TY - JOUR A1 - Kudela, P. A1 - Radzienski, M. A1 - Moix-Bonet, M. A1 - Willberg, C. A1 - Lugovtsova, Yevgeniya A1 - Bulling, Jannis A1 - Tschöke, K. A1 - Moll, J. T1 - Dataset on full ultrasonic guided wavefield measurements of a CFRP plate with fully bonded and partially debonded omega stringer JF - Data in brief N2 - The fourth dataset dedicated to the Open Guided Waves platform presented in this work aims at a carbon fiber composite plate with an additional omega stringer at constant temperature conditions. The dataset provides full ultrasonic guided wavefields. Two types of signals were used for guided wave excitation, namely chirp signal and tone-burst signal. The chirp signal had a frequency range of 20-500kHz. The tone-burst signals had a form of sine modulated by Hann window with 5 cycles and carrier frequencies 16.5kHz, 50kHz, 100kHz, 200kHz, 300kHz. The piezoceramic actuator used for this purpose was attached to the center of the stringer side surface of the core plate. Three scenarios are provided with this setup: (1) wavefield measurements without damage, (2) wavefield measurements with a local stringer debond and (3) wavefield measurements with a large stringer debond. The defects were caused by impacts performed from the backside of the plate. As result, the stringer feet debonds locally which was verified with conventional ultrasound measurements. KW - Lamb waves KW - Composite panel KW - Impact damage KW - Damage detection KW - Scanning laser Doppler vibrometry KW - Structural health monitoring KW - Non-destructive evaluation KW - Open data PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-545242 DO - https://doi.org/10.1016/j.dib.2022.108078 SN - 2352-3409 VL - 42 SP - 1 EP - 13 PB - Elsevier CY - Amsterdam AN - OPUS4-54524 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lugovtsova, Yevgeniya A1 - Bulling, Jannis A1 - Boller, Christian A1 - Prager, Jens T1 - Analysis of Guided Wave Propagation in a Multi-Layered Structure in View of Structural Health Monitoring JF - Applied Sciences N2 - Guided waves (GW) are of great interest for non-destructive testing (NDT) and structural health monitoring (SHM) of engineering structures such as for oil and gas pipelines, rails, aircraft components, adhesive bonds and possibly much more. Development of a technique based on GWs requires careful understanding obtained through modelling and analysis of wave propagation and mode-damage interaction due to the dispersion and multimodal character of GWs. The Scaled Boundary Finite Element Method (SBFEM) is a suitable numerical approach for this purpose allowing calculation of dispersion curves, mode shapes and GW propagation analysis. In this article, the SBFEM is used to analyse wave propagation in a plate consisting of an isotropic aluminium layer bonded as a hybrid to an anisotropic carbon fibre reinforced plastics layer. This hybrid Composite corresponds to one of those considered in a Type III composite pressure vessel used for storing gases, e.g., hydrogen in automotive and aerospace applications. The results show that most of the wave energy can be concentrated in a certain layer depending on the mode used, and by that damage present in this layer can be detected. The results obtained help to understand the wave propagation in multi-layered structures and are important for further development of NDT and SHM for Engineering structures consisting of multiple layers. KW - Lamb waves KW - Composite KW - Ultrasonic Testing KW - Numerical Modelling KW - Pressure Vessels PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-494385 DO - https://doi.org/10.3390/app9214600 VL - 9 IS - 21 SP - 4600 PB - MDPI CY - 4052 Basel, Switzerland AN - OPUS4-49438 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Lugovtsova, Yevgeniya A1 - Mesnil, Olivier A1 - Bulling, Jannis A1 - Prager, Jens A1 - Boller, C. T1 - Damage Quantification in Aluminium-CFRP Composite Structures using Guided Wave Wavenumber Mapping T2 - Proceedings of the 11th International Symposium on NDT in Aerospace N2 - The use of composite materials is associated not only with the advantages of weight reduction and improved structural performance but also with the risk of barely visible impacts or manufacturing damages. One of the promising techniques for the detection and characterisation of such damages is based on ultrasonic guided wave propagation and analysis. However, the multimodal nature and dispersive behaviour of these waves make their analysis difficult. Various signal processing techniques have been proposed for easier interpretation of guided wave signals and extraction of the necessary information about the damage. One of them is the wavenumber mapping which consists of creating a cartography of the wavenumber of a propagating mode over an inspected area, using a dense wavefield acquisition measured for example with a scanning laser Doppler vibrometer. This technique allows both the quantification of the in-plane size and the depth of damage, for example, impact-induced delamination in composite laminates. In this contribution, wavenumber mapping is applied to a delaminated aluminium-CFRP composite structure which corresponds to composite-overwrapped pressure vessels used for storing gases in aerospace and automotive industries. The analysis of experimental data obtained from measurements of guided waves propagating in an aluminium-CFRP composite plate with impact-induced damage is performed. The output of the imaging is a three-dimensional representation of the delamination induced by the impact. Good agreement between conventional ultrasonic testing and guided wave damage mapping can be found. T2 - 11th International Symposium on NDT in Aerospace CY - Paris Saclay, France DA - 13.11.2019 KW - Damage assessment KW - Lamb waves KW - Multilayered structures KW - Wavefield analysis KW - Impact damage PY - 2019 SP - 33 AN - OPUS4-49663 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Barzegar, M. A1 - Pasadas, D. J. A1 - Ribeiro, A. L. A1 - Ramos, H. G. A1 - Lugovtsova, Yevgeniya A1 - Bulling, Jannis T1 - Polar Coordinate for Damage Imaging of Adhesively Bonded Plates Using Ultrasonic Guided Waves and Laser Doppler Vibrometer Measurements JF - IEEE Transactions on Instrumentation and Measurement N2 - Wavefield measurements by a scanning laser Doppler vibrometer are generally carried out in a cartesian coordinate. As a piezoelectric transducer generates Lamb waves following radial paths, the use of a polar coordinate can be a suitable alternative to the use of a cartesian coordinate. Therefore, in the proposed method, using a single transducer placed on the center of the specimen, the measured wavefields are transformed into polar coordinates, making several identical radial line inspections from the center in a direction of incident waves. Taking advantage of the properties of the polar coordinates, a signal processing technique is proposed through a frequency-wavenumber filtering process in these coordinates. In this technique, by using proper filters, unwanted wave modes of the incident wave along with all reflected waves are filtered out. In addition, the conventional features of RMS and Euclidean distance are adapted for the polar coordinate system to image the bonded plate. The proposed signal processing and damage imaging are first introduced through a numerical simulation. Then, the performance of the proposed technique is presented by experimental measurements of two specimens including adhesively bonded carbon fiber-reinforced plastic composite plates and bonded aluminum plates. KW - Lamb waves KW - Composites KW - Disbond PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-573386 DO - https://doi.org/10.1109/TIM.2023.3267528 SN - 0018-9456 VL - 72 SP - 1 EP - 11 PB - IEEE CY - Piscataway Township, New Jersey, USA AN - OPUS4-57338 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -