TY - JOUR A1 - Usmani, Shirin A1 - Stephan, Ina A1 - Huebert, Thomas A1 - Kemnitz, E. T1 - Nano metal fluorides for wood protection against fungi JF - ACS Applied Nano Materials N2 - Wood treated with nano metal fluorides is found to resist fungal decay. Sol−gel synthesis was used to synthesize MgF2 and CaF2 nanoparticles. Electron microscopy images confirmed the localization of MgF2 and CaF2 nanoparticles in wood. Efficacy of nano metal fluoride-treated wood was tested against brown-rot fungi Coniophora puteana and Rhodonia placenta. Untreated wood specimens had higher mass losses (∼30%) compared to treated specimens, which had average mass loss of 2% against C. puteana and 14% against R. placenta, respectively. Nano metal fluorides provide a viable alternative to current wood preservatives. KW - Brown-rot fungi KW - Coniophora puteana KW - Fluoride nanoparticles KW - Fluorolytic sol−gel KW - Rhodonia placenta KW - SEM wood characterization KW - Wood protection PY - 2018 DO - https://doi.org/10.1021/acsanm.8b00144 SN - 2574-0970 VL - 2018 SP - 1 EP - 6 PB - American Chemical Society (ACS) CY - Washington DC, US AN - OPUS4-44730 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Tiebe, Carlo A1 - Neumann, Patrick P. A1 - Hüllmann, Dino A1 - Bartholmai, Matthias A1 - Hofmann, Michael T1 - VDI/VDE 3518 Technische Richtlinie für Multigassensoren N2 - Der Beitrag präsentiert die erarbeiteten technischen Richtlinien zur Anwendung und Prüfung von Multigassensoren innerhalb der Richtlinienreihe VDI/VDE 3518 sowie in diesem Zusammenhang die Möglichkeiten der Sensorprüfung im akkreditierten Prüflabor des Fachbereichs 8.1 der BAM. Im Speziellen wird das in Kürze veröffentlichte Blatt 3 der Richtlinienreihe vorgestellt, das Bezug auf Multigassensoren für geruchsbezogene Messungen mit elektronischen Nasen nimmt. T2 - NetMon International training course - Low-cost Environmental Monitoring CY - BAM, Berlin, Germany DA - 09.04.2019 KW - Multigassensoren KW - Prüfung KW - Richtlinie PY - 2018 AN - OPUS4-47885 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Tiebe, Carlo A1 - Neumann, Patrick P. A1 - Bartholmai, Matthias A1 - Banach, Ulrich A1 - Gawlitza, Kornelia A1 - Hübert, Thomas T1 - Development of a gas standard generator N2 - Pollution through emission of toxic gases is an increasing problem for the environment. It affects similarly agricultural, industrial and urban areas. In future, environmental emissions in ambient air must be monitored at even lower concentrations as nowadays. One environmental relevant compound is ammonia and its conversion product ammonium that have strong negative impact on human health and ecosystems. Most ammonia measurements in ambient air are performed in the range below 1000 nmol·mol 1 and thus there is a need for reliable traceable ammonia gas standards and in addition in situ analytical procedures for monitoring (in ambient air to avoid that thresholds are exceeded). Therefore, the use of reference materials is necessary for development accompanying test or for calibration, e. g. of structure-integrated sensors and mobile multi-gas sensors. The developed gas standard generator produces gas mixtures that comply with the metrological traceability for ammonia gas standards in the desired environmentally relevant measurement range. The method is based on the permeation of ammonia through a membrane at constant temperature and pressure. The resulting ammonia penetrant gas flow is then mixed with a carrier gas flow to generate a gas standard flow of known concentration. The dynamic rage is enlarged by using a two dilution steps. Depending on the permeation rate, generable molar fractions are possible in the range nmol·mol-1 to a few µmol·mol-1. We present the design of an ammonia gas standard generator and first results of the characterisation of its individual components supporting the uncertainty assessment according to GUM for stable gas concentrations in this range. The relative uncertainty of the generated ammonia gas standard is smaller than 4 % (k = 2). T2 - Networked Environmental Monitoring – from sensor principles to novel services CY - BAM, Berlin, Germany DA - 06.02.2018 KW - Permeation KW - Gas standard generator PY - 2018 AN - OPUS4-44089 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Tiebe, Carlo A1 - Detjens, Marc A1 - Fechner, A. A1 - Sielemann, S. A1 - Lorek, A. A1 - Wernecke, R. A1 - Stoltenberg, H. T1 - Development of a device for staged determination of water activity and moisture content T2 - Proceedings N2 - Moisture content and water activity are important parameters for quality characterization of products like bulk materials, powders, granules. Thus, an exact determination is necessarily required in a wide range of industrial applications. Moisture of materials is the content of non-chemically bound water in a solid or liquid. Water activity (aW) is a characteristic/parameter of the non-chemically bound ("free") water in materials and is measured as humidity over a solid/liquid surface at constant temperature (equilibrium moisture content). It is an important parameter to characterize the quality of e. g. pharmaceutical and food products. In our contribution, we present the developed MOISHUM device for staged determination of water activity and moisture content of liquid and solid materials. T2 - Eurosensors 2018 CY - Graz, Austria DA - 09.09.2018 KW - Water activity KW - Moisture KW - Coulometric humidity sensor KW - MOISHUM PY - 2018 SN - 2504-3900 SP - 7253, 1 EP - 4 PB - MDPI AN - OPUS4-46210 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tiebe, Carlo A1 - Detjens, Marc A1 - Banach, Ulrich A1 - Hübert, Thomas T1 - Measurement uncertainty of coulometric trace humidity sensors JF - tm - Technisches Messen N2 - Especially trace amounts of water vapour in gases can be reliably determined by coulometric trace humidity sensors. The principle of these sensors is based on water vapour absorption in a hygroscopic layer and its subsequent electrolytic decomposition. The calibration of sensors was performed in the humidity range, expressed as frost point temperature, from −30°C to −80°C . This range is equivalent to volume fractions smaller than 376 µL·L−1. Generated humidity was measured with coulometric sensors and a chilled dew point hygrometer that was used as reference. An empirical non-linear function was found between sensor signal and measured reference humidity. This function consists of two parameters with a measurement uncertainty. Both calibration parameters were checked by means of one-way analysis of variance. It showed that gas specific function can be used for humidity measurement in nitrogen, hydrogen, dinitrogen monoxide, compressed and synthetic air. It is possible to determine trace humidity in all tested gases with an expanded uncertainty less than 2.1 K (coverage factor k=2 ) regarding frost point temperature. KW - Trace humidity KW - Coulometric sensor KW - Measurement uncertainty KW - ANOVA PY - 2018 DO - https://doi.org/10.1515/teme-2018-0031 SN - 0171-8096 VL - 85 IS - 12 SP - 746 EP - 753 PB - De Gruyter CY - Oldenbourg AN - OPUS4-45959 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Tiebe, Carlo A1 - Detjens, Marc A1 - Banach, Ulrich T1 - Messunsicherheiten von Feuchtesensoren N2 - Inhalt dieses Seminarbeitrags sind Hygrometer und Kenngrößen der Hygrometrie, Anforderungen an ein Prüflabor sowie die Bestimmung der Messunsicherheit bei der Prüfung von Feuchtesensoren wie auch Prüfung auf signifikante Abweichungen. T2 - 308. PTB-Seminar Berechnung der Messunsicherheit – Empfehlungen für die Praxis CY - Berlin, Germany DA - 15.03.2018 KW - Messunsicherheit KW - Feuchtesensor KW - Prüflabor PY - 2018 UR - https://www.ptb.de/cms/fileadmin/internet/fachabteilungen/abteilung_8/8.4_mathematische_modellierung/308._PTB_Seminar/Vortraege/4PraxisII/Messunsicherheiten_von_Feuchtesensoren.pdf AN - OPUS4-44546 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Tiebe, Carlo A1 - Bartholmai, Matthias A1 - Gawlitza, Kornelia T1 - Two tasks in environmental monitoring - calibration and characterization of gas sensors and remote sensing with multicopter platforms - Part 2 N2 - Emissions of ammonia into the environment are mainly caused by agriculture, but also by combustion processes in waste and by road traffic. Even at low concentrations, this substance is not only an odour nuisance, but also a substance with ecological and climatic relevance. Therefore, BAM tested commercial electrochemical, and metal oxide based sensors, which have limited suitability for measuring in the environmental molar fraction range. Alternatively, own developments for the detection of ammonia in the trace range were implemented, wherein the analyte is measured by changing the fluorescence of a BODIPY dye at 550 nm by means of a portable fluorescence sensor directly from the gas phase. For the calibration of ammonia sensors and measuring instruments, a stationary system based on the mixture of certified test gases from pressure cylinders with calibrated mass flow controllers is available. A test gas generator was developed for on-site calibration and testing of sensors and measuring devices. The generation of ammonia-containing gases in the environmental relevant range of levels below 1000 nmol/mol is carried out by the permeation method according to ISO 6145-10. For the traceability of ammonia, standards are provided and further developed by the National Metrological Institutes and designated institutes. Metrological standards are based on SI units and are a basis for traceability of sensors or gas analysers. T2 - Aarhus University, Department of Environmental Science, External seminar with Matthias Bartholmai and Carlo Tiebe CY - Roskilde, Denmark DA - 29.08.2018 KW - Environmental monitoring KW - Test gas generation KW - Fluorescence sensor KW - Ammonia PY - 2018 AN - OPUS4-45842 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Tiebe, Carlo A1 - Banach, Ulrich A1 - Hübert, Thomas T1 - VDI/VDE-Richtlinie für Multigassensoren N2 - Technische Richtlinien enthalten Empfehlungen sowie Anforderungen zum Stand der Technik zur Aufstellung von Bewertungskriterien und Behandlung wissenschaftlich-technischer Fragen. Sie fördern den Erfahrungsaustausch und Technologietransfer zwischen Entwicklern und Anwendern. In unserem Beitrag stellen wir die Richtlinie VDI/VDE 3518 vor. Diese Richtlinienreihe definiert Begriffe, beschreibt den Aufbau und klassifiziert Multigassensoren (Blatt 1), befasst sich mit den Anforderungen für das Unterscheiden, Erkennen und mengenmäßige Bestimmen von Gemischen gasförmiger Stoffe und die Prüfung von Multigassensoren (Blatt 2) und gibt Anleitung für geruchsbezogene Messungen mit „Elektronischen Nasen“ (Blatt 3). Multigassensoren können als elektronische Nasen in Anlehnung an den biologischen Geruchssinn zur Wahrnehmung und Charakterisierung von Gerüchen eingesetzt werden. Die Spezifik von Multigassensoren besteht darin, dass durch die Wahl und Betriebsweise der Sensoren eine Vielzahl von geeigneten Messsignalen erzeugt werden, aus denen mit mathematischen Verfahren die für die Anwendung gewünschten Informationen extrahiert werden. Dazu ist ein Training der Messeinrichtung mit Proben bekannter Eigenschaften notwendig. Diese Richtlinie soll Herstellern, Anbietern und Nutzern als ein Leitfaden Informationen und Erläuterungen für die korrekte und sichere Arbeit mit Multigassensoren liefern. Sie soll Prüflaboratorien und Anwendern helfen, bei der Beurteilung von Qualitätsmerkmalen einheitlich vorzugehen und dafür gemeinsame Randbedingungen anzugeben T2 - 7. Anwendertreffen Ionenmobilitätsspektrometrie CY - Reutlingen, Germany DA - 06.03.2018 KW - Elektronische Nase KW - Multigassensorik KW - Richtlinie PY - 2018 AN - OPUS4-44452 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Tiebe, Carlo A1 - Detjens, Marc A1 - Fechner, A. A1 - Sielemann, S. A1 - Lorek, A. A1 - Wernecke, R. A1 - Stoltenberg, H. T1 - Development of a device for staged determination of water activity and moisture content N2 - Moisture content and water activity are important parameters of product characterization; thus, an exact determination is necessarily required in a wide range of industrial applications. Moisture content of materials is the content of non-chemically bound water in a solid or liquid. Water activity (aW) is a characteristic/parameter of the non-chemically bound ("free") water in materials and is measured as humidity over a solid/liquid surface at constant temperature (equilibrium moisture content). It is an important parameter to characterize the quality of pharmaceutical and food products. In our contribution, we present a developed device for staged determination of water activity and moisture content of liquid and solid materials. T2 - Eurosensors 2018 CY - Graz, Austria DA - 09.09.2018 KW - Water activity KW - Moisture content KW - Measuring cell KW - Sorption isotherm PY - 2018 AN - OPUS4-45943 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Tiebe, Carlo A1 - Banach, Ulrich A1 - Hübert, Thomas A1 - Bartholmai, Matthias A1 - Noske, Reinhard A1 - Gawlitza, Kornelia A1 - Rurack, Knut T1 - Ammoniakbestimmung mit einem portablen Fluoreszenzsensor N2 - Ammoniakemissionen in die Umwelt erfolgen insbesondere durch die Landwirtschaft (93,6 %), aber auch durch Verbrennungsprozesse in der die Abfallwirtschaft (2,3 %) und den Straßenverkehr (1,8 %). Dieser Stoff ist selbst in geringen Konzentrationen nicht nur eine Geruchsbelästigung, sondern auch eine Substanz mit ökologischer und klimatischer Relevanz. Die Bestimmung von Ammoniak in relevanten Konzentrationen von kleiner 25 μg m-3 erfolgt im Allgemeinen über NH4+ als Analyten, spektralfotometrisch oder mit der Ionenchromatographie nach Überführung in die flüssige Phase. Wegen der niedrigen Konzentrationen an Ammoniak in der Außenluft wird meist eine gesammelte Probe verwendet oder die Bestimmung erfolgt nach einer aktiven, anreichernden Probenahme. Die eigenen Arbeiten sollen dazu beitragen, die Ammoniak-Bestimmung in der Außenluft präziser, sowie schneller und kostengünstiger zu machen. Die BAM prüfte daher kommerzielle elektrochemische und Metalloxid-basierte Sensoren, die für diesen Konzentrationsbereich aber nur bedingt geeignet sind. Deshalb wurden alternativ eigene Entwicklungen zum Nachweis von Ammoniak im Spurenbereich aufgenommen, wobei der Analyt über die Änderung der Fluoreszenz eines BODIPY-Farbstoffs bei 550 nm mittels eines portablen Fluoreszenz-Sensors direkt aus der Gasphase gemessen wird. Zur Kalibrierung von Ammoniak-Sensoren und -Messgeräten steht ein stationäres System basierend auf der Mischung von zertifizierten Prüfgasen aus Druckflaschen mit kalibrierten Massendurchfluss-regler (MFC) zur Verfügung. Darüber hinaus erfolgt eine chemische Analyse der verwendeten Gasgemische mittels eines Massenspektrometers. Für die Kalibrierung und Prüfung von Sensoren und Messgeräten vor Ort wurde ein mobiles Prüfsystem entwickelt. Die Generierung von Ammoniak-haltigen Gasen im Spurenbereich von 0,5 nmol/mol bis 500 nmol/mol erfolgt durch das Permeationsverfahren nach ISO 6145-10. Für die Realisierung der Rückführbarkeit der Ammoniakbestimmung werden von den Nationalen Metrologischen Instituten sowie designierten Instituten Standards bereitgestellt und auch weiterentwickelt. Die primären metrologischen Standards beruhen auf SI-Einheiten und sind die Basis für eine Rückführbarkeit der Sensoren bzw. Analysengeräte. T2 - 5. Fachsymposium „Intelligente Sensorik/Analytik und sichere Sensornetze: Innovative Technologien und neue Anwendungsfelder“ CY - Karlsruhe, Germany DA - 14.11.2018 KW - Ammoniak KW - Sensor KW - Multigassensorik PY - 2018 AN - OPUS4-46926 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schütze, A. A1 - Tiebe, Carlo T1 - Gas sensor characterization and calibration N2 - This seminar contribution contains the topics: 3S - sensitivity, selectivity and stability; sensor drift, aging and poisoning; influence of ambient conditions; gas mixing systems for sensor characterization and on-site field (re)calibration. T2 - Networked Environmental Monitoring – from sensor principles to novel services CY - BAM, Berlin, Germany DA - 06.02.2018 KW - Gas sensor KW - Gas mixing systems KW - Sensor characterization PY - 2018 AN - OPUS4-44088 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - RPRT A1 - Schukar, Vivien A1 - Bartholmai, Matthias A1 - Beck, Uwe T1 - Abschlussbericht zum DFG-Projekt „FAMOS²“ FAser-basierter Magneto-Optischer SchichtSensor N2 - Der Mangel an Anwendungsrichtlinien und Validierungsverfahren für struktur-eingebettete faseroptische Dehnungssensoren, insbesondere auf Faser-Bragg-Gitter (FBG)-Basis, führte bislang dazu, dass diese Sensoren trotz ihrer hervorragenden Eigenschaften im Bereich der kommerziellen Material- und Strukturüberwachung nur in geringem Umfange eingesetzt wurden. Fragen zur Degradation der Sensoren unter Beanspruchung, Alterung durch klimatische Einflüsse und Enthaftung infolge Belastung der Struktur konnten bisher nur theoretisch simuliert oder anhand exemplarischer Proben für einzelne einflussnehmende Parameter im Labor untersucht werden. Die Erfassung des Sensorverhaltens im Bauteil unter komplexen Umwelteinflüssen während des Bauteilbetriebes, um damit eine Aussage zur Zuverlässigkeit der Sensormessdaten zu gewinnen, war bisher nicht möglich. Im Forschungsprojekt FAMOS² wurde deshalb von 2014 bis 2018 die Realisierung eines Autodiagnoseverfahrens für faseroptische Dehnungssensoren erarbeitet, um die Funktionszuverlässigkeit und Langzeitstabilität der Sensoren während des Bauteilbetriebes innerhalb einer Bauteilstruktur bewerten zu können. Im Rahmen des Forschungsprojektes wurde gezeigt, dass ein FBG-Sensor mit einer speziell angepassten magnetostriktiven Schicht magnetisch so angeregt werden kann, dass mit einer zugeschnittenen Messmethodik zu jedem Zeitpunkt eine Bewertung der Sensorzuverlässigkeit unter Betriebsbedingungen möglich ist. Die auf den Sensor aufgebrachte magnetostriktive Schicht erzeugt bei Anregung mit einem passenden Magnetfeld eine gepulste, synthetische Dehnung. Diese Dehnung steht in einem definierten Verhältnis zum anregenden Magnetfeld und wird optisch über die Verschiebung der Bragg-Wellenlänge ausgelesen. Die Konstanz dieses Verhältnisses stellt dann ein Maß für die korrekte Funktionsfähigkeit des Sensors dar. Das Beschichtungs-verfahren, das magnetische Anregungs- und optische Ausleseverfahren, wie auch die Validierung des Sensors unter Berücksichtigung faseroptischer Effekte wurden während des Projekts konzeptionell entwickelt, aufgebaut und charakterisiert. Qualitativ kann mit diesem Verfahren zunächst eine Gut-/Schlecht-Beurteilung des Sensors vorgenommen werden. Perspektivisch bietet das Verfahren jedoch auch die Möglichkeit, verschiedene Versagensmechanismen bestimmen und klassifizieren zu können. Es zeichnete sich schon während des Projektverlaufs ab, dass sich aus den erzielten Ergebnissen über das Autodiagnoseverfahren hinaus weitere Anwendungsmöglichkeiten für den Einsatz des kombinierten magnetostriktiv-faseroptischen Sensorprinzips, beispielsweise als reiner Magnetfeldsensor, ergeben. Nach Abschluss dieses Forschungsprojekts besteht nun die Möglichkeit, den Funktionszustand faseroptischer Dehnungssensoren jederzeit unabhängig von Alter, Belastung oder Kenntnis eines Referenzzustands zu einem bestimmten Zeitpunkt bestimmen zu können. Aufbauend auf diesen Ergebnissen können weiterführende Forschungen die Messmethodik vertiefend charakterisieren und weitere Anwendungsfälle erschließen. KW - Faser-Bragg-Gitter (FBG) KW - Sensorvalidierung KW - Magnetostriktive Beschichtung KW - Structural Health Monitoring (SHM) PY - 2018 N1 - Das Dokument unterliegt der Vertraulichkeit und kann nicht zugänglich gemacht werden - Projektlaufzeit: 01.04.2014 - 31.07.2018 The document is subject to confidentiality restrictions and cannot be made accessible - project runtime: 01.04.2014 - 31.07.2018 SP - 1 EP - 28 AN - OPUS4-50418 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Neumann, Patrick P. A1 - Tiebe, Carlo A1 - Bartholmai, Matthias A1 - Hüllmann, Dino A1 - Krentel, Daniel A1 - Kluge, Martin A1 - Kohlhoff, Harald A1 - Lilienthal, A.J. T1 - Airborne Remote Gas Sensing and Mapping N2 - Leaking methane (CH4) from infrastructures, such as pipelines and landfills, is critical for the environment but can also pose a safety risk. To enable a fast detection and localization of these kind of leaks, we developed a novel robotic platform for aerial remote gas sensing. Spectroscopic measurement methods for remote sensing of selected gases lend themselves for use on mini-copters, which offer a number of advantages for inspection and surveillance over traditional methods. No direct contact with the target gas is needed and thus the influence of the aerial platform on the measured gas plume can be kept to a minimum. This allows to overcome one of the major issues with gas-sensitive mini-copters. On the other hand, remote gas sensors, most prominently Tunable Diode Laser Absorption Spectroscopy (TDLAS) sensors have been too bulky given the payload and energy restrictions of mini-copters. Here, we present the Unmanned Aerial Vehicle for Remote Gas Sensing (UAV-REGAS), which combines a novel lightweight TDLAS sensor with a 3-axis aerial stabilization gimbal for aiming on a versatile hexacopter. The proposed system can be deployed in scenarios that cannot be addressed by currently available robots and thus constitutes a significant step forward for the field of Mobile Robot Olfaction (MRO). It enables tomographic reconstruction of gas plumes and a localization of gas sources. We also present first results showing its performance under realistic conditions. T2 - Networked Environmental Monitoring – from sensor principles to novel services CY - BAM, Berlin, Germany DA - 06.02.2018 KW - Localization of gas sources KW - Mobile Robot Olfaction KW - Tomographic reconstruction of gas plumes KW - Tunable Diode Laser Absorption Spectroscopy (TDLAS) KW - UAV-REGAS PY - 2018 AN - OPUS4-44085 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Neumann, Patrick P. A1 - Hüllmann, Dino A1 - Krentel, Daniel A1 - Kluge, Martin A1 - Kohlhoff, Harald A1 - Lilienthal, A. J. T1 - Gas Tomography Up In The Air! T2 - Proceedings of the IEEE Sensors 2018 N2 - In this paper, we present an autonomous aerial robot to reconstruct tomographic 2D slices of gas plumes in outdoor environments. Our platform, the so-called Unmanned Aerial Vehicle for Remote Gas Sensing (UAV-REGAS) combines a lightweight Tunable Diode Laser Absorption Spectroscopy (TDLAS) sensor with a 3-axis aerial stabilization gimbal for aiming on a versatile octocopter. The TDLAS sensor provides integral gas concentration measurements but no information regarding the distance traveled by the laser diode's beam or the distribution of the gas along the optical path. We complemented the set-up with a laser rangefinder and apply principles of Computed Tomography (CT) to create a model of the spatial gas distribution from these integral concentration measurements. To allow for a rudimentary ground truth evaluation of the applied gas tomography algorithm, we set up a unique outdoor test environment based on two 3D ultrasonic anemometers and a distributed array of 10 infrared gas transmitters. We present first results showing the 2D plume reconstruction capabilities of the system under realistic conditions. T2 - IEEE Sensors 2018 CY - New Delhi, India DA - 28.10.2018 KW - Aerial robot KW - TDLAS KW - Gas tomography KW - Plume PY - 2018 SN - 978-1-5386-4707-3 SP - 396 EP - 398 PB - IEEE AN - OPUS4-46477 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Neumann, Patrick P. A1 - Hüllmann, Dino A1 - Bartholmai, Matthias ED - Pastramă, D. Ş ED - Constantinescu, D. M. T1 - Concept of a gas-sensitive nano aerial robot swarm for indoor air quality monitoring T2 - 35th Danubia - Adria Symposium on Advances in Experimental Mechanics - Extended abstracts N2 - In industrial environments, airborne by-products such as dust and (toxic) gases, constitute a major risk for the worker’s health. Major changes in automated processes in the industry lead to an increasing demand for solutions in air quality management. Thus, occupational health experts are highly interested in precise dust and gas distribution models for working environments. For practical and economic reasons, high-quality, costly measurements are often available for short time-intervals only. Therefore, current monitoring procedures are carried out sparsely, both in time and space, i.e., measurement data are collected in single day campaigns at selected locations only. Real-time knowledge of contaminant distributions inside the working environment would also provide means for better and more economic control of air impurities. For example, the possibility to regulate the workspace’s ventilation exhaust locations can reduce the concentration of airborne contaminants by 50%. To improve the occupational health and safety of (industrial) workplaces, this work aims for developing a swarm of gas-sensitive aerial nano robots for monitoring indoor air quality and for localizing potential emission sources. T2 - 35th Danubia-Adria Symposium on Advances in Experimental Mechanics CY - Sinaia, Romania DA - 25.09.2018 KW - Mobile Robot Olfaction KW - Swarm KW - Nano aerial robot KW - Gas sensing PY - 2018 SN - 978-606-23-0874-2 SP - 139 EP - 140 PB - PRINTECH CY - Bukarest AN - OPUS4-46137 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Neumann, Patrick P. A1 - Bartholmai, Matthias A1 - Hüllmann, Dino T1 - Concept of a gas-sensitive nano aerial robot swarm for indoor air quality monitoring N2 - In industrial environments, airborne by-products such as dust and (toxic) gases, constitute a major risk for the worker’s health. Major changes in automated processes in the industry lead to an increasing demand for solutions in air quality management. Thus, occupational health experts are highly interested in precise dust and gas distribution models for working environments. For practical and economic reasons, high-quality, costly measurements are often available for short time-intervals only. Therefore, current monitoring procedures are carried out sparsely, both in time and space, i.e., measurement data are collected in single day campaigns at selected locations only. Real-time knowledge of contaminant distributions inside the working environment would also provide means for better and more economic control of air impurities. For example, the possibility to regulate the workspace’s ventilation exhaust locations can reduce the concentration of airborne contaminants by 50%. To improve the occupational health and safety of (industrial) workplaces, this work aims for developing a swarm of gas-sensitive aerial nano robots for monitoring indoor air quality and for localizing potential emission sources. T2 - Tag der offenen Tür auf dem Testgelände der BAM (BAM TTS) CY - Baruth/Mark - OT Horstwalde, Germany DA - 29.09.2018 KW - Mobile Robot Olfaction KW - Swarm KW - Nano aerial robot KW - Gas sensing PY - 2018 AN - OPUS4-46147 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Neumann, Patrick P. A1 - Bartholmai, Matthias A1 - Hüllmann, Dino A1 - Krentel, Daniel A1 - Kluge, Martin A1 - Kohlhoff, Harald A1 - Lilienthal, A. J. T1 - Airborne Remote Gas Sensing and Mapping N2 - Leaking methane (CH4) from infrastructures, such as pipelines and landfills, is critical for the environment but can also pose a safety risk. To enable a fast detection and localization of These kind of leaks, we developed a novel robotic platform for aerial remote gas sensing - the so-called Unmanned Aerial Vehicle for Remote Gas Sensing (UAV-REGAS). T2 - Tag der offenen Tür auf dem Testgelände der BAM (BAM TTS) CY - Baruth/Mark - OT Horstwalde, Germany DA - 29.09.2018 KW - Localization of gas sources KW - Mobile Robot Olfaction KW - Tomographic reconstruction of gas plumes KW - Tunable Diode Laser Absorption Spectroscopy (TDLAS) KW - UAV-REGAS PY - 2018 AN - OPUS4-46152 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Neumann, Patrick P. A1 - Hüllmann, Dino A1 - Kohlhoff, Harald A1 - Bartholmai, Matthias A1 - Bennetts, V.H. A1 - Lilienthal, A.J. T1 - Mobile robot olfaction with flying platforms N2 - This presentation gives an introduction to the gas-sensitive aerial robots developed at BAM, including various application examples in the field of mobile robot olfaction: gas source localization and gas distribution mapping T2 - Networked Environmental Monitoring – from sensor principles to novel services CY - BAM, Berlin, Germany DA - 06.02.2018 KW - Localization of gas sources KW - Mobile Robot Olfaction KW - Tomographic reconstruction of gas plumes KW - Tunable Diode Laser Absorption Spectroscopy (TDLAS) KW - UAV-REGAS PY - 2018 AN - OPUS4-44086 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Neumann, Patrick P. A1 - Hüllmann, Dino A1 - Krentel, Daniel A1 - Kluge, Martin A1 - Kohlhoff, Harald A1 - Lilienthal, A. J. T1 - Gas Tomography Up In The Air! N2 - In this paper, we present an autonomous aerial robot to reconstruct tomographic 2D slices of gas plumes in outdoor environments. Our platform, the so-called Unmanned Aerial Vehicle for Remote Gas Sensing (UAV-REGAS) combines a lightweight Tunable Diode Laser Absorption Spectroscopy (TDLAS) sensor with a 3-axis aerial stabilization gimbal for aiming on a versatile octocopter. The TDLAS sensor provides integral gas concentration measurements but no information regarding the distance traveled by the laser diode's beam or the distribution of the gas along the optical path. We complemented the set-up with a laser rangefinder and apply principles of Computed Tomography (CT) to create a model of the spatial gas distribution from these integral concentration measurements. To allow for a rudimentary ground truth evaluation of the applied gas tomography algorithm, we set up a unique outdoor test environment based on two 3D ultrasonic anemometers and a distributed array of 10 infrared gas transmitters. We present first results showing the 2D plume reconstruction capabilities of the system under realistic conditions. T2 - IEEE Sensors 2018 CY - New Delhi, India DA - 28.10.2018 KW - Aerial robot KW - TDLAS KW - Gas tomography KW - Plume PY - 2018 AN - OPUS4-46478 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Neumann, Patrick P. A1 - Hüllmann, Dino A1 - Bartholmai, Matthias T1 - Concept of a gas-sensitive nano aerial robot swarm for indoor air quality monitoring N2 - In industrial environments, airborne by-products such as dust and (toxic) gases, constitute a major risk for the worker’s health. Major changes in automated processes in the industry lead to an increasing demand for solutions in air quality management. Thus, occupational health experts are highly interested in precise dust and gas distribution models for working environments. For practical and economic reasons, high-quality, costly measurements are often available for short time-intervals only. Therefore, current monitoring procedures are carried out sparsely, both in time and space, i.e., measurement data are collected in single day campaigns at selected locations only. Real-time knowledge of contaminant distributions inside the working environment would also provide means for better and more economic control of air impurities. For example, the possibility to regulate the workspace’s ventilation exhaust locations can reduce the concentration of airborne contaminants by 50%. To improve the occupational health and safety of (industrial) workplaces, this work aims for developing a swarm of gas-sensitive aerial nano robots for monitoring indoor air quality and for localizing potential emission sources. T2 - 35th Danubia-Adria Symposium on Advances in Experimental Mechanics CY - Sinaia, Romania DA - 25.09.2018 KW - Mobile Robot Olfaction KW - Swarm KW - Nano aerial robot KW - Gas sensing PY - 2018 AN - OPUS4-46140 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -