TY - CONF A1 - Vogl, Jochen T1 - Road-map for purity determination N2 - From several CCQM studies (CCQM-P107, CCQM-K72 and CCQM-P149) conclusions can be drawn for the purity assessment of a pure (metallic) element. These conclusions will be put together in this document in order to assist all NMIs/DIs in performing a purity assessment, whenever needed. T2 - CCQM IAWG Meeting CY - Paris, France DA - 18.04.2016 KW - Purity KW - Metrology KW - Traceability PY - 2016 AN - OPUS4-36063 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vogl, Jochen A1 - Rienitz, O. T1 - Using information from CC Tables for supporting CMC claims N2 - Core capability tables list the skills and experiences, which at least partially are needed to successfully carry out a specific analytical task within the IAWG. The required skills and experiences, so-called core capabilities (CC), are identified for each analytical procedure. The summarized CC tables are listed in the appendix of each report on the corresponding key comparison or pilot study. These CC tables enable us to demonstrate that we have the analytical procedure we claim under control by means of other Key Comparison, which do not exactly meet the claimed calibration and measurement capability. This is especially important for: a) fields where no Key Comparison is available, b) Revision of CMC claims or c) when a participation in a Key Comparison was not possible. T2 - CCQM IAWG Meeting CY - Paris, France DA - 18.04.2016 KW - metrology KW - traceability PY - 2016 AN - OPUS4-36066 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vogl, Jochen A1 - Rienitz, O. T1 - Real-world examples of how to calculate a KCRV N2 - In this presentation the different ways are presented, which are used to calculate in practice the key comparison reference value. T2 - EURAMET TC Metrology in Chemistry Meeting CY - Geel, Belgium DA - 03.02.2016 KW - key comparison KW - CCQM KW - Degree of equivalence PY - 2016 AN - OPUS4-35573 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vogl, Jochen T1 - Roadmap for purity determination N2 - A Roadmap for the purity Determination of pure metallic elements is presented. The roadmap distinguishes between different approaches for the purity determination and list theindividual steps for each Approach which are necessary to successfully apply These approaches. T2 - CCQM IAWG Meeting CY - Daejeon, South Korea DA - 04.10.2016 KW - Traceability KW - Purity determination PY - 2016 AN - OPUS4-38590 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vogl, Jochen A1 - Rienitz, Olaf A1 - Noordmann, Janine A1 - Meyer, Christian T1 - Platin- und Palladium-Analytik mit ID-ICPMS N2 - Zertifizierung von Pt und Pd-Spikes und deren Anwendung auf die Quantifizierung von Pd und Pt in Kfz-Emissionen T2 - 15. Edelmetallforum CY - Freising, Germany DA - 14.03.2016 KW - PGE KW - Emissionen KW - IDMS KW - ICPMS PY - 2016 AN - OPUS4-35572 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vogl, Jochen T1 - Applicability of CCQM-P149 to support CMCs N2 - The presentation describes the limitations of CCQM-P149 to be used for supporting CMCs and it gives possibilities and applications where CCQM-P149 can provide additional Support. T2 - CCQM IAWG Meeting CY - Daejeon, South Korea DA - 04.10.2016 KW - CCQM KW - CMC KW - Purity assessment PY - 2016 AN - OPUS4-38586 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vogl, Jochen T1 - Applicability of CCQM-P149 to support CMCs N2 - CCQM-P149 is an attempt to obtain a snapshot on actual procedures the NMIs and DIs within CCQM-IAWG applied to the purity characterization of their “fit for purpose” elemental Standards. This presentation describes how the results of CCQM-P149 may be used to underpin calibration and measurement capabilities being claimed in the BIPM database. T2 - CCQM IAWG Meeting CY - Paris, France DA - 18.04.2016 KW - metrology KW - purity KW - traceability PY - 2016 AN - OPUS4-36064 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vogl, Jochen T1 - IDMS Training N2 - Based on its proven records especially in reference material certification, isotope dilution mass spectrometry (IDMS) is considered as one of the most powerful and most accurate methods for determining amounts of substance. Contrary to other calibration approaches, IDMS does not directly suffer from long-time changes or drifts in instrument sensitivity. Moreover, provided isotopic exchange between the sample and spike is ensured, losses of analyte do not affect the analytical result. Both advantages are based on the fact that IDMS only requires isotope ratio measurements and isotope ratios are largely unaffected by instrumental drift, setup or by matrix, unless an isobaric interference is present. The Consultative Committee for Amount of Substance (CCQM), the world's highest institution for metrology in chemistry, considers IDMS as the most important “Primary Method of Measurement” for amount determination. The total combined uncertainty, according to ISO and EURACHEM guidelines, can easily be calculated via the IDMS equations. Applying it correctly, IDMS has the potential to be a primary method of measurement yielding SI traceable values in the most direct way with combined uncertainties significantly smaller than obtainable by other methods. In general it can be stated that IDMS is the most important reference method for elemental and elemental species analysis, offering highest accuracy and precision or smallest measurement uncertainties, when properly applied. Thus IDMS represents by far the best suited reference method for RM characterisation. Due to its universal applicability IDMS offers sufficient potential to follow future needs in analytical chemistry as well as in the RM sector. This presentation will demonstrate the basic principle of IDMS and will show its Pros and Cons as well as its pitfalls. Possible sources of errors and bias are mentioned and correction models will be discussed. Notice will be given to metrological aspects such as traceability and uncertainty. Differences in the application of thermal ionization mass spectrometry and inductively coupled plasma mass spectrometry are discussed as well as differences between different types of mass spectrometers. This will be illustrated by practical examples from various fields. T2 - Workshop and practical training on isotope dilution mass spectrometry CY - Berlin, Germany DA - 22.02.2016 KW - Isotope dilution mass spectrometry KW - Primary method of measurement KW - Certification PY - 2016 AN - OPUS4-40029 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vogl, Jochen T1 - Implementation of ISO Guide 34 into the quality management system of BAM N2 - Presentation of the BAM quality management System with focus on the ISO Guide 34 implementation. This presentation is one part of the re-evaluation of BAM carried out by the Technical Committee of EURAMET. T2 - TC-Q Meeting CY - Dublin, Ireland DA - 12.04.2017 KW - Quality system KW - Re-evaluation KW - Metrology in chemistry KW - EURAMET KW - CCQM PY - 2017 AN - OPUS4-40031 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vogl, Jochen T1 - Roadmap for the purity determination of pure metallic elements N2 - High purity materials can serve as a realisation of the Système International d’Unitès (SI) unit amount of substance for the specific element. Solutions prepared from such high purity materials using gravimetric preparation and the concept of molar mass are used as calibration solutions in many fields of analytical chemistry. Calibration solutions prepared this way provide the traceability to the SI and are the metrological basis in elemental analysis. The preparation and characterization of such primary pure substances, representing the realisation of the SI unit amount of substance, is undertaken only by a small number of National Metrology Institutes (NMI) and Designated Institutes (DI). Many other NMIs and DIs, however, prepare elemental calibration solutions as calibrants for their measurement services, such as the certification of matrix Reference Materials or the provision of reference values for Proficiency Testing schemes. The elemental calibration solutions used for this purpose are not a direct service to customers, such as preparing secondary calibration solutions, but provide the source of traceability for the other services. Hence, it is necessary for the NMI or DI to obtain data on the purity of the pure metals or other materials used to prepare the solutions with measurement uncertainties meeting the needs of the above described services. This is commonly undertaken as a “fit for purpose” assessment, appropriate for the uncertainty requirement of the service provided to customers. As a consequence, total purity measurements are a long-term strategy of CCQM-IAWG. Several studies were conducted (CCQM-P107, CCQM-K72 and CCQM-P149) on the measurement of the purity of zinc. From these studies, several conclusions can be drawn for the purity assessment of a pure (metallic) element. These conclusions will be put together in this document in order to assist all NMIs/DIs in performing a purity assessment, whenever needed. T2 - CCQM IAWG Meeting CY - Paris, France DA - 24.04.2017 KW - CCQM KW - Metrology KW - Purity assessment PY - 2017 AN - OPUS4-40034 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vogl, Jochen T1 - Isotope analysis N2 - The variation of isotope ratios is increasingly used to unravell natural and technical questions. In the past the investigation and interpretation of such variations was the field of a limited number of experts. With new upcoming techniques and research topics in the last decades, such as provenance and authenticity of food, the number of published isotope data strongly increased. Instrumental developments such as the enhancement of inductively coupled plasma mass spectrometers (ICPMS) from an instrument for simple quantitative analysis to highly sophisticated isotope ratio machines influenced this process significantly. While in former times only experts in mass spectrometry were able to produce reliable isotope data, nowadays many laboratories, never been in touch with mass spectrometry before, produce isotope data with an ICPMS. Especially for such user isotope reference materials (IRM) are indispensible to enable a reliable method validation. The fast development and the broad availability of ICPMS also lead to an expansion of the classical research areas and new elements are under Investigation. This presentation shows the basics and principles for isotope ratio determination using ICP-MS. Additionally, it provides three specific examples for isotope Ratio applications: isotope dilution mass spectrometry; provenancing of archaeoligical artifeacts by lead isotope Ratio Analysis and studies on boron uptake in bell pepper plants. T2 - ICP-MS Kurs (BAM Akademie) CY - Berlin, Germany DA - 19.04.2017 KW - Lead isotopes KW - Delta values KW - Boron isotopes KW - Archaeology KW - Plant metabolism PY - 2017 AN - OPUS4-40030 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vogl, Jochen T1 - CCQM-P149 Statistical evaluation of results N2 - The results for CCQM-P149 "Purity Determination of high purity zinc" are displayed and three different statistical approaches for the calculation of the reference value are compared. T2 - CCQM IAWG Meeting CY - Paris, France DA - 24.04.2017 KW - Purity KW - Metrology KW - Comparison KW - Impurities PY - 2017 AN - OPUS4-40033 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vogl, Jochen T1 - Delta values, Delta zero reference materials and uncertainties N2 - Discussion of Delta values, Delta scales, delta Zero reference materials and measurement uncertainties for delta-values under metrological aspects. T2 - CCQM Isotope Ratio Task Group CY - Delft, Netherlands DA - 27.10.2017 KW - Traceability KW - Measurement uncertainty KW - Delta scale KW - Reference material PY - 2017 AN - OPUS4-42743 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vogl, Jochen A1 - Koenig, Maren T1 - Isotope dilution mass spectrometry applied as primary method of measurement with examples from the ENVCRM project N2 - The presentation describes the application of isotope dilution mass spectrometry as a primary method of measurement with all Advantages and disadvantges. This is exempflified for the candidate reference materials within the EnvCRM Project. T2 - Workshop Matrix Reference Materials for Environmental Analysis CY - Gebze, Turkey DA - 16.05.2018 KW - Reference material KW - Soil KW - Heavy metals PY - 2018 AN - OPUS4-45896 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vogl, Jochen A1 - Noordmann, J. A1 - Rosner, M. A1 - Goenaga-Infante, H. A1 - Štrok, M. A1 - Pramann, A. A1 - Vanhaecke, F. A1 - Meisel, T. A1 - Pröfrock, D. A1 - Prohaska, T. A1 - Vocke, R.D. A1 - Richter, S. T1 - Absolute Isotope Ratios N2 - Measurement results and scientific models leading to important decisions in forensics, food fraud or climatology are based on isotope ratio data. Molar masses of multi-isotopic elements are as well based on isotope ratio data. Thus, in the case of Si, isotope ratios directly impact the redefinition of the SI base units kilogram and mole. Therefore, new strategies are required leading to new primary isotope reference materials, whose isotope ratios are traceable to the SI. This in turn will ensure the comparability of isotope ratio data and will render the traceability exception requested by the CCQM superfluous. Such new procedures will be developed for the key elements S, Si, Ca, Sr and Nd at relative uncertainty levels of ≤ 0.01 %. T2 - EURAMET TC-MC Meeting CY - Vienna, Austria DA - 05.02.2018 KW - Metrology in chemistry KW - Isotope amount ratio KW - SI traceability KW - Atomic weight KW - Molar mass KW - Synthetic isotope mixtures PY - 2018 AN - OPUS4-44644 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vogl, Jochen A1 - Vocke, B. T1 - Delta values & isotope ratios - potential CCQM comparisons N2 - The talk presents several potential CCQM comparisons for delta values and isotope ratios with a focus on metals and semi-metals. T2 - CCQM IRWG Meeting CY - Paris, France DA - 18.04.2018 KW - Isotope amount ratio KW - Traceability KW - Uncertainty PY - 2018 AN - OPUS4-45895 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vogl, Jochen T1 - Isotope ratio measurements and certification of iRMs at BAM N2 - This presentation gives a short overview of isotope ratio measurements being carried out in the past few years at BAM in different fields such as plant metabolism, food web structures and archaeology. The corresponding isotope reference materials which have been certified at BAM in parallel are presented as well. Additionally an outlook is being provided on future iRM projects. T2 - Meeting of the Isotope Ratio Working Groupt of CCQM CY - Ottawa, Canada DA - 04.10.2018 KW - Isotope reference material KW - Delta value KW - Isotope amount ratio KW - Traceability KW - Uncertainty PY - 2018 AN - OPUS4-47159 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vogl, Jochen A1 - Rienitz, O. A1 - Rosner, M. A1 - Tatzel, M. A1 - Brandt, B. A1 - Henehan, M. J. A1 - Kasemann, S. A. A1 - Kraft, R. A1 - Malinovskiy, D. A1 - Meixner, A. A1 - Noordmann, J. A1 - Rabb, S. A1 - Schüssler, J. A. A1 - Tütken, M. A1 - Vocke, R. D. T1 - Isotope ratios and delta values with minimal measurement uncertainties -measuring magnesium using MC-ICP-MS N2 - Multi-collector inductively coupled plasma-mass spectrometry (MC-ICP-MS) has evolved significantly since its introduction in 1992. The second and third generation instruments now allow isotope ratio measurements at unprecedented precisions, 0.001 % or better. However, precision alone is not enough for producing accurate and reliable isotope ratio measurements. Metrological considerations such as the selection of suitable calibration strategies, proper assessment of instrumental biases, and the estimation of overall measurement uncertainty remain critical to the measurement process. Properly assessed, measurement uncertainty then provides the interval within which a result can be considered both accurate and precise. All mass spectrometric measurements are affected by instrumental mass discrimination and produce isotope ratios that are biased relative to their “true” ratio. To produce accurate and traceable isotope ratio measurements, it is imperative that certified isotope reference materials (iCRMs) be used for calibration and validation purposes. iCRMs reporting absolute isotope ratios are an analyst’s first choice, particularly when its uncertainty is sufficient for the intended use. However, when smaller uncertainties are required to resolve subtle differences between samples, delta-scale measurements become important. Here, the difference between an isotope ratio measured in a sample and in an internationally accepted isotope reference material (iRM) is determined. This deviation can be positive or negative relative to the iRM, is called a delta value, and is often expressed in per mil units. This presentation will highlight the potential for MC-ICP-MS to produce isotope ratio measurements with minimal uncertainties by examining three applications involving Mg isotopes: 1) the certification of a set of iCRMs for their absolute isotope ratio using a gravimetric isotope mixture approach; 2) the comparison of these iCRMs with currently accepted Mg delta-scale reference materials through intercalibration, and 3) the determination of isotope fractionation exponents for geochemical applications. T2 - 4th International Conference on Frontiers in Mass Spectrometry CY - Kottayam, Kerala, India DA - 04.12.2019 KW - Triple isotope fractionation KW - Absolute isotope ratio KW - Delta value KW - Mangesium PY - 2019 AN - OPUS4-50004 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vogl, Jochen T1 - Cu project on calibration approaches for absolute isotope ratios N2 - This presentations summarizes the difficulties in the purification of enriched copper isotopes by high vacuum subimation. It shows as well thelimitations for a CCQM key comparison on this topic. T2 - CCQM Isotope Ratio Work Group Meeting CY - Bern, Switzerland DA - 09.10.2019 KW - Absolute isotope ratio KW - Isotope purification KW - Metal sublimation KW - Gravimtric isotope mixtures PY - 2019 AN - OPUS4-49518 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vogl, Jochen T1 - Isotope ratio working group at CCQM N2 - The presentation gives the reasons for initiation of an isotope ratio working group at CCQM level, describes the process and provides the auduince with the initial working plan. T2 - EURAMET TC-MC Workshop on Isotope Ratio Analysis CY - Bern, Switzerland DA - 05.02.2020 KW - Metrology KW - Absolute isotope ratio KW - Isotope ratio KW - Delta value PY - 2020 AN - OPUS4-50344 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -