TY - JOUR A1 - Rades, Steffi A1 - Hodoroaba, Vasile-Dan A1 - Salge, T. A1 - Wirth, Thomas A1 - Lobera, M.P. A1 - Labrador, R.H. A1 - Natte, Kishore A1 - Behnke, Thomas A1 - Gross, Thomas A1 - Unger, Wolfgang T1 - High-resolution imaging with SEM/T-SEM, EDX and SAM as a combined methodical approach for morphological and elemental analyses of single engineered nanoparticles N2 - The combination of complementary characterization techniques such as SEM (Scanning Electron Microscopy), T-SEM (Scanning Electron Microscopy in Transmission Mode), EDX (Energy Dispersive X-ray Spectroscopy) and SAM (Scanning Auger Microscopy) has been proven to be a powerful and relatively quick characterization strategy for comprehensive morphological and chemical characterization of individual silica and titania nanoparticles. The selected “real life” test materials, silica and titania, are listed in the OECD guidance manual as representative examples because they are often used as commercial nanomaterials. Imaging by high resolution SEM and in the transmission mode by T-SEM allows almost simultaneous surface and in-depth inspection of the same particle using the same instrument. EDX and SAM enable the chemical characterization of bulk and surface of individual nanoparticles. The core–shell properties of silica based materials are addressed as well. Titania nominally coated by silane purchased from an industrial source has been found to be inhomogeneous in terms of chemical composition. KW - surface and in-depth inspection KW - silica nanoparticles KW - titania nanoparticles PY - 2014 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-316296 DO - https://doi.org/10.1039/c4ra05092d SN - 2046-2069 VL - 4 IS - 91 SP - 49577 EP - 49587 PB - RSC Publishing CY - London AN - OPUS4-31629 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - RPRT A1 - Hodoroaba, Vasile-Dan A1 - Mielke, Johannes T1 - Templates for nanomaterial characterisation of tier 1 and tier 2 measurement methods N2 - The EU FP7 NanoDefine project was launched in November 2013 and will run until October 2017. The Project is dedicated to support the implementation of the EU Recommendation on the Definition of Nanomaterial by the provision of the required analytical tools and respective guidance. Main goal is to develop a novel tiered approach consisting of (i) rapid and cost-efficient screening methods and (ii) confirmatory measurement methods. The "NanoDefiner" eTool will guide potential end-users, such as concerned industries and regulatory bodies as well as enforcement and contract laboratories, to reliably classify if a material is nano or not. To achieve this objective, a comprehensive inter-laboratory evaluation of the performance of current characterisation techniques, instruments and software is performed. Instruments, software and methods are further developed. Their capacity to reliably measure the size of particulates in the size range 1-100 nm and above (according to the EU definition) is validated. Technical reports on project results are published to reach out to relevant stakeholders, such as policy makers, regulators, industries and the wider scientific community, to present and discuss our goals and results, to ensure a continuous exchange of views, needs and experiences obtained from different fields of expertise and application, and to finally integrate the resulting feedback into our ongoing work on the size-related classification of nanomaterials. KW - Nanomaterial KW - Measurement method KW - Screening methods KW - Confirmatory methods PY - 2014 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-389827 UR - http://www.nanodefine.eu/index.php/downloads/nanodefine-technical-reports SP - 1 EP - 74 PB - The NanoDefine Consortium CY - Wageningen, The Netherlands AN - OPUS4-38982 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hodoroaba, Vasile-Dan A1 - Akcakayiran, D. A1 - Grigoriev, D.O. A1 - Shchukin, D.G. T1 - Characterization of micro- and nanocapsules for self-heating anti-corrosion coatings by high-resolution SEM with coupled transmission mode and EDX N2 - The observation of morphological details down to the nanometer range of the outer surface of micro-, submicro- and nanoparticles in a high-resolution scanning electron microscope (SEM) was extended with in-depth observation by enabling the transmission mode in the SEM, i.e. TSEM. The micro- and nanocapsules characterized in this study were fabricated as depots for protective agents to be embedded in innovative self-healing coatings. By combining the two imaging modes (upper and in-depth observation) complementing each other a better characterisation by a more comprehensive interpretation of the 'consistency' of the challenging specimens, e.g. including details 'hidden' beyond the surface or the real specimen shape at all, has been attained. Furthermore, the preparation of the quasi electron transparent samples onto thin supporting foils enables also elemental imaging by energy dispersive X-ray spectroscopy (EDX) with high spatial resolution. Valuable information on the elemental distribution in individual micro-, submicro- and even nanocapsules completes the '3D' high resolution morphological characterization at the same multimodal SEM/TSEM/EDX system. KW - Scanning electron microscopy (SEM) KW - High-resolution transmission in SEM (TSEM) KW - Energy dispersive X-ray spectroscopy (EDX) KW - Micro- and nanocapsules KW - Anti-corrosion coatings PY - 2014 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-304201 DO - https://doi.org/10.1039/c3an01717f SN - 0003-2654 SN - 1364-5528 VL - 139 IS - 8 SP - 2004 EP - 2010 PB - Royal Society of Chemistry CY - Cambridge AN - OPUS4-30420 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - RPRT A1 - Thünemann, Andreas A1 - Emmerling, Franziska A1 - Hodoroaba, Vasile-Dan T1 - Review of existing calibration or reference N2 - We report on calibration standards of nanoparticles meeting the definition of a nanomaterial given by the European Commission (EU 2011) which are relevant for the characterisation methods applied in the NanoDefine project. We found that the Impact of nanoparticles is outstanding in the scientific literature. A number of 270.000 paper titles on nanoparticles are listed in the Web of Science data base. But surprisingly, the availability of suitable certified standard reference materials is scarce. Only a few sources were found. For example, BAM provides the database Nanoscaled Reference Materials at http://www.nano-refmat.bam.de/en/ in cooperation with the ISO/TC 229 Nanotechnologies. In addition, two publications from 2013 on nanoscale reference materials are available. Candidates of nano-(certified) reference materials from other ongoing or just finished FP6 and FP7 nano-metrology projects have been extracted from the Compendium of Projects in the European NanoSafety Cluster (Compendium NSC, 2013). Recommendations for selection of representative test materials and calibration standards for NanoDefine internal tasks, respectively, are also given. KW - Nanomaterial KW - Reference materials KW - Certified reference materials PY - 2014 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-389836 UR - http://www.nanodefine.eu/index.php/downloads/nanodefine-technical-reports SP - 1 EP - 18 CY - Wageningen, The Netherlands AN - OPUS4-38983 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - RPRT A1 - Hodoroaba, Vasile-Dan A1 - Mielke, Johannes T1 - Techniques evaluation report for selection of characterisation methods N2 - This report is the result of a comprehensive study on the available CMs which come potentially in question for the reliable analysis of the number based size distribution of a nanomaterial according to the EC recommendation for a definition of nanomaterial. Based on the performance criteria already established in NanoDefine the potential CMs are evaluated according to studies available in the literature as well as following the expertise of the NanoDefine consortium partners. The specific advantages and disadvantages of each method with respect to its applicability to the scope of NanoDefine are particularly highlighted. An CM evaluation table is produced so that the mostly suited CMs with respect to the EC definition can be grouped and recommended to the corresponding NanoDefine work packages for further specific development (improvement and adaption), or for direct validation and standardisation, respectively. The actual evaluation report including the recommended CMs will be revised and, if necessary, eventually updated at the mid time of the project. The update will be jointly discussed in the NanoDefine consortium on the basis of the results of testing the methods on the NanoDefine real world materials. KW - Nanomaterial KW - Characterization method KW - EC definition PY - 2015 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-389473 UR - http://www.nanodefine.eu/publications/reports/NanoDefine_TechnicalReport_D3.1.pdf SP - D3.1, 1 EP - 57 CY - Wageningen, The Netherlands AN - OPUS4-38947 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wäsche, Rolf A1 - Hartelt, Manfred A1 - Hodoroaba, Vasile-Dan T1 - Analysis of nanoscale wear particles from lubricated steel-steel contacts N2 - A new method for sampling wear particles directly from the lubricant reservoir has been developed and applied successfully for analyzing wear particles by high-resolution scanning electron microscopy in transmission mode having coupled energy-dispersive X-ray spectroscopy. The lubricated tribological testing was carried out with fully formulated as well as with non-formulated synthetic base oil. It was possible to analyze individual particles with dimensions as small as about 5–30 nm which are likely the 'primary' wear particles. A majority of the particles, however, are agglomerated and, thus, lead to the formation of larger agglomerates of up to a few micrometers. Chemical analysis led to the conclusion that most of the observed particles generated in formulated oil, especially the larger ones, are composed of the additives of the lubricant oil. In non-formulated base oil, the primary particles are of similar dimensions but contain only iron, chromium and oxygen, but most likely stem from the mating materials. This finding points to the fact that the main wear mechanism under lubricated conditions with fully formulated oil is more like a continuous shearing process rather than a catastrophic failure with the generation of larger primary particles. When the oil is non-formulated, however, several wear mechanisms act simultaneously and the wear rate is increased significantly. Generated larger primary particles are milled down to the nanoscale. When the oil is fully formulated, wear mainly takes places at the additive layer or tribofilm; thus, the steel surface is protected. KW - Particle KW - Wear particle analysis KW - Lubricated contact KW - Bearing steel KW - Nanoscale T-SEM KW - Nanoscale EDX analysis PY - 2015 DO - https://doi.org/10.1007/s11249-015-0534-1 SN - 1023-8883 SN - 1573-2711 VL - 58 IS - 3 SP - 49-1 - 49-10 PB - Springer Science Business Media B.V. CY - Dordrecht AN - OPUS4-33525 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - RPRT A1 - Rauscher, H. A1 - Mech, A. A1 - Gaillard, C. A1 - Stintz, M. A1 - Wohlleben, W. A1 - Weigel, St. A1 - Ghanem, A. A1 - Hodoroaba, Vasile-Dan A1 - Babick, F. A1 - Mielke, Johannes T1 - Recommendations on a Revision of the EC Definition of Nanomaterial Based on Analytical Possibilities N2 - In October 2011 the European Commission (EC) published a "Recommendation on the definition of nanomaterial" (2011/696/EU), to promote consistency in the interpretation of the term "nanomaterial" for legislative and policy purposes in the EU. The EC NM Definition includes a commitment to its review in the light of experience and of scientific and technological developments. This review is ongoing in 2015 and as a contribution to the review the Joint Research Centre of the European Commission (JRC) has already developed a series of three scientific-technical reports with the title: “Towards a review of the EC Recommendation for a definition of the term nanomaterial” which provides to the EC policy services science-based options on how the definition could be revised or supported with additional guidance. The overarching nature and wide scope of the EC NM Definition, as it does not exclude a priori any particulate material regardless the state, form and size, creates many analytical challenges in its imple-mentation for all stakeholders, including enterprises and regulators. The NanoDefine project has as core objective to support the implementation of the EC NM Definition. In this report key aspects of the EC NM Definition are addressed, with the goal to improve the implement-ability of the EC NM Definition. These aspects are presented and discussed based on the results of two years of research performed within the framework of the project. As a result this report assesses how well the requirements of the EC NM Definition can be fulfilled with currently available analytical possi-bilities. It presents recommendations and options on a revision of the EC NM Definition to improve the implementability of the definition based on currently available analytical possibilities, according to the state of the art of mid-2015. Of the technical issues considered in this report, the following seem to deserve the most attention in terms of clarification of the definition and/or provision of additional implementation guidance:  The term ‘external dimension’. A clear definition of 'External dimension' should be included in the text of the EC NM definition and more precise guidance on what is considered as an external dimension and how to properly character-ise it should be provided.  The ‘number based particle size distribution‘. The EC NM Definition uses a threshold related to the number based size distribution of particles. Yet most of the easily available techniques provide a mass-, volume- or scattered light intensity-based size distribution which needs to be converted into a number based distribution to be used for regulatory pur-poses. A specific guidance on the conditions under which these methods can be used to identify a na-nomaterial by employing appropriate quantity or metrics conversion should be provided.  The ‘polydispersity‘ and ‘upper size limit‘ Polydispersity is a challenge for the measurement of particle size distribution for the EC NM definition, specifically for materials with high polydispersity index and broad size distribution especially when the volume or mass of the fraction containing particles below 100 nm is very small. Therefore a dedicated guidance should be provided that allows applying an upper size limit in measurements and particle statistics. KW - Nanomaterial KW - EU Definition of nanomaterial KW - Nanoparticles PY - 2015 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-432339 UR - http://www.nanodefine.eu/publications/reports/NanoDefine_TechnicalReport_D7.10.pdf SP - 1 EP - 68 PB - The NanoDefine Consortium CY - Wageningen, The Netherlands AN - OPUS4-43233 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nadejde, C. A1 - Neamtu, M. A1 - Schneider, Rudolf A1 - Hodoroaba, Vasile-Dan A1 - Ababei, G. A1 - Panne, Ulrich T1 - Catalytical degradation of relevant pollutants from waters using magnetic nanocatalysts N2 - The catalytic efficiency of two magnetically responsive nanocatalysts was evaluated for the Degradation of Reactive Black 5 (RB5) and Reactive Yellow 84 (RY84) azo dyes using hydrogen peroxide as oxidant undervery mild conditions (atmospheric pressure, room temperature). In order to obtain the nanocatalysts, thesurface of magnetite (Fe3O4) nanoparticles, prepared by a co-precipitation method, was further modified with ferrous oxalate, a highly sensitive non-hazardous reducing agent. The sensitized nanomaterials were characterized by X-ray diffraction, scanning and transmission electron microscopy, energy-dispersive X-ray spectroscopy and vibrating sample magnetometry, and used in the catalytic wet hydrogen peroxideoxidation (CWHPO) of RB5 and RY84, in laboratory-scale experiments. The effect of important variables such as catalyst dosage, H2O2 concentration, and contact time was studied in the dye Degradation kinetics. The results showed that it was possible to remove up to 99.7% dye in the presence of 20 mM H2O2 after 240 min of oxidation for a catalyst concentration of 10 g L−1at 25◦C and initial pH value of 9.0.CWHPO of reactive dyes using sensitized magnetic nanocatalysts can be a suitable pre-treatment methodfor complete decolorization of effluents from textile dyeing and finishing processes, once the Optimum operating conditions are established. T2 - 10th International Conference On Physics Of Advanced Materials (ICPAM-10) CY - Iasi, Romania DA - 22.09.2014 KW - Sensitized magnetic nanocatalysts KW - Catalytic wet peroxide oxidation KW - Reactive azo dye degradation PY - 2015 UR - http://www.sciencedirect.com/science/article/pii/S0169433215000483 DO - https://doi.org/10.1016/j.apsusc.2015.01.036 SN - 0169-4332 VL - 352 SP - 42 EP - 48 PB - Elsevier B.V. AN - OPUS4-38760 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nadejde, C. A1 - Neamtu, Mariana A1 - Hodoroaba, Vasile-Dan A1 - Schneider, Rudolf A1 - Ababei, G. A1 - Panne, Ulrich T1 - Characterization and application of Green Fenton-like catalysts for the removal of water pollutants N2 - Three types of magnetite-chitosan/iron oxalate/iron citrate nanoparticles (NP) were evaluated as magnetic heterogeneous catalysts for water treatment. T2 - PTIM 2015, 1st International Caparica Conference on Pollutant Toxic Ions and Molecules CY - Caparica, Portugal DA - 02.112015 KW - Bisphenol A degradation KW - Nanocatalysts KW - Characterization KW - Fenton oxidation KW - Wastewater PY - 2015 SN - 978-989-99361-6-4 SP - 186 EP - 187 PB - Proteomass AN - OPUS4-40082 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nadejde, C. A1 - Neamtu, M. A1 - Hodoroaba, Vasile-Dan A1 - Schneider, Rudolf A1 - Paul, Andrea A1 - Ababei, G. A1 - Panne, Ulrich T1 - Tannic acid- and natural organic matter-coated magnetite as green Fenton-like catalysts for the removal of water pollutants N2 - The use of magnetic materials as heterogeneous catalysts has attracted increasing attention in the last years since they proved to be promising candidates for water treatment. In the present study, two types of surface-modified magnetite (Fe3O4) nanoparticles, coated with non-hazardous naturally occurring agents—either tannic acid (TA) or dissolved natural organic matter—were evaluated as magnetic heterogeneous catalysts. Chemical synthesis (co-precipitation) was chosen to yield the nanocatalysts due to its well-established simplicity and efficiency. Subsequently, the properties of the final products were fully assessed by various characterization techniques. The catalytic activity in heterogeneous oxidation of aqueous solutions containing a model pollutant, Bisphenol A (BPA), was comparatively studied. The effect of operational parameters (catalyst loading, H2O2 dosage, and UV light irradiation) on the Degradation performance of the oxidation process was investigated. The optimum experimental parameters were found to be 1.0 g/L of catalysts and 10 mM H2O2, under UV irradiation. The highest mineralization rates were observed for Fe3O4-TA catalyst. More than 80 % of BPA was removed after 30 min of reaction time under the specified experimental conditions. The obtained results showed that the two catalysts studied here are suitable candidates for the removal of pollutants in wastewaters by means of heterogeneous reaction using a green sustainable treatment method. KW - Nanocatalysts KW - Photo-Fenton oxidation KW - Wastewater KW - Bisphenol A degradation KW - Environment KW - Mitigation PY - 2015 UR - http://link.springer.com/article/10.1007/s11051-015-3290-0 DO - https://doi.org/10.1007/s11051-015-3290-0 VL - 17 IS - 12 SP - 476 (1) EP - 476 (10) PB - Springer AN - OPUS4-38758 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan T1 - Nanoparticles and films characterization: Electron microscopy and related techniques N2 - Scanning Electron Microscopy (SEM) represents the mostly widespread method available in analytical laboratories dedicated to the characterization of physical properties such as morphology of various solid materials from ‘micro-’ down to the nanometre scale. The use of secondary electrons excited by a sharply, nm-focussed primary electron beam enables at any modern SEM to image objects with high in-depth and lateral sensitivity, i.e. with high spatial resolution. Hence, e. g. nanoparticles (NPs) are able to be easily characterized with respect to their individual size and shape, but also to the morphology of their surface. By preparing the nano-objects on thin membranes as electron transparent samples it is possible to perform electron microscopy in the transmission mode (TEM and TSEM). The corresponding transmission (i.e. mass-thickness) contrast reveals in-depth information, but is also well suited for dimensional measurements in the 2D projection image. Both the surface sensitive mode and the transmission one are meanwhile available at any modern SEM. If an X-ray spectrometer is attached to an electron microscope, it is possible to analyse the characteristic X-rays induced by electron bombardment. Most electron microscopes have attached an energy dispersive X-ray spectrometer (EDX) so that EDX elemental maps can be carried out. Recent technological developments of high throughput EDS detectors and their advantages regarding high-resolution X-ray analysis down to the nm range are reviewed. High-resolution micrographs (SEM, TSEM, TEM) and corresponding X-ray elemental maps on various representative nanoparticles, but also layered samples prepared in cross-section, will be presented and discussed. The importance of selecting the best suited analysis conditions will be highlighted. Also other, often challenging, topics such as sample preparation and image data processing will be critically addressed by practical examples. Further analytical techniques able to be employed at an electron microscope, like cathodoluminescence (CL) or micro-X-ray fluorescence (µXRF) will be briefly surveyed. T2 - Nanoscience Meets Metrology - Synthesis, Characterization, Testing and Applications of Validated Nanoparticles - International Summer School CY - Turin, Italy DA - 04.09.2016 KW - Nanoparticles KW - Electron microscopy KW - High-resolution KW - Thin films KW - X-ray spectroscopy PY - 2016 UR - http://www.setnanometro.eu/events/ AN - OPUS4-37325 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ortel, Erik A1 - Häusler, Ines A1 - Österle, Werner A1 - Narbey, S. A1 - Oswald, F. A1 - Andersen, I. H. A1 - Holzweber, Markus A1 - Unger, Wolfgang A1 - Hodoroaba, Vasile-Dan T1 - In-depth structural and chemical characterization of engineered TiO2 films N2 - Analytical routines for a comprehensive in-depth morphological, structural, and chemical characterization of functionalized TiO2 films by using different state-of-the-art analytical techniques are presented and discussed with the main objective to identify potential reference TiO2 coating parameters able to be certified at a later stage. TiO2 films fabricated by two different synthetic procedures as representative for two main large-scale applications were selected: (i) pulsed d.c. magnetron sputtering for photocatalytic applications and (ii) screen printing from preformed anatase nanoparticles. The screen-printed films were further loaded with a sensitizing dye for application as a dye-sensitized solar cell. Film properties such as microstructure and crystallographic texture of pulsed d.c. magnetron sputtering synthesized films were systematically studied by means of scanning nanobeam electron diffraction in a transmission electron microscope and the surface and inner morphology by scanning electron microscopy. The dye distribution over the depth of screen-printed TiO2 layers was analyzed before and after dye-loading by means of energy dispersive X-ray spectroscopy at scanning electronmicroscope, Auger electron spectroscopy and time-of-flight secondary ion mass spectrometry. The long-term goal of the present study is the improvement of quality of the TiO2 film parameters as measured by using different types of reference TiO2 coatings having specific parameters certified. T2 - 16th European Conference on Applications of Surface and Interface Analysis ECASIA'15 CY - Granada, Spain DA - 28.09.2015 KW - Mapping KW - Line scan KW - Depth profiling KW - TiO2 films KW - Crystallinity KW - Ru dye sensitizer PY - 2016 DO - https://doi.org/10.1002/sia.5966 SN - 0142-2421 SN - 1096-9918 VL - 48 SP - 664 EP - 669 PB - John Wiley & Sons, Ltd. AN - OPUS4-36791 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Babick, F. A1 - Mielke, Johannes A1 - Wohlleben, W. A1 - Weigel, St. A1 - Hodoroaba, Vasile-Dan T1 - How reliably can a material be classified as a nanomaterial? Available particle-sizing techniques at work N2 - Currently established and projected regulatory frameworks require the classification of materials (whether nano or non-nano) as specified by respective definitions, most of which are based on the size of the constituent particles. This brings up the question if currently available techniques for particle size determination are capable of reliably classifying materials that potentially fall under these definitions. In this study, a wide variety of characterisation techniques, including counting, fractionating, and spectroscopic techniques, has been applied to the same set of materials under harmonised conditions. The selected materials comprised well-defined Quality control materials (spherical, monodisperse) as well as industrial materials of complex shapes and considerable polydispersity. As a result, each technique could be evaluated with respect to the determination of the number-weighted median size. Recommendations on the most appropriate and efficient use of techniques for different types of material are given. KW - Nanomaterial classification KW - Nanoparticle KW - Number-weighted median size KW - Tiered KW - Particle size analysis KW - Nanometrology KW - Characterisation techniques PY - 2016 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-367922 UR - http://link.springer.com/article/10.1007/s11051-016-3461-7 DO - https://doi.org/10.1007/s11051-016-3461-7 SN - 1388-0764 SN - 1572-896X VL - 18 IS - 6 SP - Article 158, 1 EP - 40 PB - Springer AN - OPUS4-36792 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ortel, Erik A1 - Hertwig, Andreas A1 - Berger, D. A1 - Esposito, P. A1 - Rossi, A. M. A1 - Kraehnert, R. A1 - Hodoroaba, Vasile-Dan T1 - New approach on quantification of porosity of thin films via electron-excited X‑ray spectra N2 - One of the crucial characteristics of functionalized thin films is their porosity (i.e., the ratio between the pore volume and the volume of the whole film). Due to the very low amount of material per coated area corresponding to thin films, it is a challenge for analytics to measure the film porosity. In this work, we present an Approach to determine the porosity of thin films by means of electron probe microanalysis (EPMA) either by wavelength-dispersive X-ray spectrometry (WDX) or by energy-dispersive X-ray spectrometry (EDX) with a scanning electron microscope (SEM). The procedure is based on the calculation of the film mass deposition from electron-excited X-ray spectra. The mass deposition is converted into film density by division of measured film thickness. Finally, the film porosity is calculated from the measured film density and the density of bulk, nonporous film material. The general applicability of the procedure to determine the porosity is demonstrated on thin templated mesoporous TiO₂ films, dip-coated on silicon wafer, with controlled porosity in the range of 15 to 50%. The high accuracy of the mass deposition as determined from X-ray spectra was validated with independent methods (ICP-OES and weighing). Furthermore, for the validation of the porosity results, ellipsometry, interference fringes method (IFM), and focused ion beam (FIB) cross sectioning were employed as independent techniques. Hence, the approach proposed in the present study is proven to be suited as a new analytical tool for accurate and relatively fast determination of the porosity of thin films. KW - Porosity KW - X-rays KW - EDX KW - Thin film KW - TiO2 KW - Density KW - Mass deposition KW - STRATAGem PY - 2016 UR - http://pubs.acs.org/doi/abs/10.1021/acs.analchem.6b00847 DO - https://doi.org/10.1021/acs.analchem.6b00847 VL - 88 IS - 14 SP - 7083 EP - 7090 PB - ACS Publications CY - 1155 Sixteenth Street N.W., Washington, DC 20036 AN - OPUS4-36911 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Holzweber, Markus A1 - Unger, Wolfgang A1 - Hodoroaba, Vasile-Dan T1 - Ionic liquids as a reference material candidate for the quick performance check of energy dispersive X-ray spectrometers for the low energy range below 1 keV N2 - Ionic liquids (ILs) are proposed as simple and efficient test materials to evaluate the performance of energy dispersive X-ray spectrometers (EDS) in the low energy range below 1 keV. By only one measurement, C Kα, N Kα, O Kα, and F Kα X-ray lines can be excited. Additionally, the S Kα line at 2.3 keV and, particularly, the S L series at 149 eV complete the picture with X-ray lines offered by the selected ILs. The well-known (certifiable) elemental composition of the ILs selected in the present study can be used to check the accuracy of results produced with the available EDS quantification routines in the low energy range, simultaneously, for several low atomic number elements. A comparison with other reference materials in use for testing the performance of EDS in the low energy range is included. KW - Ionic liquids KW - EDX KW - CRM KW - Reference material KW - Low energy KW - X-rays PY - 2016 UR - http://pubs.acs.org/doi/abs/10.1021/acs.analchem.6b01444 DO - https://doi.org/10.1021/acs.analchem.6b01444 SN - 0003-2700 SN - 1520-6882 VL - 88 IS - 14 SP - 6967 EP - 6970 PB - ACS Publications CY - 1155 Sixteenth Street N.W., Washington, DC 20036 AN - OPUS4-36912 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Avishai, N. A1 - Avishai, A. A1 - Hodoroaba, Vasile-Dan T1 - What is the effective geometrical collection efficiency of your XEDS detector? Routine procedure applied in a SEM laboratory N2 - In this contribution, two large-area EDS detectors were tested according to the procedure proposed by Procop et al. (2015). In a first step, the optimal working distance (WD) in the two different SEM chambers was determined by moving the sample stage in the Z direction and monitoring the count rates at a magnification of 10,000 and a field of view of 25.6 µm. The WD at which the highest intensity was measured was selected as the optimal position, corresponding to the crossover between the EDS detector optical axis and electron beam optical axis. Next the Cu Kα peak was measured at different relative EDS positions while it was partially removed from the fully inserted position. The spectrum at each location was collected for 10 sec using the highest pulse rate and intermediate current to minimize pile up effects. The ‘inverse squared normalized intensities vs. relative EDS position’ used to extract the true detector – specimen distance shows a non-linear relationship even at the minimal relative positions, which indicates shadowing due to obstruction or use of an unsuitable and/or off-centered collimator. The normalized count rates measured as a function of the EDS distances, results in a too low GCE (too low true solid angles) for both tested detectors. The source of losses of signal was shadowing caused by collimators. T2 - Microscopy & Microanalysis 2016 Meeting CY - Columbus, Ohio, USA DA - 24.07.2016 KW - EDS KW - Solid angle KW - Net effective sensor area KW - X-ray yields PY - 2016 AN - OPUS4-36982 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kim, K. J. A1 - Kim, A. S. A1 - Jang, J. S. A1 - Suh, J. K. A1 - Wirth, Thomas A1 - Hodoroaba, Vasile-Dan A1 - Unger, Wolfgang A1 - Araujo, J. R. A1 - Archanjo, B. S. A1 - Galhardo, C. E. A1 - Damasceno, J. A1 - Achete, C. A. A1 - Wang, H. A1 - Wang, M. A1 - Bennett, J. A1 - Simons, D. A1 - Kurokawa, A. A1 - Terauchi, S. A1 - Fujimoto, T. A1 - Streeck, C. A1 - Beckhoff, B. A1 - Spencer, S. A1 - Shard, A. T1 - Measurement of mole fractions of Cu, In, Ga and Se in Cu(In,Ga)Se2 films N2 - CCQM key comparison K-129 for the quantitative analysis of Cu(In,Ga)Se2 (CIGS) films has been performed by the Surface Analysis Working Group (SAWG) of the Consultative Committee for Amount of Substance (CCQM). The objective of this key comparison is to compare the equivalency of the National Metrology Institutes (NMIs) and Designated Institutes (DIs) for the measurement of mole fractions of Cu, In, Ga and Se in a thin CIGS film. The measurand of this key comparison is the average mole fractions of Cu, In, Ga and Se of a test CIGS alloy film in the unit of mole fraction (mol/mol). Mole fraction with the metrological unit of mol/mol can be practically converted to atomic fraction with the unit of at%. In this key comparison, a CIGS film with certified mole fractions was supplied as a reference specimen to determine the relative sensitivity factors (RSFs) of Cu, In, Ga and Se. The mole fractions of the reference specimen were certified by isotope dilution - inductively coupled plasma/mass spectrometry (ID-ICP/MS) and are traceable to the SI. A total number counting (TNC) method was recommended as a method to determine the signal intensities of the constituent elements acquired in the depth profiles by Secondary Ion Mass Spectrometry (SIMS), X-ray Photoelectron Spectroscopy (XPS) and Auger Electron Spectroscopy (AES). Seven NMIs and one DI participated in this key comparison. The mole fractions of the CIGS films were measured by depth profiling based-SIMS, AES and XPS. The mole fractions were also measured by non-destructive X-Ray Fluorescence (XRF) Analysis and Electron Probe Micro Analysis (EPMA) with Energy Dispersive X-ray Spectrometry (EDX). In this key comparison, the average degrees of equivalence uncertainties for Cu, In, Ga and Se are 0.0093 mol/mol, 0.0123 mol/mol, 0.0047 mol/mol and 0.0228 mol/mol, respectively. These values are much smaller than that of Fe in a Fe-Ni alloy film in CCQM K-67 (0.0330 mol/mol). This means that the quantification of multi-element alloy films is possible by depth profiling analysis using the TNC method. KW - CIGS KW - Key comparison KW - CCQM KW - SIMS KW - XPS KW - AES KW - XRF KW - EPMA PY - 2016 UR - http://iopscience.iop.org/article/10.1088/0026-1394/53/1A/08011 DO - https://doi.org/10.1088/0026-1394/53/1A/08011 SN - 0026-1394 SN - 1681-7575 VL - 53, Technical Supplement SP - Article 08011, 1 EP - 19 PB - IOP Publishing AN - OPUS4-38110 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mielke, Johannes A1 - Dohányosová, P. A1 - Lopez, S. A1 - Hodoroaba, Vasile-Dan T1 - Electrospray deposition of nanoparticles on TEM grids N2 - The authors have tested the prototype of an electrospray deposition system developed by the company RAMEM under its trademark IONER. To test the prototype and assess its performance, several materials have been sprayed onto TEM grids and the resulting particle distributions were compared to more traditional sample preparation strategies like the “drop on grid” method. Operation parameters such as the sample flow-rate, capillary – substrate distance, electric field strength and sampling period length have been optimized. It was found that the particles deposited by electrospray generally show a much more homogeneous spatial distribution on the substrate and a substantial increase of the number of single particles, which are much better suited to an automatic image evaluation procedure than the agglomerated particles observed otherwise. The applicability of the technique to a broad range of materials is demonstrated by various examples, but also the influence of the substrate, the choice of the particular TEM grid, on the obtained spatial particle distribution is assessed. KW - Electrspray deposition KW - Electron microscopy KW - Nanoparticles KW - Sample preparation PY - 2016 UR - https://www.cambridge.org/core/journals/microscopy-and-microanalysis/article/electrospray-deposition-of-nanoparticles-on-tem-grids/459E634B7F74D474A19E15E69DA82E5D DO - https://doi.org/10.1017/S1431927616010072 SN - 1431-9276 SN - 1435-8115 VL - 22 IS - Suppl 3 SP - 1846 EP - 1847 PB - Cambridge AN - OPUS4-38436 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mielke, Johannes A1 - Babick, F. A1 - Uusimäki, T. A1 - Müller, P. A1 - Verleysen, E. A1 - Hodoroaba, Vasile-Dan T1 - Evaluation of electron microscopy techniques for the purpose of classification of nanomaterials N2 - Electron microscopy techniques such as TEM, STEM, SEM or TSEM (transmission in SEM) are capable of assessing the size of individual nanoparticles accurately. Nevertheless, the challenging aspect is sample preparation from powder or liquid form on the substrate, so that a homogeneous distribution of well-separated (deagglomerated) particles is attained. The systematic study in this work shows examples where the extraction of the critical, smallest particle dimension - as the decisive particle parameter for the classification as a NM - is possible by analysing the sample after ist simple, dry preparation. The consequences of additional typical issues like loss of information due to screening of smaller particles by larger ones or the (in)ability to access the constituent particles in aggregates are discussed. KW - Nanomaterial KW - Electron microscopy KW - Particle size distribution KW - Classification PY - 2016 UR - https://www.cambridge.org/core/journals/microscopy-and-microanalysis/article/evaluation-of-electron-microscopy-techniques-for-the-purpose-of-classification-of-nanomaterials/0B66A25EA7F7A5A3622C02A359C8304F DO - https://doi.org/10.1017/S1431927616005523 SN - 1431-9276 SN - 1435-8115 VL - 22 IS - Suppl. 3 SP - 936 EP - 937 PB - Cambridge AN - OPUS4-38445 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - RPRT A1 - Babick, F. A1 - Mielke, Johannes A1 - Hodoroaba, Vasile-Dan A1 - Weigel, St. A1 - Wohlleben, W. T1 - Critical review manuscript with real-world performance data for counting, ensemble and separating methods including in-build mathematical conversion to number distributions submitted for publication N2 - The content of the paper is the assessment of the performance of (conventional) measurement techniques (MTs)with respect to the classification of disperse materials according to the EC recommendation for a definition of nanomaterial. This performance essentially refers to the accurate assessment of the number weighted median of (the constituent) particles. All data and conclusions are based on the analytical study conducted as real-world performance testing. It comprised different types of MTs (imaging, counting, fractionating, spectroscopic and integral) as well as different types of materials. Beside reference materials with well-defined size distribution the study also included several commercial powders (variation of particle composition, morphology, coating, size range and polydispersity). In order to ensure comparability of measurement results, the participants were guided to use uniform protocols in sample preparation, conducting measurements, data analysis and in reporting results. Corresponding documents have been made public, in order to support the reviewing process of the paper, respectively to ensure the reproducibility of data by other users under the same conditions. The scientific paper relies on a comprehensive set of revised measurement data reported in uniform templates, completely describes the experimental procedures and discusses the MTs’ performance for selected materials in detail. Even more, the study is summarised and evaluated, which leads to recommendations for the use of MTs within a tiered approach of NM characterisation. In addition, the paper critically examines the factors that may affect the outcome of such a comparison among different MTs. KW - Nanomaterial KW - Measurement techniques KW - EC definition of nanomaterial KW - Nanoparticles PY - 2016 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-389646 UR - http://www.nanodefine.eu/index.php/downloads/nanodefine-technical-reports UR - http://www.nanodefine.eu/publications/reports/NanoDefine_TechnicalReport_D3.3.pdf SP - D3.3, 1 EP - 72 PB - The NanoDefine Consortium CY - Wageningen, The Netherlands AN - OPUS4-38964 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -