TY - JOUR A1 - Akhmetova, Irina A1 - Beyer, Sebastian A1 - Schutjajew, K. A1 - Tichter, T. A1 - Wilke, Manuel A1 - Prinz, Carsten A1 - B. Martins, Inês C. A1 - Al-Sabbagh, Dominik A1 - Roth, C. A1 - Emmerling, Franziska T1 - Cadmium benzylphosphonates - the close relationship between structure and properties JF - CrystEngComm N2 - Cadmium benzylphosphonate Cd(O3PBn)·H2O and its fluorinated derivates Cd(O3PBn-3F)·H2O, Cd(O3PBn-4F)·H2O, and Cd(O3PBn-F5)·H2O were synthesized mechanochemically. The Crystal structures of the compounds were determined based on powder X-ray diffraction (PXRD) data. The influence of the ligand substitution on the crystal structure of the metal phosphonate was determined. The hydrophobicity as a function of degree of fluorination was investigated using dynamic vapor sorption. KW - Mechanochemistry KW - Metal phosphonates KW - PXRD KW - DVS PY - 2019 DO - https://doi.org/10.1039/c9ce00776h VL - 21 SP - 5958 EP - 5964 PB - RSC Royal Society of Chemistry AN - OPUS4-49930 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Akhmetova, Irina A1 - Roth, C. A1 - Emmerling, Franziska T1 - Structure-properties relationships in cadmium benzylphosphonates N2 - The exploration of metal phosphonates has gained great interest during the last decades, because of their structural diversity. They are promising candidates for a variety of applications ranging from adsorbance to electrocatalysis. The knowledge of the Crystal structure is significant for assigning a coordination polymer for a specific function. We investigated the influence of the fluorination degree of the organic linker on the Crystal packing, the interlayer distance, and the hydrophobicity of the resulting compounds. With fluorinated and nonfluorinated benzylphosphonic acids as starting materials in mechanochemical synthesis, four novel cadmium benzylphosphonates were obtained. Their structures were solved from powder X-ray diffraction. T2 - 2nd European Workshop on Metal Phosphonates CY - Berlin, Germany DA - 24.09.2019 KW - Mechanochemistry KW - Metal phosphonates KW - PXRD KW - DVS PY - 2019 AN - OPUS4-49933 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Akhmetova, Irina A1 - Haferkamp, Sebastian A1 - Emmerling, Franziska T1 - New transition metal phosphonates obtained by mechanochemistry N2 - Metal phosphonates are metal-organic compounds consisting of a metal core and a phosphonate ligand. Depending on the nature of the ligand, metal phosphonates appear in different structures covering the range from molecular compounds to three-dimensional networks. Due to their structural diversity, the chemistry of metal phosphonates has gained great interest during the last decades. Metal phosphonates can be used for various applications as gas storage and separation, magnetism, and energy conversion. Especially transition metal phosphonates are promising candidates as electrocatalysts. Mechanochemistry is a versatile approach for green and fast synthesis of pure substances. By milling the reactants, various organic, inorganic, and metal-organic compounds can be obtained in high yields. Here, we present the synthesis of different new metal phosphonates obtained by grinding of metal acetates with respective phosphonic acids. By varying the ratio of the reactants, we are able to determine the composition of the final products. The addition of small amounts of liquid to the grinding process tends to increase the product’s crystallinity. The crystal structures of the new compounds were determined from powder X-ray data. T2 - 27th Annual Meeting of the German Crystallographic Society CY - Leipzig, Germany DA - 25.03.2019 KW - Metal phosphonates KW - Mechanochemistry KW - PXRD KW - Structure solution PY - 2019 AN - OPUS4-47837 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -