TY - JOUR A1 - Bartelmeß, Jürgen A1 - Valderrey, Virginia A1 - Rurack, Knut T1 - Development of a “Turn-on” Fluorescent Probe-Based Sensing System for Hydrogen Sulfide in Liquid and Gas Phase JF - Frontiers in Chemistry N2 - A “turn-on” fluorescence sensing system based on a BODIPY-cobaloxime complex for the detection of H2S in liquid and gas phase was developed. To that aim, two cobaloxime complexes bearing an axial pyridyl-BODIPY ligand were initially evaluated as sensitive fluorescent HS− indicators in aqueous solution. The sensing mechanism involves the selective substitution of the BODIPY ligand by the HS− anion at the cobalt center, which is accompanied by a strong fluorescence enhancement. The selection of a complex with an ideal stability and reactivity profile toward HS− relied on the optimal interaction between the cobalt metal-center and two different pyridyl BODIPY ligands. Loading the best performing BODIPY-cobaloxime complex onto a polymeric hydrogel membrane allowed us to study the selectivity of the probe for HS− against different anions and cysteine. Successful detection of H2S by the fluorescent “light-up” membrane was not only accomplished for surface water but could also be demonstrated for relevant H2S concentrations in gas phase. KW - Sulfide sensing KW - Fluorescence KW - BODIPYs KW - Cobaloxime complex KW - Gas sensing PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-492186 DO - https://doi.org/10.3389/fchem.2019.00641 SN - 2296-2646 VL - 7 SP - Art. Nr. 641 PB - Frontiers Media CY - Lausanne AN - OPUS4-49218 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bell, Jérémy A1 - Tillo, Adam A1 - Chauhan, Vraj P. A1 - Bartelmeß, Jürgen A1 - Rurack, Knut T1 - Microfluidic analytical tool coupling a fluorescent molecular probe and a micro-hydrocyclone for the detection of water chlorination level N2 - Chlorination of pool water and wastewater, in food and pharmaceutical production, as well as in pesticide and paper manufacturing is a routinely used technique. However, the amount of chlorine in water must be strictly adjusted, to ensure enough concentration to kill pathogenic bacteria and viruses, while preventing too high concentrations inducing negative effects on human health. As an indicator, a molecular fluorescent probe based on a BODIPY structure was designed. This indicator exhibits a sensitive and selective fluorescence response upon increasing concentrations of hypochlorite in aqueous solvent mixtures. Real-time analyses became possible after the integration of this fluorescent indicator into newly designed 2D & 3D microfluidic chips incorporating a passive sinusoidal mixer and a micro-hydrocyclone, respectively. A comparison of the two microfluidic systems, including their ability to prevent accumulation or circulation of microbubbles, has shown excellent fluidic behaviour for the micro-hydrocyclone device. This system was distinctly more robust against gas bubbles, showed a higher signal gain and allowed to halve the limit of detection to 0.02 mg L–1. The use of the 3D system to quantify the chlorine content of pool water samples for sensitive and quantitative chlorine monitoring has been demonstrated. T2 - Konferenz CY - Ioannina, Greece DA - 22.09.2019 KW - Chlorine KW - Fluorescence KW - Microfluidics KW - Water KW - Chlor KW - Fluoreszenz KW - Mikrofluidik KW - Wasser PY - 2019 UR - https://media.conferre.gr/index.php/photos-videos/ima2019 AN - OPUS4-49130 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Burnage, Samual Charles A1 - Bell, Jérémy A1 - Gawlitza, Kornelia A1 - Wan, Wei A1 - Rurack, Knut T1 - Microfluidic Platform for Functionalisation, Extraction and Detection of Phosphorylated Amino Acids Using Fluorescent Sensory Particles N2 - The reliable identification and quantification of phosphorylated amino acids, peptides and proteins is one of the key challenges in contemporary bioanalytical research, noteworthy, to diagnose and treat diseases at an early developmental stage. Miniaturised sensing devices like microfluidic chips combined with “smart” detection chemistry, simple data assessment, processing and presentation are very attractive for benchtop use in clinical environments. We developed novel synthetic probes targeting phosphorylated amino acids, based on core-shell microparticles consisting of a silica core coated with a molecularly imprinted polymer (MIP) shell. These “plastic antibodies” are extremely robust, resist denaturing solvents and elevated temperatures, can be reproducibly produced at low cost, and potentially overcome many of the practical problems in current bioanalytical detection strategies. The MIP layer contains a fluorescent probe monomer, binds selectively to phosphorylated tyrosine (pTyr) with a significant imprinting factor higher than 3.5 and responds with a “lighting-up” of its fluorescence accompanied by the development of a strongly red-shifted emission band toward the analyte. In analogy to our previous work [4], the bead-based ratiometric detection scheme has also been successfully transferred to a microfluidic chip format to demonstrate its applicability to rapid assays. Such a miniaturised device could yield an automated pTyr measurement system in the future. The setup was built by coupling a modular microfluidic system [5] for amino acid functionalisation (Fmoc protection) and a multi-layer PDMS/Teflon/glass microfluidic chip [6] for buffering, extraction (micropillars co-flow extraction) and selective adsorption on the MIP core-shell particles. A miniaturised optical assembly for low-light fluorescence measurements was also developed. Based on small opto-electronic parts and optical fibres, the emission from the MIP particles upon addition of pTyr concentrations from 0.5 – 200 μM could be monitored in real-time. T2 - IMA 2019 CY - Ioaninna, Greece DA - 22.09.2019 KW - MIPs KW - Microfluidics KW - Fluorescence KW - Sensing PY - 2019 AN - OPUS4-49201 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Burnage, Samual Charles A1 - Bell, Jérémy A1 - Gawlitza, Kornelia A1 - Wan, Wei A1 - Rurack, Knut T1 - Microfluidic Platform for Functionalisation, Extraction and Detection of Phosphorylated Amino Acids Using Fluorescent Sensory Particles N2 - The reliable identification and quantification of phosphorylated amino acids, peptides and proteins is one of the key challenges in contemporary bioanalytical research, noteworthy, to diagnose and treat diseases at an early developmental stage1. Miniaturised sensing devices like microfluidic chips combined with “smart” detection chemistry, simple data assessment, processing and presentation are very attractive for benchtop use in clinical environments. We developed novel synthetic probes targeting phosphorylated amino acids, based on core-shell microparticles consisting of a silica core coated with a molecularly imprinted polymer (MIP) shell. These “plastic antibodies” are extremely robust, resist denaturing solvents and elevated temperatures, can be reproducibly produced at low cost, and potentially overcome many of the practical problems in current bioanalytical detection strategies. The MIP layer contains a fluorescent probe monomer, binds selectively to phosphorylated tyrosine (pY) with a significant imprinting factor higher than 3.5 and responds with a “lighting-up” of its fluorescence accompanied by the development of a strongly red-shifted emission band toward the analyte. In analogy to our previous work4, the bead-based ratiometric detection scheme has also been successfully transferred to a microfluidic chip format to demonstrate its applicability to rapid assays. Such a miniaturised device could yield an automated pY measurement system in the future. The setup was built by coupling a modular microfluidic system5 for amino acid functionalisation (Fmoc protection) and, as shown in Figure 1, a multi-layer PDMS/Teflon/glass microfluidic chip6 for buffering, extraction (micropillars co-flow extraction) and selective adsorption on the MIP core-shell particles. A miniaturised optical assembly for low-light fluorescence measurements was also developed. Based on small opto-electronic parts and optical fibres, the emission from the MIP particles upon addition of pY concentrations from 0.5-200 μM could be monitored in real-time. T2 - GSS2019 CY - BAM Adlershof, Berlin, Germany DA - 29.08.2019 KW - MIPs KW - Microfluidics KW - Sensing KW - Fluorescence PY - 2019 AN - OPUS4-49202 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Climent Terol, Estela A1 - Wan, Wei A1 - Weller, Michael G. A1 - Rurack, Knut T1 - Novel specific bio-gated hybrid materials and their integration into versatile platforms for advanced sensing applications N2 - Methods for the rapid and sensitive detection of target analytes are gaining importance in medical diagnostics and environmental monitoring, in the security, occupational health and safety as well as food sectors. Among all of the methods employed for rapid tests, lateral flow assays (LFAs) are the most commonly used, and hundreds of test kits based on this technique are available on the market. A major drawback is that most of these capture agents either indicate the analyte only indirectly, and in most cases a second binding agent able to bind directly or indirectly to the analytes is necessary (e.g., a secondary labeled antibody). Furthermore, in certain cases in which the (ultra)trace detection of an analyte is required, the traditional approach of a certain number of probe molecules being conjugated to a particular support is not sufficient. Therefore, novel concepts implementing steps of effective signal amplification are urgently required. Keeping in mind these limitations, we thought that the sensitivity of these systems should be improvable through employment of gated reporter molecule-releasing hybrid nanoparticle materials on novel lateral flow devices. On one hand, the gated sensor material can produce a massive signal amplification, by releasing many reporter molecules only after chemical recognition of a few analyte molecules has taken place in an independent and separate step at the pore openings. On the other hand, the employment of tailored capture materials for the selective interaction with the released reporter molecules in a second arbitrary zone on the strip allows to concentrate or focus the latter for more efficient detection or to create selective multi-spot detection zones, which renders the simultaneous detection of several reporter molecules at the same time in multiplexed detection of various analytes possible. For that purpose, we have prepared several stimuli-responsive materials for small-molecule sensing based on specific interactions between biomolecules such as antibodies with the corresponding analytes for the detection of certain explosives. In order to prepare these bio-capped materials, we have selected silica mesoporous nanoparticles (MSNs) as inorganic support due to their unique properties such as defined void structure, high inner surface area and flexible functionalization chemistry. These MSNs are loaded with a brightly fluorescent indicator dye, and the external surface is subsequently functionalized with suitable molecules able to interact with antibodies, efficiently inhibiting dye release. The opening protocol and delivery of the entrapped dye is reminiscent of a displacement reaction involving the presence of the target analyte, producing a displacement of the biomolecule and allowing the detection of the target analyte. The presentation discusses general aspects of system design as well as analytical performance and highlights the integration into a lateral-flow assay, showing as an example the determination of the explosives TATP, TNT and PETN with fluorescence readout, in single-substance and multiplexing modes. T2 - EBS 2019 CY - Florence, Italy DA - 18.02.2019 KW - Bio-gated hybrid materials KW - Signal amplification KW - Explosives determination KW - Fluorescence KW - Rapid test KW - Dip-stick assay PY - 2019 AN - OPUS4-47920 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Descalzo, Ana B. A1 - Ashokkumar, Pichandi A1 - Shen, Z. A1 - Rurack, Knut T1 - On the Aggregation Behaviour and Spectroscopic Properties of Alkylated and Annelated BoronDipyrromethene (BODIPY) Dyes in Aqueous Solution JF - ChemPhotoChem N2 - The tendency of boron-dipyrromethene (BODIPY) dyes to associate in water is well known, and usually a cause for inferior fluorescence properties. Synthetic efforts to chemically improve BODIPYs’ water solubility and minimize this problem have been numerous in the past. However, a deeper understanding of the phenomena responsible for fluorescence quenching is still required. Commonly, the spectroscopic behaviour in aqueous media has been attributed to aggregate or excimer formation, with such works often centring on a single BODIPY family. Herein, we provide an integrating discussion including very diverse types of BODIPY dyes. Our studies revealed that even subtle structural changes can distinctly affect the association behaviour of the fluorophores in water, involving different photophysical processes. The palette of behaviour found ranges from unperturbed emission, to the formation of H or J aggregates and excimers, to the involvement of tightly bound, preformed excimers. These results are a first step to a more generalized understanding of spectroscopic properties vs. structure, facilitating future molecular design of BODIPYs, especially as probes for biological applications. KW - Aggregates KW - BODIPY KW - Excimers KW - Fluorescence KW - Photophysics PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-497771 DO - https://doi.org/10.1002/cptc.201900235 SN - 2367-0932 VL - 4 IS - 2 SP - 120 EP - 131 PB - WILEY-VCH CY - Weinheim AN - OPUS4-49777 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gotor, Raúl A1 - Bell, Jérémy A1 - Rurack, Knut T1 - Tailored fluorescent solvatochromic test strips for quantitative on-site detection of gasoline fuel adulteration JF - Journal of Materials Chemistry C N2 - Gasoline adulteration is a frequent problem world-wide, because of the chance of quick, maximized profits. However, addition of cheaper ethanol or hydrocarbons like kerosene does not only result in economic damage but also poses problems for vehicles and the environment. To enable law enforcement forces, customers or enterprises to uncover such a fraudulent activity directly upon suspicion and without the need to organize for sampling and laboratory analysis, we developed a simple strip-based chemical test. Key to the favorable performance was the dedicated materials tailoring, which led to test strips that consisted of a cellulose support coated with silica, passivated with hexamethyldisilazane and functionalized covalently with a molecular probe. The probe fluoresces brightly across a broad solvent polarity range, enabling reliable quantitative measurements and data analysis with a conventional smartphone. The assays showed high reproducibility and accuracy, allowing not only for the detection of gasoline adulteration but also for the on-site monitoring of the quality of commercial E10 gasoline. KW - Gasoline KW - Adulteration KW - Test strips KW - Benzin KW - Teststreifen KW - Fluorescence KW - Cellulose KW - Zellulose KW - Fluoreszenz PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-479231 UR - https://pubs.rsc.org/en/content/articlelanding/2019/tc/c8tc04818e DO - https://doi.org/10.1039/C8TC04818E SN - 2050-7526 VL - 7 IS - 8 SP - 2250 EP - 2256 PB - Royal Society of Chemistry CY - London, UK AN - OPUS4-47923 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Heck, C. A1 - Michaeli, Y. A1 - Bald, Ilko A1 - Ebenstein, Y. T1 - Analytical epigenetics: single-molecule optical detection of DNA and histone modifications JF - Current Opinion in Biotechnology N2 - The field of epigenetics describes the relationship between genotype and phenotype, by regulating gene expression without changing the canonical base sequence of DNA. It deals with molecular genomic information that is encoded by a rich repertoire of chemical modifications and molecular interactions. This regulation involves DNA, RNA and proteins that are enzymatically tagged with small molecular groups that alter their physical and chemical properties. It is now clear that epigenetic alterations are involved in development and disease, and thus, are the focus of intensive research. The ability to record epigenetic changes and quantify them in rare medical samples is critical for next generation diagnostics. Optical detection offers the ultimate single-molecule sensitivity and the potential for spectral multiplexing. Here we review recent progress in ultrasensitive optical detection of DNA and histone modifications. KW - Epigenetics KW - Fluorescence KW - SERS PY - 2019 UR - https://www.sciencedirect.com/science/article/pii/S095816691830082X DO - https://doi.org/10.1016/j.copbio.2018.09.006 SN - 0958-1669 VL - 55 SP - 151 EP - 158 PB - Elsevier AN - OPUS4-46680 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hirsch, A. A1 - Lohmann, S.-H. A1 - Strelow, C. A1 - Kipp, T. A1 - Würth, Christian A1 - Geißler, Daniel A1 - Komoski, A. A1 - Wolter, C. A1 - Weller, H. A1 - Resch-Genger, Ute A1 - Mews, A. T1 - Fluorescence Quantum Yield and Single-Particle Emission of CdSe JF - Physical Chemistry N2 - The fluorescence quantum yield (QY) of CdSe dot/CdS rod (DR) nanoparticle ensembles is dependent on the Shell growth and excitation wavelength. We analyze the origin of this dependency by comparing the optical properties of DR ensembles to the results obtained in single-particle experiments. On the Ensemble level, we find that the QY of DRs with shell lengths shorter than 40 nm exhibits no dependence on the excitation wavelength, whereas for DRs with shell lengths longer than 50 nm, the QY significantly decreases for excitation above the CdS band gap. Upon excitation in the CdSe core, the ensemble QY, the fluorescence wavelength, and the fluorescence blinking behavior of individual particles are only dependent on the radial CdS shell thickness and not on the CDs shell length. If the photogenerated excitons can reach the CdSe core region, the fluorescence properties will be dependent only on the surface passivation in close vicinity to the CdSe core. The change in QY upon excitation above the band gap of CdS for longer DRs cannot be explained by nonradiative particles because the ratio of emitting DRs is found to be independent of the DR length. We propose a model after which the decrease in QY for longer CdS shells is due to an increasing fraction of nonradiative exciton recombination within the elongated shell. This is supported by an effective-mass-approximation-based calculation, which suggests an optimum length of DRs of about 40 nm, to combine the benefit of high CdS absorption cross section with a high fluorescence QY. KW - Fluorescence KW - Quantum dot KW - Photophysics KW - Single particle spectroscopy KW - Mechanism KW - Theory KW - Ensemble measurements KW - Quantum yield KW - CdSe KW - CdS shell PY - 2019 DO - https://doi.org/10.1021/acs.jpcc.9b07957 VL - 123 IS - 39 SP - 24338 EP - 24346 PB - ACS Publications AN - OPUS4-49556 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hoffmann, Katrin A1 - Nirmalananthan-Budau, Nithiya A1 - Wegmann, M. A1 - Resch-Genger, Ute T1 - Calibration Beads for the Characterization of the Performance of Fluorescence-based High- Throughput and Imaging devices N2 - In all fluorescence-based techniques, the measured signals contain not only sample-related but also instrument-specific contributions, which limit the direct comparison of fluorescence data obtained e.g. on different devices or at different times and often hamper quantification. To rule out instrumentation as major source of variability of emission data, accepted fluorescence standards and procedures for the control of instrument specifications and long-term performance are required. For flow cytometry (FCM), a broad variety of fluorophore-stained polymer beads differing in emission wavelength and intensity is available for the testing of the alignment, sensitivity, and other parameters of FCM. These calibration tools are intended to facilitate the assessment of instrument performance to ensure reliable measurements and to improve the comparability of FCM experiments. As a step towards an improved comparability of fluorescence data, with special emphasis on spectroscopic methods measuring nano- and micrometer-sized fluorescent objects, we are currently developing a set of fluorescent polystyrene (PS) beads loaded with luminophores from the certified BAM-Kit “Spectral fluorescent standards”, initially developed for the calibration of fluorescence spectrometers. Here, we present first results from studies of these fluorophore-loaded polymer beads. Moreover, new beads are made to supplement this kit by encapsulating near-infrared (NIR)-emissive luminophores in PS beads to cover the UV/VIS, and NIR wavelength range. These beads are designed for calibration of flow cytometers and other fluorescence imaging systems to meet the increasing demand for reliable and comparable fluorescence data especially in strongly regulated areas like e.g. medical diagnostics. T2 - 29th Annual Conference of the German Society for Cytometry CY - Berlin, Germany DA - 25.09.2019 KW - Calibration beads KW - Fluorescence KW - Performance validation KW - imaging KW - FCM PY - 2019 AN - OPUS4-49422 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hoffmann, Katrin A1 - Kage, Daniel A1 - Ameskamp, J. A1 - Wittkamp, M. A1 - Thiele, T. A1 - Borcherding, H. A1 - Göhde, W. A1 - Schedler, U. A1 - Resch-Genger, Ute T1 - Time-resolved flow cytometry N2 - The fast identification of a large number of analytes or events is increasingly required in bioanalytical, diagnostic, and security applications. The versatility and straightforward use make multiparametric fluorescence techniques particularly interesting as detection techniques. An established method for high-throughput single-cell and single-particle measurements is flow cytometry (FCM). Using only spectral encoding without further intensity information, state-of-the-art instruments equipped with several light sources and detectors can resolve almost 20 different color codes. However, this is not sufficient to answer complex research questions, e.g. in cell biology and immunology. In contrast, routine applications demand low-cost and sometimes even portable instruments and thus a minimum number of instrument components. Thus, there are currently two main research directions in FCM: the development of methods that can either address increasingly complex analytical challenges or provide low-cost and robust approaches for routine multiplex analyses. Common spectral multiplexing approaches face limitations in both directions. On the one hand, spectral overlap of labels restricts the number of codes and makes elaborate correction schemes necessary. On the other hand, even for lower degrees of multiplexing often a sophisticated optical setup is needed. An alternative to spectral multiplexing and intensity encoding is to exploit the luminescence lifetime (LT) as an encoding parameter. This can allow for extending the parameter space in combination with spectral encoding or result in more simple and compact devices due to fewer optical components. The availability of fast electronics enables miniaturized and portable lifetime measurement setups at relatively low cost. LT-FCM requires to master LT determination with a limited number of detected photons due to the short interaction time of the encoded objects with the laser spot. In this study, we address this issue for time-domain cytometry and present a novel lifetime flow cytometry (LT-FCM) platform based on a compact setup and straightforward time-domain measurements utilizing LT-encoded luminescent beads. Moreover, we present the realization of a first bioanalytical assay with LT-encoded beads. T2 - ANAKON 2019 CY - Münster, Germany DA - 25.03.2019 KW - Fluorescence KW - Time-resolved KW - Flow cytometry KW - Lifetime-encoding KW - Bead-based assays PY - 2019 AN - OPUS4-47708 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Huang, J. A1 - Tarábek, J. A1 - Kulkarni, R. A1 - Wang, Cui A1 - Dračínský, M. A1 - Smales, Glen Jacob A1 - Pauw, Brian Richard A1 - Resch-Genger, Ute A1 - Bojdys, M. J. T1 - A π-conjugated, covalent phosphinine framework JF - Chemistry a European Journal N2 - Structural modularity of polymer frameworks is a key advantage of covalent organic polymers, however, only C, N, O, Si and S have found their way into their building blocks so far. Here, we expand the toolbox available to polymer and materials chemists by one additional nonmetal, phosphorus. Starting with a building block that contains a λ⁵‐phosphinine (C₅P) moiety, we evaluate a number of polymerisation protocols, finally obtaining a π‐conjugated, covalent phosphinine‐based framework (CPF‐1) via Suzuki‐Miyaura coupling. CPF‐1 is a weakly porous polymer glass (72.4 m2 g‐1 N2 BET at 77 K) with green fluorescence (λmax 546 nm) and extremely high thermal stability. The polymer catalyzes hydrogen evolution from water under UV and visible light irradiation without the need for additional co‐catalyst at a rate of 33.3 μmol h‐¹ g‐¹. Our results demonstrate for the first time the incorporation of the phosphinine motif into a complex polymer framework. Phosphinine‐based frameworks show promising electronic and optical properties that might spark future interest in their applications in light‐emitting devices and heterogeneous catalysis. KW - Phosphinine KW - Fully aromatic frameworks KW - Suzuki-Miyaura coupling KW - Polymers KW - Fluorescence KW - Small-angle scattering PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-485330 DO - https://doi.org/10.1002/chem.201900281 SP - 2 EP - 10 PB - Wiley VCH-Verlag CY - Weinheim AN - OPUS4-48533 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hübner, Oskar A1 - Resch-Genger, Ute T1 - Spectral and Lifetime Encoding of Polymer Particles with Cd-free Ternary Semiconductor Nanocrystals for Flow Cytometry with Time Resolved Fluorescence Detection N2 - Multiplexed encoding schemes of nano- and micrometer sized particles with fluorescent dyes or quantum dots (QDs) and their optical detection, are of increasing interest for applications in the life sciences, for example in flow cytometry. Almost all strategies utilizing fluorescence focus on spectrally distinguishable emission bands or colors and different intensity levels as fluorescence codes. The fluorescence parameter lifetime has been, however, barely exploited. In this work the goal is to perform multiplexing with encoding fluorophores with different fluorescence lifetimes (LTs). In comparison to the spectral multiplexing strategies this has the advantage, that the different fluorescence LT codes can be measured with the excitation and emission wavelength, thus reducing instrument costs. Moreover, LTs should not depend on emitter concentration. Unlike organic dyes, the LTs of which are typically < 10 ns, the fluorescence LTs of ternary semiconductor QDs that represent a “green” alternative to conventional Cd-containing QDs are in the range of several hundred ns, independent of oxygen concentration, and can be tuned to a certain extent by chemical composition and surface chemistry. This present a time region that can be barely covered by other emitters that have either much shorter or longer lifetimes. In this project, different encoding strategies will be assessed and the encoded particles will be then used for fluorescence assays for the analysis of several targets in parallel. Therefor the encoded particles will be functionalized with different target-specific bioligands and read out with a specifically designed flow cytometer enabling time-resolved fluorescence detection. With this instrument, the particles will be discriminated by their fluorescence LTs In one detection channel while the analytes will be quantified by fluorescence labels in a second channel in the intensity domain. T2 - Bad Honnef Physics School Exciting nanostructures: Characterizing advanced confined systems CY - Bad Honnef, Germany DA - 21.07.2019 KW - Multiplexing KW - Lifetime KW - Bead KW - Flow cytometry KW - Fluorescence KW - Quantum dot KW - InP KW - AIS KW - Dye KW - Encoding KW - Barcoding KW - Assay KW - Method PY - 2019 AN - OPUS4-49723 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hübner, Oskar A1 - Resch-Genger, Ute A1 - Wegner, Karl David A1 - Hoffmann, Kristin T1 - Lifetime Barcoding of Polystyrene Beads with Fluorescent Nanocrystals for Fluorescent Lifetime Detection in Flow Cytometry N2 - Multiplexed encoding schemes of nano- and micrometer sized polymer particles with fluorescent dyes or quantum dots (QDs) and their optical detection, are of increasing interest for applications in the life sciences, for example in flow cytometry. Almost all strategies utilizing fluorescence focus on spectrally distinguishable emission bands or colors and different intensity levels as fluorescence codes. In this work the goal is to perform multiplexing with encoding fluorophores with different fluorescence lifetimes (LTs). In comparison to the spectral multiplexing strategies this has the advantage, that the different fluorescence LT codes can be measured with the same excitation and emission wavelength, thus reducing instrumental costs. Moreover, LTs should not depend on emitter concentration. Unlike organic dyes, the LTs of which are typically <10ns, the fluorescence LTs of ternary semiconductor QDs which represent a “green” alternative to conventional Cd-containing QDs are in the range of several hundred ns, independent of oxygen concentration, and can be tuned to a certain extent by chemical composition and surface chemistry. This presents a time region that can barely be covered by other emitters that have either much shorter or longer lifetimes. In this project, different encoding strategies will be assessed, and the encoded particles will then be used for fluorescence assays for the analysis of several targets in parallel. Therefore, the encoded particles will be functionalized with different target-specific bioligands and read out with a specifically designed flow cytometer enabling time-resolved fluorescence detection. With this instrument, the particles will be discriminated by their fluorescence LTs in one detection channel while the analytes will be quantified by fluorescence labels in a second channel in the intensity domain. T2 - Tag der Chemie 2019 CY - Berlin, Germany DA - 11.07.2019 KW - Multiplexing KW - Lifetime KW - Bead KW - Flow cytometry KW - Fluorescence KW - Quantum dot KW - InP KW - AIS KW - Dye KW - Encoding KW - Barcoding KW - Assay KW - Method PY - 2019 AN - OPUS4-49722 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hübner, Oskar A1 - Kage, Daniel A1 - Hoffmann, Katrin A1 - Wegner, Karl David A1 - Dhamo, Lorena A1 - Göhde, W. A1 - Resch-Genger, Ute T1 - Luminescence lifetime encoding for flow cytometry with quantum-dot-encoded beads N2 - Spectral encoding of cells or particles and the discrimination of multiple spectral codes are a critical process in flow cytometry (FCM). Typical issues in spectral encoding are, e.g., the spectral overlap of codes, or the increasing complexity of instruments . The exploitation of the photoluminescence lifetime (LT) as an encoding parameter could be used to circumvent both of these issues, as it adds another dimension to the parameter space, or, when used as a stand-alone parameter, requiring only one excitation light source and one detector. While LT encoding was considered already decades ago it is still not implemented as a routine technique in FCM yet, mainly due to the challenge of very few photons being available within the limited transition time of a cell or particle through the laser spot. Recently, we demonstrated LT-FCM based on luminophores with ns LTs in a compact and low-cost flow cytometer. Measurements on polymer microbeads containing luminophores with distinctly different excited state LTs enabled the complete discrimination of three LT codes and five codes in total could be identified. Now, we have extended our approach towards considerably longer LTs by custom-made polymer microbeads loaded with different ratios of InP/ZnS and AgInS2 quantum dots. The use of these materials significantly expands the usable time range for LT encoding to up to several hundred ns. Our studies demonstrate the possibility to further increase the number of viable LT codes for multiplexing in LT-FCM without the need for extensive hardware modifications. T2 - Visions in Cytometry - 29th Annual Conference of the German Society for Cytometry CY - Berlin, Germany DA - 25.07.2019 KW - Multiplexing KW - Lifetime KW - Bead KW - Flow cytometry KW - Fluorescence KW - Quantum dot KW - InP KW - AIS KW - Dye KW - Encoding KW - Barcoding KW - Assay KW - Method PY - 2019 AN - OPUS4-49390 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Johann, Sergej A1 - Kohlhoff, Harald A1 - Gawlitza, Kornelia A1 - Bell, Jérémy A1 - Mansurova, Maria A1 - Tiebe, Carlo A1 - Bartholmai, Matthias T1 - Semi-automatic Gas Measurement Device Based on Fluorescent Multi-gas Sensors N2 - This paper describes the development of a semi-automatic gas measurement device presenting potentially a broad range of applications, noteworthy in the agricultural sector. Non-reversible fluorescent molecular sensors were designed and syn-thesized. Upon, integration into a hydrogel matrix with an optimal ratio of co-solvents, the sensors reacting selectively to ammonia were illuminated by excitation light to produce a concentration-correlated fluorescence emission. An automated mechanical-elec-trical device initiates a given gas mixture and thus simulates con-centrations similar to a threshold value. The aim of this project is to develop a sensor or a low-cost method which can monitor low concentrations of harmful gases and aid in their elimination or regulation in livestock housing, barns or stables. T2 - IEEE Sensors 2019 CY - Montreal, Canada DA - 27.10.2019 KW - Gas analysis KW - Fluorescence KW - Embedded sensor KW - Spectroscopy KW - Environment KW - Agricultural economy PY - 2019 AN - OPUS4-49502 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kulow, Anicó A1 - Reinholz, Uwe A1 - de Oliveira Guilherme Buzanich, Ana A1 - Emmerling, Franziska A1 - Streli, C. A1 - Radtke, Martin T1 - X-ray fluorescence imaging with coded apertures N2 - We developed a new method for full field X-ray fluorescence imaging at the BAMline @ BESSY II. We combined an energy dispersive array detector for X-rays with a coded aperture to get high resolution images. In coded aperture imaging, an object is projected through a mask, producing many overlapping images on the detector. To get the information about the investigated object out of the projected image, a decoding step is necessary. The first part of our project was to develop the decoding algorithms. We tested the reported reconstruction with an antimask and compared the results with the performance of self-written reconstruction programs based on an iterative and a genetic algorithm. First tests were performed with raytracing simulations. The next step was the collection of experimental data at the BAMline @ BESSY II (HZB). A test objects could be successfully reconstructed with our newly developed algorithm. T2 - PRORA 2019 CY - Berlin, Germany DA - 28.11.2019 KW - X-ray KW - Imaging KW - Fluorescence KW - Coded apertures PY - 2019 AN - OPUS4-49963 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kulow, Anicó A1 - Reinholz, Uwe A1 - de Oliveira Guilherme Buzanich, Ana A1 - Emmerling, Franziska A1 - Streli, C. A1 - Radtke, Martin T1 - Full field X-ray fluorescence imaging with coded apertures N2 - Our aim is to develop a new simple and inexpensive method for full field X-ray fluorescence imaging. We combine an energy-dispersive array detector with a coded aperture. To obtain the information from the recorded image, a reconstruction step is necessary. First tests were carried out at the BAMline at BESSY II. This method enables the simultaneous detection of multiple elements, which is important e.g. in the field of catalysis. T2 - BESSY Usermeeting CY - Berlin, Germany DA - 05.12.2019 KW - X-ray KW - Fluorescence KW - Imaging KW - Coded Apertures PY - 2019 AN - OPUS4-49964 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kulow, Anicó A1 - Reinholz, Uwe A1 - de Oliveira Guilherme Buzanich, Ana A1 - Emmerling, Franziska A1 - Streli, C. A1 - Radtke, Martin T1 - X-ray fluorescence imaging with coded apertures N2 - Our aim is to develop a new simple and inexpensive method for full field X-ray fluorescence imaging . We combine an energy dispersive array detector with a coded aperture to obtain high resolution images . To obtain the information from the recorded image a reconstruction step is necessary . The reconstruction methods we have developed , were tested on simulated data and then applied to experimental data . The first tests were carried out at the BAM line @ BESSY II. This method enables the simultaneous detection of multiple elements , which is important e.g. in the field of catalysis. T2 - Adlershofer Forschungsforum CY - Berlin, Germany DA - 11.11.2019 KW - X-ray KW - Fluorescence KW - Imaging KW - Spectroscopy KW - Coded aperture PY - 2019 AN - OPUS4-49695 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Liu, H. A1 - Song, W. A1 - Gröninger, Delia A1 - Zhang, L. A1 - Lu, Y. A1 - Chan, K. S. A1 - Zhou, Z. A1 - Rurack, Knut A1 - Shen, Z. T1 - Real-time monitoring of newly acidified organelles during autophagy enabled by reaction-based BODIPY dyes JF - Communications Biology N2 - Real-time monitoring of newly acidified organelles during autophagy in living cells is highly desirable for a better understanding of intracellular degradative processes. Herein, we describe a reaction-based boron dipyrromethene (BODIPY) dye containing strongly electron-withdrawing diethyl 2-cyanoacrylate groups at the α-positions. The probe exhibits intense red fluorescence in acidic organelles or the acidified cytosol while negligible fluorescence in other regions of the cell. The underlying mechanism is a nucleophilic reaction at the central meso-carbon of the indacene core, resulting in the loss of π-conjugation entailed by dramatic spectroscopic changes of more than 200 nm between its colorless, non-fluorescent leuco-BODIPY form and its red and brightly emitting form. The reversible transformation between red fluorescent BODIPY and leuco-BODIPY along with negligible cytotoxicity qualifies such dyes for rapid and direct intracellular lysosome imaging and cytosolic acidosis detection simultaneously without any washing step, enabling the real-time monitoring of newly acidified organelles during autophagy. KW - Autophagy KW - BODIPY KW - Fluorescence KW - Lysosome KW - Real-time imaging PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-498358 UR - https://www.nature.com/articles/s42003-019-0682-1 DO - https://doi.org/10.1038/s42003-019-0682-1 SN - 23993642 VL - 2 SP - 442 PB - Nature Research CY - London AN - OPUS4-49835 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -