning transmission X-ray microscopy (STXM) N2 - A scanning transmission x-ray microscopy (STXM) based methodology is introduced for determining the dimensions (shell thickness, core and total diameter) of core-shell nanoparticles which exhibit a strong x-ray absorption contrast and a well-defined interface between core and shell material. A low radiation dosage during data acquisition and, therefore, less x-ray beam induced damage of the sample is achieved by recording STXM images only at two predetermined energies of maximum absorption contrast, instead of recording a stack of images across the whole absorption edge. A model core-shell nanoparticle, polytetrafluoroethylene (PTFE) cores with polystyrene (PS) shell, is used for demonstration. Near edge x-ray absorption fine structure (NEXAFS) spectroscopy confirms the significant difference in x-ray absorption behavior between PTFE and PS. Additionally, due to the insolubility of styrene in PTFE a well-defined interface between particle core and shell is expected. In order to validate the STXM results, both the naked PTFE cores as well as the complete core-shell nanoparticles are examined by scanning electron microscopy (SEM). The introduced STXM based methodology yields particle dimensions in agreement with the SEM results and provides additional information such as the position of the particle core which cannot be extracted from a SEM micrograph. T2 - Innanopart open day CY - London, UK DA - 25.04.2018 KW - STXM KW - SEM KW - PTFE KW - PS KW - Polymer KW - Core-shell nanoparticles PY - 2018 AN - OPUS4-44841 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Heinrich, Thomas A1 - Hupatz, H. A1 - Lippitz, Andreas A1 - Schalley, C. A. A1 - Unger, Wolfgang T1 - Switchable Rotaxanes operating in multilayers on solid supports N2 - Interfaces provide the structural basis for function as, for example, encountered in nature in the membrane-embedded photosystem or in technology in solar cells. Synthetic functional multilayers of molecules cooperating in a coupled manner can be fabricated on surfaces through layer-by-layer self-assembly. Ordered arrays of stimuli-responsive rotaxanes undergoing well-controlled axle shuttling are excellent candidates for coupled mechanical motion. Such stimuli-responsive surfaces may help integrating synthetic molecular machines in larger systems exhibiting even macroscopic effects or generating mechanical work from chemical energy through cooperative action. The present work demonstrates the successful deposition of ordered mono- and multilayers of chemically and photochemically switchable rotaxanes on gold surfaces. Two substrates are investigated – silicon and gold. Of these materials, only gold showed to be suitable for the development of highly preferential oriented rotaxane layers. XPS indicates for both substrates that our layer-by-layer approach worked and a layer growth with every deposition step is present. NEXAFS showed that both stimuli cause an increase of the multilayer's preferential orientation and that the switching is reversible. However, these effects are only observed for the multilayers on gold surfaces. T2 - DPG-Frühjahrstagung der Sektion Kondensierte Materie gemeinsam mit der EPS CY - Berlin, Germany DA - 11.03.2018 KW - XPS KW - NEXAFS KW - Rotaxanes KW - Multilayers PY - 2018 AN - OPUS4-44794 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schönhals, Andreas T1 - Glass transition of thin polymeric films as revealed by calorimetric and dielectric techniques N2 - The structure and dynamics of thin polymeric films is reviewed and discussed in the frame work of novel theoretical approaches T2 - Lähnwitzseminar on Calorimetry CY - Rostock-Warnemünde, Germany DA - 03.06.2018 KW - Thin polymeric films KW - Dielectric spectroscopy KW - Thermal süectroscopy PY - 2018 AN - OPUS4-45164 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sobol, Oded T1 - Observations of the deuterium distribution and the structural changes in standard and lean duplex stainless steels by ToF-SIMS and EBSD N2 - Duplex (DSS) and austenitic stainless steels (ASS) are frequently used in many energy related applications. The duplex grade is considered to have outstanding mechanical properties as well as good corrosion resistance. The austenitic phase combines high ductility, even at low temperatures, with sufficient strength, and therefore such materials are applied in storage and transport of high-pressure hydrogen. During service in acidic environments large amounts of hydrogen can ingress into the microstructure and induce many changes in the mechanical properties of the steel. Embrittlement of steels by hydrogen remains unclear even though this topic has been intensively studied for several decades. The reason for that lies in the inability to validate the proposed theoretical models in the sub-micron scale. Among the very few available methods nowadays, Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS) enables a highly accurate mapping of hydrogen in the microstructure in a spatial resolution below 100 nm. In the present work ToF-SIMS was used as a main tool in order to investigate the effect of deuterium on a duplex microstructure of lean and standard DSSs during and after the electrochemical charging process. Electrochemical charging simulates the service of a component in acidic environments under conditions of cathodic protection that are commonly applied to prevent corrosion reactions. ToF-SIMS after multivariate data analysis (MVA) was combined with high resolution topographic images and electron back-scattered diffraction (EBSD) data to characterize the structural changes. It was observed that the ferritic phase was affected almost identical in all steels whereas in the austenitic phase significant differences were obtained in the lean duplex in comparison to the standard DSS. The obtained results have been compared to similar investigations on a AISI 304L austenitic stainless steel. The advantage of the combined techniques is reflected by the ability to correlate the hydrogen distribution in the microstructure and the resulted phase transformation. T2 - Third International Conference on Metals & Hydrogen CY - Ghent, Belgien DA - 29.05.2018 KW - Data-fusion KW - ToF-SIMS KW - PCA KW - DSS KW - LDX KW - EBSD PY - 2018 AN - OPUS4-45094 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan T1 - Aktivitäten der BAM im EU-Projekt NanoDefine N2 - Die Präsentation gibt einen Überblick über die Aktivitäten der BAM im EU-Projekt 'NanoDefine'. Verknüpfungen zur Entwicklung von nano-Referenzmaterialien, ISO- und VAMAS-Aktivitäten und anderen nano-Projekten werden vorausschauend diskutiert. T2 - Expertenaustausch zum Thema ‘Nanosicherheit’ zwischen BMU, BMWi und BAM CY - Berlin, Germany DA - 01.06.2018 KW - Nanomaterial KW - ISO KW - NanoDefine KW - EU-Definition KW - Nanopartikel PY - 2018 AN - OPUS4-45078 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan A1 - Yamamoto, K. A1 - Grulke, E. A. A1 - Maurino, V. T1 - Size and shape distribution of bipyramidal TiO2 nanoparticles by TEM - An inter-laboratory comparison N2 - Extraction of true, 3D shape (and size) of non-spherical nanoparticles (NPs) is associated with errors by conventional 2D electron microscopy using projection images. Significant efforts within the ISO technical committee TC 229 ‘Nanotechnologies’ are aimed at establishing accurate TEM and SEM measurement of NP size and shape as robust, standard procedures. Study groups have been organizing inter-laboratory comparisons on well-selected NP systems according to the market needs, such as aggregated titania nano-powder for which size and shape distribution of primary crystallites of irregular shape must be measured accurately. To be noticed is e. g. the fact that the measurement procedure allows only manual selection of the particles clearly distinguishable for analysis as well as manual definition of the contour of the imaged NPs. An inter-laboratory exercise on titania NPs (pure anatase, grown by hydrothermal synthesis) of well-defined non-spherical shape, i.e. bipyramidal has been recently started within ISO/TC 229 under similar conditions as for the irregular shaped titania. Overlapped particles were allowed to be considered, as long as they are clearly distinguishable. One decisive NP selection criterion was to analyze only those NPs with a roundness value below 0.7, i.e. the NPs laying on the support foil and, hence, with projection areas clearly deviating from perfect circles (R=1). The overall evaluation (for 15 labs) of the size descriptors (area, Feret, minFeret, perimeter) and shape descriptors (aspect ratio, roundness, compactness, extent) by analysis of variance is just to be finished and included in ISO/WD 21363 Nanotechnologies -- Protocol for particle size distribution by transmission electron microscopy. T2 - Microscopy & Microanalysis 2018 CY - Baltimore, MD, USA DA - 05.08.2018 KW - Nanoparticles KW - Electron microscopy KW - ISO KW - Nanotechnology PY - 2018 AN - OPUS4-45750 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan A1 - Terborg, R. A1 - Procop, Mathias T1 - Check of the performance of EDS systems attached to the SEM with the test material EDS-TM001/2 and evaluation software package EDS spectrometer test -application, experiences and updates N2 - The test material EDS-TM001 together with an accompanying software package, “EDX spectrometer check”, have been made available in 2009 by BAM to be employed by EDS (energy dispersive spectrometer) users to check the performance of an EDS attached to the SEM. Particularly for test laboratories operating under accreditation schemes like ISO/IEC 17025, a periodical control of the critical instrumental parameters in end-user laboratories is required. With EDS-TM001 or EDS-TM002 (second generation) test material, this periodical check is simplified to the acquisition of only one 10 kV spectrum. The software “EDX spectrometer check” is destined to evaluate automatically this spectrum and determine the performance of the EDS in terms of energy resolution and calibration as well as possible alteration of low-energy efficiency due to detector contamination. Energy resolution can be compared with the specified values according to the international ISO standard ISO 15632:2012. EDS-TM is a synthetic material consisting of a thick layer of C, Al, Mn, Cu and Zr in a well-defined composition, deposited on a steel (in case of EDS-TM001) or silicon (in case of EDS-TM002) substrate. Meanwhile, more than one hundred laboratories use the EDS-TM001 or EDS-TM002 test material for the periodical check of their EDS. A detailed description of the test material and software together with examples of application was published recently. New results and gained experiences will be presented as well. When the FWHM of lines appearing in the EDS-TM spectrum are determined, the spectrum background must be subtracted accurately. The applied physical background subtraction procedure is robust and takes into account the transmission of the detector window. While the previous version considers only Moxtek AP windows, the new version includes selection of silicon nitride window and the case of windowless detector. Moreover, the new version allows importing of spectra in Bruker spx format and EMSA/MSA files from EDAX TEAM software. T2 - Microscopy & Microanalysis 2018 CY - Baltimore, MD, USA DA - 05.08.2018 KW - X-ray spectrometer KW - EDS KW - SEM KW - Performance check KW - Test material PY - 2018 AN - OPUS4-45751 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hörenz, Christoph T1 - Preparation of Nanoparticulate Samples for Electron Microscopy N2 - This presentation addresses the importance of proper sample preparation to obtain suitable samples for electron microscopic measurements. The objective as well as the requirements are discussed. Further, different sample deposition methods for various types of nanoparticulate samples are shown. T2 - nPSize Web Conference CY - Online meeting DA - 23.07.2020 KW - Nanoparticles KW - Electron microscopy KW - Sample preparation KW - Particle size distribution KW - Particle number concentration PY - 2020 AN - OPUS4-51047 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hielscher-Bofinger, Stefan A1 - Beck, Uwe A1 - Lerche, D. A1 - Rietz, U. T1 - Multiple-sample Testing: Adhesive Strength of Coatings and Bonding Strength of Adhesives evaluated by Centrifugal Adhesion Testing (CAT) N2 - The quantitative determination of adhesion and cohesion properties is a key requirement for adhesive-bonded joints and coated components in both R&D and Quality assurance. Because of the huge variety of layer/substrate Systems in terms of materials and large thickness range, adhesion tests display the same diversity as layer/substrate systems. There are only two tensile testing procedures available, that determine adhesive strength in terms of force per area (N/mm²), the single-sample pull-off test in a tensile testing machine and the multiple-sample-test using the Centrifugal Adhesion Testing (CAT) Technology. The CAT Technology is a testing method which uses centrifugal force as tensile testing force in a multiple-sample arrangement within a drum rotor of a Desktop centrifuge. Hence, the adhesive/bonding strength A/B can be determined on a statistical basis under identical testing conditions for up to eight samples. A variety of examples for bonding strength of adhesives, adhesive strength of coatings and compound strength of composite materials is discussed such as metalto-metal and glass-to-metal bonding, sputtered SiO2-layers on CR39 Polymer and carbon fiber reinforced polymer. T2 - Colloquium Department 6. CY - Berlin, BAM, Germany DA - 03.09.2020 KW - Centrifugal Adhesion Testing (CAT) KW - Adhesive strength KW - Bonding strength KW - Composite strength KW - Interlaboratory comparision PY - 2020 AN - OPUS4-51178 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Weidner, Steffen A1 - Kricheldorf, H. R. T1 - Differences in MALDI Ionization of neat linear and cyclic poly(L-lactide)s N2 - In addition to molar mass distribution (MMD) synthetic polymers often exhibit an additional chemical heterogeneity distribution, expressed by different end groups and other structural variations (e.g. tacticity, copolymer composition etc.). Ionization in MALDI MS is always strongly affected by such chemical properties. For example, the abundance of cyclics in MALDI TOF mass spectra is frequently reported to greatly exceed that of linears. Thus, the MALDI ionization behavior of various neat end-capped linear poly(L-lactide)s and one cyclic poly(L-lactide) was investigated and compared with that of blends of both structures. Moreover, the influence of the cationizing salt was investigated too. Neat compounds and various blends of cyclic and linear species were prepared and studied using two MALDI TOF mass spectrometers under identical conditions with regard to sample preparation and instrumental conditions, except for the laser power and the salt used for cationization. Polymer samples were additionally characterized by NMR and SEC. The steady increase of the laser intensity caused an exponential increase of the peak intensities of both linear and cyclic polylactides.The response of linear polylactides (in the investigated molecular mass range), whether as neat polymer or in blends with other linear polylactides was almost similar. This clearly supports our assumption that ionization in MALDI is probably unaffected by the end group structure.The variation of the laser power shows only little effect on the intensity ratio of linear-to linear and cyclic-to-linear polylactides in blends. Whereas neat linear polylactides at all laser intensities have a significantly higher abundance than neat cyclics, in mixtures of both an overestimation of cyclic species in MALDI TOF mass spectra of polylactides was found. However, this is far less distinct than frequently reported for other polymers.Concluding, peak suppression of linear polymers in mixtures of both architectures can be excluded, which also means, that polylactides showing only peaks of cyclic compounds in their MALDI - TOF mass spectra do not contain a significant fraction of linear analogues. Our study is the first systematic comparison of the MALDI ionization of neat and blended cyclic and linear polylactides. T2 - ASMS 2020 Reboot CY - Online meeting DA - 01.06.2020 KW - MALDI KW - Ionization KW - Linear KW - Cyclic KW - Polylactide PY - 2020 AN - OPUS4-50852 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pauw, Brian Richard T1 - AI/ML starts with data, …a practical example N2 - A brief introduction to the efforts we have done in our lab towards AI/ML analysis of SAXS data. For this, we need to extend the data with an extensive, structured hierarchy of metadata and associated data. A practical look into the information stored in our files, and the organization of the files in a data catalog is presented. T2 - Benchmarking for AI for Science at the Exascale A2 Workshop for Materials Science CY - Online meeting DA - 23.11.2020 KW - Small angle scattering KW - Machine learning KW - Data organization KW - Data curation KW - Metadata structuring PY - 2020 AN - OPUS4-51660 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hörenz, Christoph A1 - Pellegrino, F. A1 - Maurino, V. A1 - Taché, O. A1 - Bartczak, D. A1 - Cuello Nuñez, S. A1 - Abad Álvaro, I. A1 - Goenaga Infante, H. A1 - Hodoroaba, Vasile-Dan T1 - Improved Sample Preparation for the Analysis of Nanoparticles by Electron Microscopy N2 - In this work, we present various promising sample preparation procedures aiming to avoid drying artifacts and guarantee homogeneously distributed NP samples for imaging techniques like TEM, SEM or AFM. This involves retarded drying in an environment of high relative humidity as well as spin coating or freeze drying of the sample on the substrate. Depending on the type of the NPs, different techniques are successful in obtaining homogenous sample deposition. Simple drying at ambient conditions often results in heavily agglomerated NPs densely packed in coffee ring traces. Retardation of the drying speed in an environment of high relative humidity, however, yields homogeneous NP deposition in the case of bimodal SiO2 and bimodal gold NP’s. In contrast, a sample of bipyramidal TiO2, heavily agglomerated when commonly dried, is successfully dispersed by spin coating the suspension on the substrate. The analysis of the particle size distribution of the bimodal silica and gold samples yielded number ratios resembling the nominal number ratios. The reliable measurement of the NP concentration of polydisperse samples by electron microscopy, even if relative, is new and of special relevance because up to now only the size of the particles, i.e. the abscissa of the PSD, can be measured reliably. T2 - NANOSAFE 2020 CY - Online meeting DA - 16.11.2020 KW - Nanoparticles KW - Particle size distribution KW - Electron microscopy KW - Bimodal KW - SiO2 KW - Gold PY - 2020 AN - OPUS4-51714 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hörenz, Christoph T1 - Improved Sample Preparation for the Analysis of Nanoparticles by Electron Microscopy N2 - Various promising sample preparation procedures aiming to avoid drying artifacts and guarantee homogeneously distributed NP samples for imaging techniques like TEM, SEM or AFM are presented. This involves retarded drying in an environment of high relative humidity as well as spin coating or freeze drying of the sample on the substrate. Depending on the type of the NPs, different techniques are successful in obtaining homogenous sample deposition. Simple drying at ambient conditions often results in heavily agglomerated NPs densely packed in coffee ring traces. Retardation of the drying speed in an environment of high relative humidity, however, yields homogeneous NP deposition in the case of bimodal SiO2 and bimodal gold NP’s. In contrast, a sample of bipyramidal TiO2, heavily agglomerated when commonly dried, is successfully dispersed by spin coating the suspension on the substrate. The analysis of the particle size distribution of the bimodal silica and gold samples yielded number ratios resembling the nominal number ratios. The reliable measurement of the NP concentration of polydisperse samples by electron microscopy, even if relative, is new and of special relevance because up to now only the size of the particles, i.e. the abscissa of the PSD, can be measured reliably. T2 - EMPIR nPSize Training Course "Metrology for Measurement of Nanoparticle Size by Electron Microscopy and Atomic Force Microscopy" CY - Online meeting DA - 27.10.2020 KW - Nanoparticles KW - Particle size distribution KW - Sample peparation KW - Electron microscopy PY - 2020 AN - OPUS4-51716 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Marcoulaki, E. A1 - M López de Ipiña, J. A1 - Vercauteren, S. A1 - Witters, H. A1 - Lynch, I. A1 - van Duuren-Stuurman, B. A1 - Shandilya, N. A1 - Kunz, Valentin A1 - Unger, Wolfgang A1 - Hodoroaba, Vasile-Dan A1 - Bard, D. A1 - Evans, G. A1 - Viitanen, A.-K. A1 - Pilou, M. A1 - Bochon, A. A1 - Duschl, A. A1 - Himly, M. A1 - Geppert, M. A1 - Persson, K. A1 - Cotgreave, I. A1 - Niga, P. A1 - Scalbi, S. A1 - Caillard, B. A1 - Arevalillo, A. A1 - Jensen, K. A. A1 - Frejafon, E. A1 - Bouillard, J. A1 - Aguerre-Chariol, O. A1 - Dulio, V. T1 - Blueprint for a sustainable new European Centre to support safe innovation for nanotechnology N2 - This paper presents the blueprint for the operation of a sustainable and permanent European Centre of collaborating reference laboratories and research centres, to establish a one-stop shop for a wide variety of nanosafety related services, and to provide a central contact point for questions about nanosafety in Europe. The Centre aims to harmonise service provision, and bring novel risk assessment and management approaches closer to practice. T2 - NANOSAFE 2020 CY - Online meeting DA - 16.11.2020 KW - EC4SafeNano KW - European Centre KW - Nanomaterials KW - Nanosafety KW - Catalogue of Services (CoS) PY - 2020 UR - https://www.nanosafe.org/cea-tech/pns/nanosafe/en AN - OPUS4-51694 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rühle, Bastian A1 - Bresch, Harald A1 - Resch-Genger, Ute A1 - Hodoroaba, Vasile-Dan A1 - Radnick, Jörg T1 - Perspektive der BAM auf neuartige Materialien N2 - Neuartige Materialien, die bekannte (Werk-)Stoffe mit neuen Funktionalitäten ausstatten, spielen eine zunehmend wichtige Rolle im Bereich der Materialforschung und -prüfung. Das Spektrum neuartiger Materialien reicht von der gezielten Oberflächenfunktionalisierung und -strukturierung makroskopischer Materialien, dünnen Beschichtungen bis hin zu mikro- und nanoskaligen Kompositmaterialien und funktionalen Materialien an der Schnittstelle zur Biologie, Biotechnologie, nachhaltige Energiespeicherung und Sensorik. Dabei bieten neuartige Materialien die Chance, Werkstoffe und Produkte mit erweiterter oder verbesserter Funktionalität zu erhalten und Sicherheit bereits im Designprozess zu berücksichtigen. Durch dieses breite Anwendungsspektrum und die Herausforderungen, die solche Materialien für die Sicherheit in Chemie und Technik mit sich bringen, sind diese in allen Themenfeldern der BAM repräsentiert (Material, Analytical Sciences, Energie, Infrastruktur und Umwelt). Die Aufgaben der BAM erstrecken sich dabei von der Herstellung von Referenzmaterialien für Industrie, Forschung und Regulation, über die Erstellung von standardisierten Referenzverfahren für nachhaltige Messungen im Umwelt- und Lebenswissenschaftsbereich bis hin zur Bereitstellung von belastbaren und zitierbaren Referenzdaten. Durch die genaue Charakterisierung neuartiger Materialien können potentiell problematische Substanzen identifiziert und deren Risiken besser abgeschätzt werden. In diesem Beitrag werden einige aktuelle Beispiele aus diesen Bereichen vorgestellt. T2 - NanoDialog der Bundesregierung - Chancen und Risiken von Neuartigen Materialien CY - Berlin, Germany DA - 22.05.2019 KW - Advanced Materials KW - Nanomaterialien KW - Neuartige Materialien PY - 2019 AN - OPUS4-49594 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Özcan Sandikcioglu, Özlem A1 - Witt, Julia A1 - Schenderlein, Matthias A1 - Hampel, Marco A1 - Almalla, Ahed T1 - Untersuchung lokaler Korrosionsprozesse mittels kombinierter elektrochemischer und mikroskopischer Methoden N2 - Forschungsarbeiten des Fachbereichs auf dem Gebiet "Methoden für die Analyse der lokalen Korrosionsprozesse". T2 - ProcessNet-Arbeitsausschuss Elektrochemische Prozesse (AA ECP) CY - DECHEMA, Frankfurt am Main, Germany DA - 21.01.2019 KW - Scanning electrochemical microscope (SECM) KW - Atomic Force Microscopy (AFM) KW - Multielectrode based sensors PY - 2019 AN - OPUS4-49751 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan T1 - Elektronenstrahl-Mikroanalyse (ESMA) an heterogenen Proben N2 - Grundkenntnisse zum besseren Verständnis der Funktionsweise der Elektronenstrahl-Mikroanalyse (ESMA) werden präsentiert und anhand Beispielen diskutiert. Das physikalische Messprinzip von ESMA am REM, das Wechselwirkungs- und Informationsvolum und die Anregung der charakteristischen Röntgenlinien werden erklärt. Verschiedene potentielle Artefakte, wie z.B. Heterogenität der Probenzusammensetzung, Oberflächenbeschaffenheit der Probe und Linienüberlagerung werden eingeführt. Die physikalischen Grenzen der analytischen Methode werden spezifiziert. T2 - Industrietreffen im Forschungs- und Innovationszentrum (FIZ) der BMW Group CY - Munich, Germany DA - 09.01.2018 KW - ESMA KW - REM KW - Elementzusammensetzung KW - REM/EDX PY - 2018 AN - OPUS4-43708 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bartelmeß, Jürgen A1 - Gawlitza, Kornelia A1 - Kraus, Werner A1 - Chlvi-Iborra, Katherine A1 - Tiebe, Carlo A1 - Noske, Reinhard A1 - Bartholmai, Matthias A1 - Rurack, Knut T1 - Developments Towards a BODIPY-based fluorometric sensing device for multiple hazardous gases N2 - Fluorometric sensing is a versatile approach for trace analysis outside of the laboratory, requiring suitable sensor materials and their integration into sensing devices. The versatility of fluorophores as probes, especially in terms of the possibility to tailor their optical as well as their recognition properties by synthetic modifications in a wide range, renders them as superior active component for the preparation of optical sensing devices. Recent works at BAM in this field include, for example, the detection of nerve gas agents, illustrating impressively the aforementioned benefits of fluorophores in optical sensing applications. In the interdisciplinary project presented here, we target hazardous gases such as ammonia, benzene, and hydrogen sulfide, next to others, which pose a major threat to human health and environmental safety and for which the availability of a sensitive and reliable detection method is highly desirable. The dyes presented follow a “turn-on” fluorescence schematic, which allows for the selective and sensitive detection of the respective gaseous analyte. The immobilization of the probe in polymeric matrices is then the next step toward the fabrication of a prototype device for molecular sensing. Further steps in the project include the assembly of instruments for test-atmosphere generation, the referencing of the sensor system, development and implementation of an optical setup, and the testing of the prototype device under laboratory conditions and in the field. In this presentation, we give an overview over the recent developments on this topic in our groups. Highlights are hydrogen sulfide sensitive, BODIPY based transition metal complexes, which allow for a sensitive as well as selective detection of the toxic gas. In addition, we present a novel class of highly substituted BODIPY derivatives – pocket-BODIPYs – which are of a synthetically high versatility and can readily be modified to create pockets in the periphery of the molecule of defined geometries. This is illustrated on the successful encapsulation of benzene by a pocket-BODIPY derivative, confirmed by X-ray crystallographic analysis as well as by further spectroscopic and analytical methods. T2 - International Conference on Porphyrins and Phthalocyanins (ICPP-10) CY - Munich, Germany DA - 01.07.2018 KW - BODIPY dye KW - Fluorometric sensing KW - Gas sensing PY - 2018 AN - OPUS4-45646 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Griepentrog, Michael T1 - Towards the standardization of dynamic instrumented indentation testing N2 - Nowadays the Instrumented Indentation Testing (IIT) is one of the most commonly used methods to determine the mechanical properties of materials in the nano range. This method is already extensive standardized in EN ISO 14577 part 1-4. Because of the great interest of researchers and industries in investigations of time depending material behavior mostly all suppliers of IIT equipment are offering the possibility of dynamic testing. Realizing this development ISO/TC 164/SC3 Hardness Testing has proposed to start the new standardization project “Linear elastic dynamic instrumented indentation testing DIIT”. The development of this standard is accompanied by the first international intercomparing exercise comparing results of dynamic instrumented indentation testing from testing machines using different hardware solutions and different models for data evaluation. The draft of part 5 of ISO 14577 “Linear elastic dynamic instrumented indentation testing DIIT” specifies verification and calibration of testing machines for carrying out the measurement of the dynamic material response when an oscillatory force or displacement, with amplitudes small in comparison to the prescribed target values, is imparted to the indenter while the indenter is continuously loaded to a prescribed target load or target depth or while the load or displacement is held constant at a prescribed target value. In case of a material showing plastic-elastic behavior, the measured dynamic response is used for continuous evaluation of the dynamic stiffness of the contact as a function of depth and frequency. Using the dynamic stiffness of the contact a reduced dynamic modulus will be calculated. In case of a material showing visco-elastic behavior from the measured dynamic response also the dynamic contact damping coefficient as function of depth and frequency is evaluated continuously. Using dynamic contact stiffness and dynamic contact damping coefficient reduced lost and storage modulus for visco-elastic materials will be calculated. The main normative requirements of the draft will be presented and discussed in the light of the first results of the intercomparing excise. T2 - IIW6, International Indentation Workshop 6 CY - Sapporo, Japan DA - 02.07.2018 KW - ISO 14577 KW - Instrumented indentation testing KW - Nanoindentation KW - IIT KW - Mechanical properties KW - Dynamic testing KW - Visco-elastic KW - Loss module KW - Storage module PY - 2018 AN - OPUS4-45850 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rauscher, H. A1 - Hodoroaba, Vasile-Dan A1 - Mech, A. A1 - Gaillard, C. A1 - Marvin, H. A1 - Wohlleben, W. A1 - Babick, F. A1 - Friedrich, C. M. A1 - Bruengel, R. A1 - Rückert, J. A1 - Ghanem, A. A1 - Weigel, S. T1 - The NanoDefine Decision Framework and NanoDefiner e-Tool: a practical guide to the identification of nanomaterials N2 - The European Commission's recommendation on the definition of nanomaterial [2011/696/EU] is broadly applicable across different regulatory sectors and requires the quantitative size determination of constituent particles in samples down to 1 nm. A material is a nanomaterial if 50 % or more of the particles are in the size range 1-100 nm. The implementation of the definition in a regulatory context challenges measurement methods to reliably identify nanomaterials and ideally also non-nanomaterials as substance or product ingredient as well as in various matrices. The EU FP7 NanoDefine project [www.nanodefine.eu] addressed these challenges by developing a robust, readily implementable and cost-effective measurement strategy to decide for the widest possible range of materials whether it is a nanomaterial or not. It is based on existing and emerging particle measurement techniques evaluated against harmonized, material-dependent performance criteria and by intra- and inter-lab comparisons. Procedures were established to reliably measure the size of particles within 1-100 nm, and beyond, taking into account different shapes, coatings and chemical compositions in industrial materials and consumer products. Case studies prove their applicability for various sectors, including food, pigments and cosmetics. A main outcome is the establishment of an integrated tiered approach including rapid screening (tier 1) and confirmatory methods (tier 2), a decision support flow scheme and a user manual to guide end-users, such as manufacturers, in selecting appropriate methods. Another main product is the “NanoDefiner” e-Tool which implements the flow scheme in a user-friendly software and guides the user in a semi-automated way through the entire decision procedure. It allows a cost-effective selection of appropriate methods for material classification according to the EC's nanomaterial definition and provides a comprehensive report with extensive explanation of all decision steps to arrive at a transparent identification of nanomaterials as well as non-nanomaterials for regulatory purposes. The project has received funding from the European Union’s Seventh Programme for research, technological development and demonstration under grant agreement No 604347. T2 - BAM-PTB Workshop on Reference Nanomaterials CY - Berlin, Germany DA - 14.05.2018 KW - Definition of nanomaterial KW - Regulation PY - 2018 AN - OPUS4-45633 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maurino, V. A1 - Hodoroaba, Vasile-Dan A1 - Pellutiè, L. A1 - Pellegrino, F. A1 - Ortel, Erik A1 - Isopescu, R. T1 - Synthesis of Shape controlled TiO2 N2 - Titanium dioxide is one of the most studied metal oxides due to its chemical, surface, electronic and (photo)catalytic properties, providing this material of multisectorial applications ranging from healthcare, photocatalysis, smart materials with self cleaning and self sterilizing properties and solar energy harvesting. However it is difficult to correlate the functional properties of TiO2 nanomaterials to the properties at single nanoparticle level due to the high polydispersity in shape, size and surface features of the currently available TiO2 nanoparticles (NPs). Although intensive experimental and theoretical studies have been conducted on the reactivity of different surfaces of metal oxides such as TiO2 much less attention is paid on the dependence of functional properties, like photocatalytic activity, dye adsorption, open circuit potential and fill factor in dye sensitized solar cells, on crystal facets in different orientations. One of the goal of SETNanoMetro project was the development of design rules to tune crystal facets of TiO2 NPs in order to optimize and control functional properties. In the present work we have developed a series of design rules in order to obtain sets of anatase TiO2 NPs with low polydispersity and to tune their shape and size by hydrothermal processing of Ti(IV)-Triethanolamine complex in presence of different shape controllers. Through a careful experimental design, a predictive soft model was developed. The model is able to predict the synthesis outcome allowing to tune the shape factor from 5 (prisms) to 1.5 (bipyramids) to 0.2 (platelets). This allows to control the main crystal facets exposed ranging from (100) to (001). Due to the dependence of functional properties of nanomaterials on shape distribution and not only size, the availability of NPs sets with uniform and well defined and tunable shapes can be of paramount relevance in order to produce reference nanomaterials for shape measurement. T2 - NanoWorkshop 2018 (Workshop on reference nanomaterials, current situation and needs: development, measurement, standardization) CY - Berlin, Germany DA - 14.05.2018 KW - Anatase KW - Shape control KW - Hydrothermal synthesis KW - Nanoparticles PY - 2018 AN - OPUS4-45634 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Saatz, Jessica A1 - Grunert, Bianca A1 - Jakubowski, Norbert A1 - Hoffmann, Katrin A1 - Resch-Genger, Ute A1 - Emmerling, Franziska T1 - Tagging reagents for imaging mass cytometry N2 - In der klinischen Diagnostik werden für zytometrische Messverfahren bereits eine Reihe von Reagenzien eingesetzt zur Markierung von Antikörper eingesetzt, um die Detektion von Biomarkern mittels Fluoreszenz- oder Flugzeitmassenspektrometrie zu ermöglichen. Seit kurzem ist auch eine Imaging Mass Cytometry Kombination direkt erhältlich, wodurch der Nachweis von Biomarkern in Gewebeschnitten erreicht werden kann. Dazu wird eine Kopplung von Laser Ablation und induktiv gekoppeltem Plasma Massenspektrometrie eingesetzt, wobei ähnlich der Massenzytometrie, zuvor Antikörper mit Metallen markiert, und im Anschluss mit dem Gewebeschnitt inkubiert werden. Durch die hohe Ortsauflösung können die Biomarker lokalisiert, und zukünftig vielleicht auch quantifiziert werden. Insbesondere Lanthanide eignen sich als Markierungsmetalle, da sie einen niedrigen Untergrund und chemisch ähnliches Verhalten zueinander aufweisen. Allein durch diese Elemente können bereits etwa 15 Parameter unterschieden werden, was durch isotopenreine Standards weiter gesteigert werden kann. Vom Markierungsgrad abhängig werden unterschiedlich viele Metalle am Antikörper gebunden, und beeinflussen so die Sichtbarkeit im ICP-MS. Nanopartikel könnten daher eine deutliche Steigerung der Sensitivität bewirken. GdVO4 Nanokristalle scheinen bisher sehr vielversprechend und bieten neben multiparametrischen Anwendungen auch Multimodalität. Die Synthese der Nanokristalle zeigte hohe Homogenität und Reproduzierbarkeit in Partikelgröße in der Zusammensetzung. Ein erstes Experiment mit einer Zellkultur konnte bereits die effiziente Markierung der Zellen unter Beweis stellen, wobei durch hohe Signalstärke auch subzelluläre Auflösung in der LA-ICP-MS erreicht werden konnte. T2 - ICPMS Anwendertreffen 2018 CY - Berlin, Germany DA - 03.09.2018 KW - LA-ICP-MS KW - Immuno assay KW - Bioimaging KW - Nanocrystal KW - Lanthanide KW - Metal-tag PY - 2018 AN - OPUS4-45866 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Braun, Ulrike T1 - Principles for the development of standards for investigation procedures of plastics in environmental media and materials N2 - An overview about the current status of microplastic analysis is given with scope on hamonisation and standarisation. T2 - Annual ISO/TC 61 Meeting CY - Saitama, Japan DA - 24.09.2018 KW - Standardisation KW - Microplastic KW - Analysis PY - 2018 AN - OPUS4-46457 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Braun, Ulrike T1 - Entwicklung einer schnellen und robusten Methode für die Analytik von Mikroplastik in Wasser N2 - Vortrag im Rahmen der Preisverleihung zum Mülheimer Wasser Award 2018, Vorstellung der TED-GC-MS als Methode für Mikroplastik Analyse T2 - 3. Wasseranalytisches Seminar (MWAS 2018) CY - Mülheim a.d. Ruhr, Germany DA - 12.09.2018 KW - Mikroplastik KW - Analytik PY - 2018 AN - OPUS4-46459 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Unger, Wolfgang A1 - Ehlert, Christopher A1 - Donskyi, Ievgen A1 - Girard-Lauriault, P.-L. A1 - Lippitz, Andreas A1 - Illgen, Rene A1 - Haag, R. A1 - Adeli, M. T1 - Chemical modification of graphene and carbon nano tubes as viewed by xps and nexafs spectroscopies with dft spectra simulation N2 - Graphene is a two-dimensional carbon network with unique properties. However, its low solubility, poor reactivity and the limited accessibility of a well-defined basal plane are major challenges for applications. An ideal method to overcome these problems is the covalent attachment of functional molecules to its surface which enable further reactive modifications for specific applications. There are several technologies for surface functionalization of graphene and related CNT materials. To get control on the functionalization process and to optimize the performance of the modified surfaces analytical tools for surface chemical characterization are required. X-ray absorption (NEXAFS) and photoelectron spectroscopy (XPS) have been identified to be rather powerful here [1-3]. Specifically, NEXAFS spectroscopy underpinned by quantum chemical spectrum simulations [4] is unique in a way to address changes of aromaticity and defect formation at the graphene surface during functionalization. For relevant surface modification technologies, we present examples on how NEXAFS and XPS can do a good job. All presented modifications aim on the production of platforms for defined functional 2D nanomaterials, as for example multifunctional hybrid architectures. In detail, we investigated: • A wet chemical method for covalent functionalization of graphene sheets by a one-pot nitrene [2+1] cycloaddition reaction under mild conditions. Here a reaction between 2,4,6-trichloro-1,3,5-triazine and sodium azide with thermally reduced graphene oxide (TRGO) results in defined dichlorotriazine-functionalized graphene sheets. • Graphene and carbon nanotube functionalized by Vacuum-Ultraviolet (VUV) induced photochemical or r.f. cw low pressure plasma processes to introduce amino, hydroxy or brominated functionalities. To underpin finger-print information delivered by C K-edge NEXAFS we studied the effects of selected point and line defects as well as chemical modifications for a single graphene layer model by density functional theory based spectrum simulations. References [1] P.-L. Girard-Lauriault et al., Appl. Surf. Sci., 258 2012 8448-8454, DOI: 10.1016/j.apsusc.2012.03.012 [2] A. Lippitz et al., Surf. Sci., 611 2013 L1-L7, DOI: 10.1016/j.susc.2013.01.020 [3] A. Faghani et al., Angew. Chemie (International ed.), 56 2017 2675-2679, DOI:10.1002/anie.201612422 [4] C. Ehlert, et al., Phys.Chem.Chem.Phys., 16 2014 14083-14095, DOI: 10.1039/c4cp01106f T2 - AVS 65th INTERNATIONAL SYMPOSIUM CY - Long Beach, CA, USA DA - 21.10.2018 KW - Graphene KW - Plasma KW - Nitrene [2+1] cycloaddition KW - XPS KW - NEXAFS PY - 2018 AN - OPUS4-46468 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Unger, Wolfgang T1 - Acquiring and Documenting Reproducible Spectra, Depth Profiles and Images: XPS, AES and SIMS N2 - In this talk sample prep/handling, instrument calibration and data acquisition methods with examples from XPS, Auger and SIMS will be addressed in terms of their contributions to the reproducibility of data delivered by the methods. Active parties in the field are VAMAS TWA 2 “Surface chemical analysis” (http://www.vamas.org/twa2/index.html), ISO/TC 201 “Surface chemical analysis” (https://www.iso.org/committee/54618.html) and the Surface Analysis Working Group (SAWG) at the International Meter Convention (https://www.bipm.org/en/ committees/cc/wg/sawg.html). The tools to improve the reproducibility of spectra, depth profiles and images at these international platforms are inter-laboratory comparisons, validated SOPs, standards and certified reference materials (CRM) as well as uncertainty budgets and establishment of traceability chains. The last point is of specific importance because all the methods, XPS, Auger and SIMS, are not primary methods. To address quantitative XPS, AES and SIMS results of relevant inter-laboratory comparisons organized by SAWG considering measurands as alloy surface composition and thickness of thin films will be introduced. These comparisons delivered results which are viewed to be benchmarking, some of them resulted in ISO/TC 201 standards. For quantitative XPS and AES the principal outline of an uncertainty budget will be discussed together with the audience. Another issue of quantitative XPS which definitely needs consideration are valid methods for a determination of the transmission function of the instruments and even for the emission angle in the respective experiments. Concerning the field of depth profiling it has to be investigated together with the audience whether the ISO (or ASTM) standards we have are sufficient to guarantee comparable results. Having in mind the number of different sputter ion species available today and range of samples of interest (metals, semiconductors, organic films) this might be questionable. And, how do depth profiling by AR-XPS and variable excitation energy XPS compete here? For imaging surface chemical analysis, the characterization of the imaging system is an issue to be investigated. Here the determination of lateral resolution is a relevant topic. Finally, the future needs to develop metrology for new applications e.g., ambient-pressure XPS, bio samples, and core-shell nanoparticles, will be issues raised for a discussion with the audience. T2 - 17th Topical Conference on Quantitative Surface Analysis (QSA 17) CY - Long Beach, CA, USA DA - 21.10.2018 KW - Depth Profiles and Images KW - X-ray Photoelectron Spectroscopy (XPS) KW - Auger Electron Spectroscopy (AES) KW - SIMS KW - Reproducible Spectra PY - 2018 AN - OPUS4-46470 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rietz, U. A1 - Lerche, D. A1 - Hielscher, Stefan A1 - Grunwald, Daniel A1 - Beck, Uwe T1 - Determination of coating properties by using analytical centrifugation N2 - The majority of all products have coated surfaces designed to fulfil different requirements. Building constructions are exposed to external influences like a wide temperature and humidity range, rain and UV radiation to name a few. The extension of machine life for metal cutting tools, like drills or milling cutters is another field of application for coated surfaces. The surfaces have to be modified in a way to maintain their specific functionality. Although adhesion testing of coatings is of great interest, it is still a challenge to obtain reliable quantitative results and to meet economic requirements. In this talk we deal with the curing behaviour of different 2-component epoxy paint systems for corrosion protection of metal constructions. After preparation of specimens the strength was determined in specified time intervals during curing. It could be shown that epoxy paints differ significantly on curing time as well as final strength. The second experimental study deals with coating systems on glass fibre reinforced plastics which are used for wind power turbines to reduce abrasive wear and ice adhesion for aerodynamic and safety reasons. All measurements have been carried out by CAT-TechnologyTM (Centrifugal Adhesion Testing), which uses the radially directed centrifugal force as test-load. The multi-sample test instrument analyses up to eight test specimen under identical testing conditions. By varying the rotational speed (100 rpm up to 13,000 rpm), forces from 0.1 N to 6.5 kN are applied. Upon reaching the critical rupture force, the stamp separates from the substrate and a sample related IR-signal is sent from the spinning rotor. For each test specimen breaking force is calculated and displayed in real-time. The innovative measurement principle meets the requirements of DIN EN 15870 and ISO 4624. T2 - EURADH 2018 CY - Lisbon, Portugal DA - 05.07.2018 KW - Adhesive strength determination KW - CAT-technology KW - Centrifugal adhesion testing KW - Metal coatings KW - Decorative coatings on polymer substrates PY - 2018 AN - OPUS4-46001 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -