TY - JOUR A1 - Abad Andrade, Carlos Enrique A1 - Florek, S. A1 - Becker-Ross, H. A1 - Huang, M.-D. A1 - de Oliveira Guilherme Buzanich, Ana A1 - Radtke, Martin A1 - Lippitz, Andreas A1 - Hodoroaba, Vasile-Dan A1 - Schmid, Thomas A1 - Heinrich, Hans-Joachim A1 - Recknagel, Sebastian A1 - Jakubowski, Norbert A1 - Panne, Ulrich T1 - Zirconium permanent modifiers for graphite furnaces used in absorption spectrometry: understanding their structure and mechanism of action JF - Journal of Analytical Atomic Spectrometry N2 - The mechanism of action of zirconium permanent modifiers on graphite surfaces was investigated in order to understand its influence on the analytical signal in atomic and molecular absorption spectrometry (AAS/MAS). For this, the molecule formation of CaF was studied, which is used for the indirect analytical determination of fluorine in high-resolution continuum source graphite furnace molecular absorption spectrometry (HR-CS-GFMAS). The kinetics of this reaction was established by monitoring its molecular spectrum at different atomisation temperatures. An Arrhenius plot showed a pseudo-first order reaction with respect to fluorine (n = 1). An intermediate state was isolated, and its structure was elucidated by spectroscopic methods: scanning electron microscopy with energy dispersive X-ray spectroscopy (SEMEDX), X-ray photoelectron spectroscopy (XPS), X-ray absorption spectroscopy (XANES and EXAFS), and Raman microspectroscopy. We propose here a mechanism, where ZrO2 acts as a heterogeneous catalyst: after a pyrolytic step, an intermediate state of ZrO(OCaF) is activated, and at higher temperatures, CaF(g) is released from the zirconium-coated graphite surface. No evidence of the formation of zirconium carbide was found. Consequently, as the CaF formation is catalysed by a heterogeneous catalyst, surface modifications with ZrO2 nanoparticles and ZrO xerogels were investigated in order to increase the surface area. Their influence was evaluated in the molecule formation of CaF, CaCl, CaBr, and CaI. Graphite furnace modification with zirconium oxide nanoparticles proves to be the best choice for fluorine analysis with a signal enhancement of more than eleven times with respect a non-coated graphite furnace. However, the influence of zirconium modifications in the analytical signals of Cl, and I is lower than the F signals or even negative in case of the Br. Understanding zirconium modifiers as heterogeneous catalysts offers a new perspective to AAS and MAS, and reveals the potential of surface analytical methods for development of improved permanent modifiers and graphite furnace coatings. KW - Zirconium KW - HR-CS-MAS KW - Graphite furnace KW - Nanoparticles KW - Xerogel KW - Calcium monofluoride KW - Absorption spectrometry PY - 2018 UR - https://pubs.rsc.org/en/content/articlelanding/2018/ja/c8ja00190a DO - https://doi.org/10.1039/C8JA00190A SN - 0267-9477 VL - 33 IS - 12 SP - 2034 EP - 2042 PB - Royal Society of Chemistry AN - OPUS4-46775 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Arakawa, Akihiro A1 - Jakubowski, Norbert A1 - Flemig, Sabine A1 - Köllensperger, G. A1 - Rusz, M. A1 - Iwahata, D. A1 - Traub, Heike A1 - Hirata, T. T1 - LA-ICP-MS study of Ag nanoparticle transport in a three-dimensional in vitro model N2 - We have applied laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) with subcellular resolution as an elemental mass microscope to investigate the distributions of Ag nanoparticles (NP) in a 3-dimentional multicellular spheroid (MCS) model. The production of MCS has been optimized by changing the seeding cell number (500 to 40,000 cells) and the growth period (1 to 10 days). Incubations of MCS with Ag nanoparticle suspensions were performed with a concentration of 5 µg mL-1 for 24 hours. Thin-sections of the Eosin stained MCS were analysed by elemental mass microscopy using LA-ICP-MS to image distributions of 109Ag, 31P, 63Cu, 66Zn and 79Br. A calibration using NP suspensions was applied to convert the measured Ag intensity into the number of particles being present in each measurement pixel. The numbers of NP determined ranged from 30 up to 4,000 particles in an enrichment zone. The particle distribution was clearly correlated to 31P, 66Zn and 79Br and was localized in an outer rim of proliferating cells (confirmed by DAPI) with a width of about two-single cell diameters. For the highest seeding cell number NPs were only detected in this outer rim, whereas small molecules as for instance 79Br and 109Ag ions were detected in the core of the MCS as well. Aniline blue staining demonstrated that this outer rim was rich in collagen structures in which fibroblast cells were embedded and a thin-membrane was visible which separated the core from the biological active cell layer functioning as biological barriers for NP transport. In this presentation, we will show the possibility using this 3-dimensional model for toxicological and medical applications. T2 - European Winter Conference on Plasma Spectrochemistry EWCPS-2019 CY - Pau, France DA - 03.02.2019 KW - Laser ablation KW - ICP-MS KW - Nanoparticles KW - Cell KW - Multicellular spheroid PY - 2019 AN - OPUS4-47374 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - RPRT A1 - Babick, F. A1 - Mielke, Johannes A1 - Hodoroaba, Vasile-Dan A1 - Weigel, St. A1 - Wohlleben, W. T1 - Critical review manuscript with real-world performance data for counting, ensemble and separating methods including in-build mathematical conversion to number distributions submitted for publication N2 - The content of the paper is the assessment of the performance of (conventional) measurement techniques (MTs)with respect to the classification of disperse materials according to the EC recommendation for a definition of nanomaterial. This performance essentially refers to the accurate assessment of the number weighted median of (the constituent) particles. All data and conclusions are based on the analytical study conducted as real-world performance testing. It comprised different types of MTs (imaging, counting, fractionating, spectroscopic and integral) as well as different types of materials. Beside reference materials with well-defined size distribution the study also included several commercial powders (variation of particle composition, morphology, coating, size range and polydispersity). In order to ensure comparability of measurement results, the participants were guided to use uniform protocols in sample preparation, conducting measurements, data analysis and in reporting results. Corresponding documents have been made public, in order to support the reviewing process of the paper, respectively to ensure the reproducibility of data by other users under the same conditions. The scientific paper relies on a comprehensive set of revised measurement data reported in uniform templates, completely describes the experimental procedures and discusses the MTs’ performance for selected materials in detail. Even more, the study is summarised and evaluated, which leads to recommendations for the use of MTs within a tiered approach of NM characterisation. In addition, the paper critically examines the factors that may affect the outcome of such a comparison among different MTs. KW - Nanomaterial KW - Measurement techniques KW - EC definition of nanomaterial KW - Nanoparticles PY - 2016 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-389646 UR - http://www.nanodefine.eu/index.php/downloads/nanodefine-technical-reports UR - http://www.nanodefine.eu/publications/reports/NanoDefine_TechnicalReport_D3.3.pdf SP - D3.3, 1 EP - 72 PB - The NanoDefine Consortium CY - Wageningen, The Netherlands AN - OPUS4-38964 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Baer, D. R. A1 - Cant, D. J. H. A1 - Castner, D. G. A1 - Ceccone, G. A1 - Engelhard, M. H. A1 - Karakoti, A. S. A1 - Müller, Anja ED - Hodoroaba, Vasile-Dan ED - Unger, Wolfgang ED - Shard, A. G. T1 - Preparation of nanoparticles for surface analysis T2 - Characterization of nanoparticles - Measurement processes for nanoparticles N2 - A variety of methods used to prepare nano-objects for surface analysis are described along with information about when they might be best applied. Intrinsic properties of NPs which complicate their characterization and need to be considered when planning for surface or other analyses of NPs are identified, including challenges associated with reproducible synthesis and functionalization of the particles as well as their dynamic nature. The relevant information about the sample preparation processes, along with analysis details and data that need to be added to the collection of material provenance information is identified. Examples of protocols that have been successfully used for preparation of nano-objects for surface analysis are included in an annex. KW - Sample preparation KW - Nanoparticles KW - Surface chemistry KW - XPS KW - Dynamic behavior KW - Nano-object KW - Surface analysis PY - 2020 SN - 978-0-12-814182-3 DO - https://doi.org/10.1016/B978-0-12-814182-3.00018-3 SP - 295 EP - 347 PB - Elsevier CY - Amsterdam AN - OPUS4-50186 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Behnke, Thomas A1 - Moser, Marko A1 - Nirmalananthan-Budau, Nithiya A1 - Resch-Genger, Ute T1 - Spectroscopic quantification of surface groups on micro- and nanoparticles N2 - Nanometer- and micrometer-sized particles are of increasing importance for a wide range of applications in the material and life sciences. This includes carriers for, e.g., drugs as well as dye molecules for use as multichromophoric reporters for signal enhancement in optical assays, platforms for DNA sequencing, and the fabrication of nanosensors and targeted probes for bioimaging studies. Application-relevant properties of such particles include their size (and size distribution), shape, colloidal stability, biocompatibility, and ease of subsequent functionalization, e.g., with linkers, sensor molecules, and targeting ligands. The latter requires knowledge of the number of groups effectively accessible for subsequent coupling reactions and hence, selective and sensitive methods of analysis, which can be ideally employed for the characterization of a broad variety of particle systems independent of their optical properties, i.e., scattering or the presence of encoding dyes. For product control, robust, reliable and fast methods performable with inexpensive equipment are prefered. In this respect, we studied a variety of conventional labels for optical readout, utilizing changes in intensity and/or color of absorption and/or emission. In addition, we developed a platform of cleavable and multimodal labels for optical assays which consist of a cleavable linker and an optically active reporter moiety. In contrast to conventional reporters measured directly at the particle surface, which are prone to signal distortions by scattering and encoding dyes, these cleavable labels can be detected colorimetrically or fluorometrically both bound at the particle surface and after quantitative cleavage of the linker in the transparent supernatant. Moreover, they enable straightforward validation by method comparison with elemental analysis, ICP-OES or ICP-MS. Here, we present representative examples of newly synthesized cleavable labels and their application for the quantification of amino, thiol and carboxy surface groups on different nanomaterials and compare these results with measurements using conventional optical labels. T2 - 253rd ACS National Meeting CY - San Francisco, CA, USA DA - 02.04.2017 KW - Nanoparticles KW - Microparticles KW - Surface groups KW - Quantification KW - Cleavable linker PY - 2017 N1 - Geburtsname von Nirmalananthan-Budau, Nithiya: Nirmalananthan, N. - Birth name of Nirmalananthan-Budau, Nithiya: Nirmalananthan, N. AN - OPUS4-40004 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bennet, Francesca A1 - Burr, L. A1 - Schmid, D. A1 - Hodoroaba, Vasile-Dan T1 - Towards a method for quantitative evaluation of nanoparticles in suspension via Microprinting and SEM analysis N2 - A series of different nanoparticle suspensions (Gold, Latex, and SiO2 in varying concentrations) were microprinted onto TEM grids in a 4 x 4 array in the concentration range 7x10^8 to 1x10^11 NP/mL and imaged with SEM and TSEM. Concentrations and printing conditions (temperature, relative humidity) were varied in order to minimize the coffee ring effect. T2 - nanoSAFE 2020 CY - Online meeting DA - 16.11.2020 KW - Nanoparticles KW - Microprinting KW - Image analysis PY - 2020 AN - OPUS4-51699 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bennet, Francesca A1 - Burr, L. A1 - Schmid, D. A1 - Hodoroaba, Vasile-Dan T1 - Towards a method for quantitative evaluation of nanoparticle from suspensions via microarray printing and SEM analysis JF - Journal of Physics: Conference Series N2 - As part of the development of a library of accurate and efficient methods for measurement of nanoparticle properties, we develop and optimize a method for the efficient analysis of nanoparticle size distribution from suspensions via microprinting and digital analysis of electron microscopy (SEM and TEM) images, with the ultimate aim of automated quantitative concentration analysis (calculated from drop volume). A series of different nanoparticle suspensions (gold, latex, and SiO2 in varying sizes and concentrations) were printed onto TEM grids in a 4 x 4 array in the concentration range 7x10^8 to 1x10^11 nanoparticles/mL and imaged with SEM. Concentrations and printing conditions (temperature, relative humidity) were varied in order to minimize the coffee-ring effect. KW - Nanoparticles KW - Particle size distribution KW - Electron microscopy KW - Microarray printing KW - Sample preparation KW - Nanoparticle concentration PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-528455 DO - https://doi.org/10.1088/1742-6596/1953/1/012002 VL - 1953 SP - 012002 PB - IOP Publishing AN - OPUS4-52845 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Beyer, Sebastian A1 - Rothfahl, Kevin A1 - Chapartegui, Ander A1 - Emmerling, Franziska A1 - Schneider, Rudolf T1 - Colloidal metalorganic frameworks as novel biofunctional nanoparticles for immunoassay applications N2 - Metal-organic framework (MOF) colloids have unique features that render them ideal signalling agents for realizing advanced immunoassay-based detection systems. MOFs are porous coordination polymers of metal nodes and organic linkers. The pore size of MOFs can be engineered and tailored to allow specific host (MOF) and guest (analyte) interactions. The particle sizes of the colloidal MOF can be tailored by employing methods from colloidal chemistry in wet synthesis. The adaption of established Layer-by-Layer polyelectrolyte coating protocols [1] allows equipping colloidal MOF particles with a nanometer thin polyelectrolyte membrane. This polyelectrolyte membrane serves as an interface for antibody binding. These biofunctional MOF nanoparticles have shown a strong immuno-binding that is sufficient for solid state immunoassays. Our current research addresses the design of luminescence encoded colloidal particle libraries by adjusting the ratios of e.g. Terbium (green) and Europium (red) metal nodes in mixed lanthanide based MOF-76. These mixed lanthanide MOF-76 particles are envisioned to allow multiplexed immuno-detection of endocrine disruptors such as bisphenol A. In addition we investigate the detection of analytes that do not allow the production of antibodies due to their inherent properties. Such “difficult analytes” have a strong hydrophobicity or are very small or highly toxic molecules. One example is the common plasticizer dioctylphthalate that is also a potent endocrine disruptor. MOF colloids can address this issue by specific host (MOF) : guest (analyte) interactions that result in analyte-specific colour change or exciplex-based fluorescence emission. Our overall aim is to develop methodologies that allow parallel sensing of two endocrine disruptors (e.g. bisphenol A & phthalates) by simultaneous immuno-detection and MOF:analyte specific interactions. T2 - BioSensor 2017 - 1st European and 10th German BioSensor Symposium CY - Potsdam, Germany DA - 20.03.2017 KW - MOFs KW - Immunoassay KW - Nanoparticles PY - 2017 AN - OPUS4-43522 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bhuckory, S. A1 - Wegner, Karl David A1 - Qiu, X. A1 - Wu, Y.T. A1 - Jennings, T. L. A1 - Incamps, A. A1 - Hildebrandt, N. T1 - Triplexed CEA-NSE-PSA Immunoassay Using Time-Gated Terbium-to-Quantum Dot FRET JF - Molecules N2 - Time-gated Förster resonance energy transfer (TG-FRET) between Tb complexes and luminescent semiconductor quantum dots (QDs) provides highly advantageous photophysical properties for multiplexed biosensing. Multiplexed Tb-to-QD FRET immunoassays possess a large potential for in vitro diagnostics, but their performance is often insufficient for their application under clinical conditions. Here, we developed a homogeneous TG-FRET immunoassay for the quantification of carcinoembryonic antigen (CEA), neuron-specific enolase (NSE), and prostatespecific antigen (PSA) from a single serum sample by multiplexed Tb-to-QD FRET. Tb–IgG antibody donor conjugates were combined with compact QD-F(ab’)2 antibody acceptor conjugates with three different QDs emitting at 605, 650, and 705 nm. Upon antibody–antigen–antibody Sandwich complex formation, the QD acceptors were sensitized via FRET from Tb, and the FRET ratios of QD and Tb TG luminescence intensities increased specifically with increasing antigen concentrations. Although limits of detection (LoDs: 3.6 ng/mL CEA, 3.5 ng/mL NSE, and 0.3 ng/mL PSA) for the triplexed assay were slightly higher compared to the single-antigen assays, they were still in a clinically relevant concentration range and could be quantified in 50 μL serum samples on a B·R·A·H·M·S KRYPTOR Compact PLUS clinical immunoassay plate reader. The simultaneous quantification of CEA, NSE, and PSA at different concentrations from the same serum sample demonstrated actual multiplexing Tb-to-QD FRET immunoassays and the potential of this technology for translation into clinical diagnostics. KW - Lanthanides KW - Nanoparticles KW - Biosensing KW - Multiplexing KW - FRET KW - Fluorescence KW - PSA KW - NSE KW - CEA PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-512290 DO - https://doi.org/10.3390/molecules25163679 VL - 25 IS - 16 SP - 3679 PB - MDPI AN - OPUS4-51229 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Billimoria, K. A1 - Diaz Fernandez, Y. A. A1 - Andresen, Elina A1 - Sorzabal-Bellido, I. A1 - Huelga-Suarez, G. A1 - Bartczak, D. A1 - Ortiz de Solórzano, C. A1 - Resch-Genger, Ute A1 - Goenaga Infante, H. T1 - The potential of bioprinting for preparation of nanoparticle-based calibration standards for LA-ICP-ToF-MS quantitative imaging JF - Metallomics N2 - This paper discusses the feasibility of a novel strategy based on the combination of bioprinting nano-doping technology and laser ablation-inductively coupled plasma time-of-flight mass spectrometry analysis for the preparation and characterization of gelatin- based multi-element calibration standards suitable for quantitative imaging. To achieve this, lanthanide up-conversion nanoparticles were added to a gelatin matrix to produce the bioprinted calibration standards. The features of this bioprinting approach were com- pared with manual cryosectioning standard preparation, in terms of throughput, between batch repeatability and elemental signal homogeneity at 5 μm spatial resolution. By using bioprinting, the between batch variability for three independent standards of the same concentration of 89 Y (range 0–600 mg/kg) was reduced to 5% compared to up to 27% for cryosectioning. On this basis, the relative standard deviation ( RSD ) obtained between three independent calibration slopes measured within 1 day also reduced from 16% (using cryosectioning ) to 5% (using bioprinting), supporting the use of a single standard preparation replicate for each of the concentrations to achieve good calibration performance using bioprinting. This helped reduce the analysis time by approximately 3-fold. With cryosectioning each standard was prepared and sectioned individually, whereas using bio-printing it was possible to have up to six different standards printed simultaneously, reducing the preparation time from approximately 2 h to under 20 min (by approxi- mately 6-fold). The bio-printed calibration standards were found stable for a period of 2 months when stored at ambient temperature and in the dark. KW - Environmental analysis KW - LA-ICP-MS KW - Lanthanide KW - Tag KW - Fluorescence KW - Nanoparticles KW - Reference material KW - Quality assurance KW - 3D-printing KW - Synthesis KW - Production KW - Multimodal PY - 2022 DO - https://doi.org/10.1093/mtomcs/mfac088 SN - 1756-591X VL - 14 IS - 12 SP - 1 EP - 9 PB - Oxford University Press CY - Oxford AN - OPUS4-57018 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bresch, Harald T1 - Core-shell systems - different cases N2 - Coating, stabilization layers, functionalization of particles or simple contamination are common variants of a core-shell system. For smaller nanoparticles this is of major importance. A particle with 16 nm diameter and a usual surface layer of 2 nm will have the same volume for the core as for the shell. In this case the material of the particle doesn’t have a clear definition. It is a common case that a particle consists of four different layers: Core, shell, stabilization layer and contamination. The properties of the particles differ according to this structure. For example silver particles might have a different dissolution rate for pure particles and for particles which are grown on top of a core. Different solubility or defined other properties of materials is a common reason for producing core-shell systems. Gold cores are surrounded by silica to stabilize them or to get a defined distance between the cores. Silica might be surrounded by gold and the silica dissolved afterwards. This delivers hollow shells. Another important example for core-shell systems are quantum dots. A small core is surrounded by a different material for increasing the photoluminescence. Furthermore there a stabilization layer is needed. The smallest part of the final particles is the initial core. The photoluminescence is based on this core, but the shells contain much more material. Categorization should address this. Core-shell systems are not covered by most of the existing decision trees for grouping. They are either regarded as special case or a singular layer. This disqualifies core-shell systems for grouping within the common models. There might be a very easy way to avoid this problem and even to combine some of the different decision trees. Starting the decision tree with the solubility of the outer shell and subsequently addressing the inner layers will be a pragmatic approach to solve the problem. If there is no shell, the categorization can start with a tiered approach or with the proposed “stawman” chemical categorization. If a shell is covering the surface there is a need to check if the shell is stable. If it is stable, the particle can be categorized based on this shell. If it is soluble, the ions need to be addressed as in the classic case. Furthermore the shell might increase the uptake by the cells. If the ions and the uptake are not critical the categorization can continue with the next layer. With this not perfect but pragmatic approach, the surface layers can be addressed with very limited additional efforts. Most criteria are based on classically tabulated data. Including a rating system like the precautionary matrix approach might even address the fact that some parameters are not always Yes/No, e.g. solubility, ion toxicity and uptake. T2 - OECD Expert Meeting on Grouping and Read Across for the Hazard Assessment of Manufactured Nanomaterials CY - Brussels, Belgium DA - 13.04.2016 KW - OECD KW - Nanoparticles KW - Nanomaterials KW - Grouping KW - Nano PY - 2016 AN - OPUS4-35774 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Brüngel, R. A1 - Rückert, J. A1 - Wohlleben, W. A1 - Babick, F. A1 - Ghanem, A. A1 - Gaillard, C. A1 - Mech, A. A1 - Rauscher, H. A1 - Hodoroaba, Vasile-Dan A1 - Weigel, S. A1 - Friedrich, C. M. T1 - NanoDefiner e-Tool: An Implemented Decision Support Framework for Nanomaterial Identification JF - Materials N2 - The European Commission’s recommendation on the definition of nanomaterial (2011/696/EU) established an applicable standard for material categorization. However, manufacturers face regulatory challenges during registration of their products. Reliable categorization is difficult and requires considerable expertise in existing measurement techniques (MTs). Additionally, organizational complexity is increased as different authorities’ registration processes require distinct reporting. The NanoDefine project tackled these obstacles by providing the NanoDefiner e-tool: A decision support expert system for nanomaterial identification in a regulatory context. It providesMT recommendations for categorization of specific materials using a tiered approach (screening/confirmatory), and was constructed with experts from academia and industry to be extensible, interoperable, and adaptable for forthcoming revisions of the nanomaterial definition. An implemented MT-driven material categorization scheme allows detailed description. Its guided workflow is suitable for a variety of user groups. Direct feedback and explanation enable transparent decisions. Expert knowledge is Held in a knowledge base for representation of MT performance criteria and physicochemical particle type properties. Continuous revision ensured data quality and validity. Recommendations were validated by independent case studies on industry-relevant particulate materials. Besides supporting material identification and registration, the free and open-source e-tool may serve as template for other expert systems within the nanoscience domain. KW - EC nanomaterial definition KW - Decision support KW - Expert system KW - Nanomaterial KW - Nanoparticles PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-492449 DO - https://doi.org/10.3390/ma12193247 VL - 12 IS - 19 SP - 3247 PB - MDPI CY - Basel, CH AN - OPUS4-49244 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Büchner, T. A1 - Drescher, D. A1 - Merk, V. A1 - Traub, Heike A1 - Guttmann, P. A1 - Werner, St. A1 - Jakubowski, Norbert A1 - Schneider, G. A1 - Kneipp, J. T1 - Biomolecular environment, quantification, and intracellular interaction of multifunctional magnetic SERS nanoprobes JF - Analyst N2 - Multifunctional composite nanoprobes consisting of iron oxide nanoparticles linked to silver and gold nanoparticles, Ag–Magnetite and Au–Magnetite, respectively, were introduced by endocytic uptake into cultured fibroblast cells. The cells containing the non-toxic nanoprobes were shown to be displaceable in an external magnetic field and can be manipulated in microfluidic channels. The distribution of the composite nanostructures that are contained in the endosomal system is discussed on the basis of surfaceenhanced Raman scattering (SERS) mapping, quantitative laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) micromapping, and cryo soft X-ray tomography (cryo soft-XRT). Cryo soft-XRT of intact, vitrified cells reveals that the composite nanoprobes form intra-endosomal aggregates. The nanoprobes provide SERS signals from the biomolecular composition of their surface in the endosomal environment. The SERS data indicate the high stability of the nanoprobes and of their plasmonic properties in the harsh environment of endosomes and lysosomes. The spectra point at the molecular composition at the surface of the Ag–Magnetite and Au–Magnetite nanostructures that is very similar to that of other Composite structures, but different from the composition of pure silver and gold SERS nanoprobes used for intracellular investigations. As shown by the LA-ICP-MS data, the uptake efficiency of the magnetite composites is approximately two to three times higher than that of the pure gold and silver nanoparticles. KW - Nanoparticles KW - SERS KW - Cell KW - LA-ICP-MS KW - X-ray tomography PY - 2016 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-371811 DO - https://doi.org/10.1039/c6an00890a SN - 0003-2654 VL - 141 IS - 17 SP - 5096 EP - 5106 PB - Royal Society of Chemistry CY - Cambridge, UK AN - OPUS4-37181 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Cant, D. J. H. A1 - Müller, Anja A1 - Clifford, C. A. A1 - Unger, Wolfgang A1 - Shard, A. G. T1 - Summary of ISO/TC 201 Technical Report 23173—Surface chemical analysis—Electron spectroscopies—Measurement of the thickness and composition of nanoparticle coatings JF - Surface and Interface Analysis N2 - ISO Technical Report 23173 describes methods by which electron spectroscopies, including X-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy (AES) and synchrotron techniques, can be employed to calculate the Coating thicknesses and compositions of nanoparticles. The document has been developed to review and outline the current state-of-the-art for such measurements. Such analyses of core–shell nanoparticles are common within the literature, however the methods employed are varied; the relative advantages and disadvantages of These methods, and the optimal usage of each may not be clear to the general analyst. ISO Technical Report 23173 aims to clarify the methods that are available, describe them in clear terms, exhibit examples of their use, and highlight potential issues users may face. The information provided should allow analysts of electron spectroscopy data to make clear choices regarding the appropriate analysis of electron spectroscopy data from coated nanoparticle systems and provide a basis for understanding and comparing results from different methods and systems. KW - Electron spectroscopy KW - Core-shell KW - Nanoparticles KW - ISO 23173 KW - XPS KW - Thickness KW - Composition PY - 2021 DO - https://doi.org/10.1002/sia.6987 SN - 0142-2421 VL - 53 IS - 10 SP - 893 EP - 899 PB - John Wiley & Sons Ltd AN - OPUS4-52976 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Chambers, M. S. A1 - Hunter, R. D. A1 - Hollamby, M. J. A1 - Pauw, Brian Richard A1 - Smith, A. J. A1 - Snow, T. A1 - Danks, A. E. A1 - Schnepp, Z. T1 - In Situ and Ex Situ X‑ray Diffraction and Small-Angle X‑ray Scattering Investigations of the Sol−Gel Synthesis of Fe3N and Fe3C JF - Inorganic Chemistry N2 - Iron nitride (Fe3N) and iron carbide (Fe3C) nanoparticles can be prepared via sol−gel synthesis. While sol−gel methods are simple, it can be difficult to control the crystalline composition, i.e., to achieve a Rietveld-pure product. In a previous in situ synchrotron study of the sol−gel synthesis of Fe3N/Fe3C, we showed that the reaction proceeds as follows: Fe3O4 → FeOx → Fe3N → Fe3C. There was considerable overlap between the different phases, but we were unable to ascertain whether this was due to the experimental setup (side-on heating of a quartz capillary which could lead to thermal gradients) or whether individual particle reactions proceed at different rates. In this paper, we use in situ wide- and small-angle X-ray scattering (wide-angle X-ray scattering (WAXS) and small-angle X-ray scattering (SAXS)) to demonstrate that the overlapping phases are indeed due to variable reaction rates. While the initial oxide nanoparticles have a small range of diameters, the size range expands considerably and very rapidly during the oxide−nitride transition. This has implications for the isolation of Rietveld-pure Fe3N, and in an extensive laboratory study, we were indeed unable to isolate phasepure Fe3N. However, we made the surprising discovery that Rietveld-pure Fe3C nanoparticles can be produced at 500 °C with a sufficient furnace dwell time. This is considerably lower than the previous reports of the sol−gel synthesis of Fe3C nanoparticles. KW - Small-angle X-ray Scattering KW - SAXS KW - Diffraction KW - XRD KW - Scattering KW - Sol-gel KW - Iron nitride KW - Nanoparticles KW - Iron carbide KW - Catalyst KW - In-situ KW - Ex-situ KW - Synthesis KW - Synchrotron PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-548226 DO - https://doi.org/10.1021/acs.inorgchem.1c03442 VL - 61 IS - 18 SP - 6742 EP - 6749 PB - ACS Publications CY - Washington AN - OPUS4-54822 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Deumer, J. A1 - Pauw, Brian Richard A1 - Marguet, S. A1 - Skroblin, D. A1 - Taché, O. A1 - Krumrey, M. A1 - Gollwitzer, C. T1 - Small-angle X-ray scattering: characterization of cubic Au nanoparticles using Debye’s scattering formula JF - Journal of Applied Crystallography N2 - A versatile software package in the form of a Python extension, named CDEF (computing Debye’s scattering formula for extraordinary form factors), is proposed to calculate approximate scattering profiles of arbitrarily shaped nanoparticles for small-angle X-ray scattering (SAXS). CDEF generates a quasi-randomly distributed point cloud in the desired particle shape and then applies the open-source software DEBYER for efficient evaluation of Debye’s scattering formula to calculate the SAXS pattern (https://github.com/j-from-b/CDEF). If self-correlation of the scattering signal is not omitted, the quasi-random distribution provides faster convergence compared with a true-random distribution of the scatterers, especially at higher momentum transfer. The usage of the software is demonstrated for the evaluation of scattering data of Au nanocubes with rounded edges, which were measured at the four-crystal monochromator beamline of PTB at the synchrotron radiation facility BESSY II in Berlin. The implementation is fast enough to run on a single desktop computer and perform model fits within minutes. The accuracy of the method was analyzed by comparison with analytically known form factors and verified with another implementation, the SPONGE, based on a similar principle with fewer approximations. Additionally, the SPONGE coupled to McSAS3 allows one to retrieve information on the uncertainty of the size distribution using a Monte Carlo uncertainty estimation algorithm. KW - X-ray scattering KW - SAXS KW - Non-spherical nanoparticles KW - Nanoparticles KW - Nanomaterials KW - Debye scattering equation KW - Simulation KW - Data fitting PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-557652 DO - https://doi.org/10.1107/S160057672200499X VL - 55 IS - Pt 4 SP - 993 EP - 1001 PB - International Union of Crystallography CY - Chester, England AN - OPUS4-55765 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Donėlienė, J. A1 - Rudzikas, M. A1 - Rades, Steffi A1 - Dörfel, Ilona A1 - Peplinski, Burkhard A1 - Sahre, Mario A1 - Pellegrino, F. A1 - Maurino, V. A1 - Ulbikas, J. A1 - Galdikas, A. A1 - Hodoroaba, Vasile-Dan T1 - Morphology and structure of TixOy nanoparticles generated by femtosecond laser ablation in water JF - Materials Research Express N2 - In this work femto-second pulsed laser ablation in liquid (PLAL) procedure for the generation of titanium oxide nanoparticles (NP) is reported with the purpose of understanding morphology and structure of the newly generated NPs. Ablation duration was varied for optimization of NP generation processes between 10 and 90 min. Surface morphology of NPs as well as their size and shape (distribution) were analysed by various complementary electron microscopy techniques, i.e. SEM, TSEM and TEM. The crystalline structure of titanium oxide particles was investigated byXRD(two instruments operated in different geometries) and HR-TEM. Concentration of generated titanium oxide NPs in liquid was analysed by ICP-MS. A mix of crystalline (mainly anatase), partly crystalline and amorphous spherical titanium oxide NPs can be reported having a mean size between 10 and 20 nm, which is rather independent of the laser ablation (LA) duration. A second component consisting of irregularly shaped, but crystalline titanium oxide nanostructures is co-generated in the LA water, with more pronounced occurrence at longer LA times. The provenance of this component is assigned to those spherical particles generated in suspension and passing through the converging laser beam, being hence subject to secondary irradiation effects, e. g. fragmentation. KW - Titanium oxide KW - Nanoparticles KW - Laser ablation in liquid KW - Particle morphology KW - Nanoparticle structure PY - 2018 DO - https://doi.org/10.1088/2053-1591/aaba56 SN - 2053-1591 VL - 5 IS - 4 SP - 045015-1 EP - 045015-12 PB - IOP Publishing CY - London, UK AN - OPUS4-44678 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Donėlienė, J. A1 - Rudzikas, M. A1 - Rades, Steffi A1 - Dörfel, Ilona A1 - Peplinski, Burkhard A1 - Sahre, Mario A1 - Pellegrino, F. A1 - Maurino, V. A1 - Ulbikas, J. A1 - Galdikas, A. A1 - Hodoroaba, Vasile-Dan T1 - Electron Microscopy and X-Ray Diffraction Analysis of Titanium Oxide Nanoparticles Synthesized by Pulsed Laser Ablation in Liquid JF - Microscopy and Microanalysis N2 - A femto-second pulsed laser ablation in liquid (PLAL) procedure for the generation of titanium oxide nanoparticles (NP) is reported with the purpose of understanding morphology and structure of the newly generated NPs. Ablation duration was varied for optimization of NP generation processes between 10 and 90 min. Surface morphology of NPs as well as their size and shape (distribution) were analysed by various complementary electron microscopy techniques, i.e. SEM, TSEM and TEM. The crystalline structure of titanium oxide particles was investigated by XRD(two instruments operated in different geometries) and HR-TEM. Concentration of generated titanium oxide NPs in liquid was analysed by ICP-MS. A mix of crystalline (mainly anatase), partly crystalline and amorphous spherical titanium oxide NPs can be reported having a mean size between 10 and 20 nm, which is rather independent of the laser ablation (LA) duration. A second component consisting of irregularly shaped, but crystalline titanium oxide nanostructures is co-generated in the LA water, with more pronounced occurrence at longer LA times. The provenance of this component is assigned to those spherical particles generated in suspension and passing through the converging laser beam, being hence subject to secondary irradiation effects, e. g. fragmentation. KW - Laser ablation in liquid KW - Nanoparticles KW - Titanium oxide KW - Particle morphology PY - 2018 UR - https://www.cambridge.org/core/journals/microscopy-and-microanalysis/article/electron-microscopy-and-xray-diffraction-analysis-of-titanium-oxide-nanoparticles-synthesized-by-pulsed-laser-ablation-in-liquid/AE368446FAC70E08C514F9AEABFD131B DO - https://doi.org/10.1017/S1431927618009030 VL - 24 IS - S1 (August) SP - 1710 EP - 1711 PB - Cambridge University Press CY - New York, NY, U.S.A. AN - OPUS4-45949 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Drescher, D. A1 - Traub, Heike A1 - Büchner, T. A1 - Jakubowski, Norbert A1 - Kneipp, J. T1 - Properties of in situ generated gold nanoparticles in the cellular context JF - Nanoscale N2 - Gold nanostructures that serve as probes for nanospectroscopic analysis of eukaryotic cell cultures can be obtained by the in situ reduction of tetrachloroauric acid (HAuCl4). To understand the formation process of such intracellularly grown particles depending on the incubation medium, the reaction was carried out with 3T3 fibroblast cells in three different incubation media, phosphate buffer, Dulbecco's Modified Eagle Medium (DMEM), and standard cell culture medium (DMEM with fetal calf serum). The size, the optical properties, the biomolecular corona, and the localization of the gold nanoparticles formed in situ vary for the different conditions. The combination of surface-enhanced Raman scattering (SERS) and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) microscopic mapping and transmission electron microscopy (TEM) provides complementary perspectives on plasmonic nanoparticles and non-plasmonic gold compounds inside the cells. While for the incubation with HAuCl4 in PBS, gold particles provide optical signals from the nucleus, the incubation in standard cell culture medium leads to scavenging of the toxic molecules and the formation of spots of high gold concentration in the cytoplasm without formation of SERS-active particles inside the cells. The biomolecular corona of nanoparticles formed in situ after incubation in buffer and DMEM differs, suggesting that different intracellular molecular species serve for reduction and stabilization. Comparison with data obtained from ready-made gold nanoparticles suggests complementary application of in situ and ex situ generated nanostructures for optical probing. KW - Nanoparticles KW - Laser ablation KW - ICP-MS KW - SERS KW - Cell PY - 2017 DO - https://doi.org/10.1039/C7NR04620K SN - 2040-3372 VL - 9 IS - 32 SP - 11647 EP - 11656 PB - The Royal Society of Chemistry RSC CY - Cambridge, UK AN - OPUS4-41871 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - El Abbassi, Abdelouahad T1 - Multifaceted Nanoparticles: Labeling, Heterostructures, and Aggregation-induced Dual-emission Systems for Advanced Applications N2 - Nanoparticles with novel physico-chemical properties have an impact on various scientific disciplines, including medical diagnostics, energy conversion, catalysis, and solid-state lighting. Here, I present examples from my previous work on organic and inorganic nanoscale systems, such as superparamagnetic iron oxide nanoparticles (SPIONs) for blood platelet labeling and magnetic copper-doped bioactive glasses for bone cancer therapy. Additionally, I provide a first insight into my recently started Ph.D. project focusing on bichromophoric organic fluorophores exhibiting Aggregation-Induced Dual-Emission (AIDE) and their integration into nanostructures for water-dispersible nanoscale reporters and nanosensors. T2 - Bad-Honnef Summer School Exciting Nanostructures 2023 CY - Bad Honnef, Germany DA - 30.07.2023 KW - Nanoparticles KW - AIE KW - SPIONS PY - 2023 AN - OPUS4-58204 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fernandez, L. A1 - Esteves, V. I. A1 - Cunha, A. A1 - Schneider, Rudolf A1 - Tome, J. P. C. T1 - Photodegradation of organic pollutants in water by immobilized porphyrins and phthalocyanines JF - Journal of Porphyrins and Phthalocyanines N2 - New methods for water treatment are required as a result from an increasing awareness in the reduction of the pollution impact in the environment. In the perspective of the photo-oxidation of organic pollutants present in water, the principal incentive for the preparation of heterogeneous photocatalysts is their easy recovery from the reaction mixture, which allows their reuse in successive runs, minimizing the loss of their original photocatalytic properties. Different types of supports can be used in the immobilization of photoactive species, such as porphyrins (Pors) and phthalocyanines (Pcs). This mini-review will consider the different methodologies for the immobilization of Pors and Pcs and their photocatalytic performance in the photodegradation of organic pollutants in water, addressing also their recycling ability in successive water treatments. KW - Porphyrins KW - Phthalocyanines KW - Water treatment KW - Organic pollutants KW - Advanced oxidation processes KW - Heterogeneous photocatalysis KW - TiO2 KW - Microporous KW - Nanoparticles PY - 2016 DO - https://doi.org/10.1142/S108842461630007X VL - 2016 IS - 20 SP - 150 EP - 166 PB - World Scientific Publishing AN - OPUS4-38503 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fletcher, D. C. A1 - Hunter, R. A1 - Xia, W. A1 - Smales, Glen Jacob A1 - Pauw, Brian Richard A1 - Blackburn, E. A1 - Kulak, A. A1 - Xin, H. A1 - Schnepp, Z. T1 - Scalable synthesis of dispersible iron carbide (Fe3C) nanoparticles by ‘nanocasting’ JF - Journal of Materials Chemistry A N2 - Metal carbides have shown great promise in a wide range of applications due to their unique catalytic, electrocatalytic and magnetic properties. However, the scalable production of dispersible metal carbide nanoparticles remains a challenge. Here, we report a simple and scalable route to dispersible iron carbide (Fe3C) nanoparticles. This uses MgO nanoparticles as a removable ‘cast’ to synthesize Fe3C nanoparticles from Prussian blue (KFeIII[FeII(CN)6]). Electron tomography demonstrates how nanoparticles of the MgO cast encase the Fe3C nanoparticles to prevent sintering and agglomeration during the high-temperature synthesis. The MgO cast is readily removed with ethylenediaminetetraacetic acid (EDTA) to generate Fe3C nanoparticles that can be used to produce a colloidal ferrofluid or dispersed on a support material. KW - Small-angle scattering KW - SAXS KW - Metal carbides KW - Nanoparticles KW - Nanocasting PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-486295 DO - https://doi.org/10.1039/C9TA06876G SN - 2050-7488 SN - 2050-7496 VL - 7 IS - 33 SP - 19506 EP - 19512 PB - Royal Society of Chemistry (RSC) AN - OPUS4-48629 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Friedrich, C. M. A1 - Weigel, S. A1 - Marvin, H. A1 - Rauscher, H. A1 - Wohlleben, W. A1 - Babick, F. A1 - Löschner, K. A1 - Mech, A. A1 - Brüngel, R. A1 - Hodoroaba, Vasile-Dan A1 - Gilliland, D. A1 - Rasmussen, K. A1 - Ghanem, A. T1 - The NanoDefine Methods Manual N2 - This document is a collection of three JRC Technical Reports that together form the “NanoDefine Methods Manual”, which has been developed within the NanoDefine project ‘Development of an integrated approach based on validated and standardized methods to support the implementation of the EC recommendation for a definition of nanomaterial’, funded by the European Union’s 7th Framework Programme, under grant agreement 604347. The overall goal of the NanoDefine project was to support the implementation of the European Commission Recommendation on the definition of nanomaterial (2011/696/EU). The project has developed an integrated empirical approach, which allows identifying a material as a nano- or not a nanomaterial according to the EC Recommendation. The NanoDefine Methods Manual consists of three parts: Part 1: The NanoDefiner Framework and Tools, which covers the NanoDefiner framework, general information on measurement methods and performance criteria, and tools developed by NanoDefine such as a materials categorisation system, a decision support flow scheme and an e-tool. Part 2: Evaluation of Methods, which discusses the outcome of the evaluation of the nanomaterials characterisation methods for measuring size. Part 3: Standard Operating Procedures (SOPs), which presents the 23 Standard Operating Procedures developed within the NanoDefine project. In this combined document, these three parts are included as stand-alone reports, each having its own abstract, table of contents, page, table and figure numbering, and references. KW - Nanomaterial KW - Particle size distribution KW - Nanoparticles KW - NanoDefine KW - Nanomaterial classification PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-504250 SN - 978-92-76-12335-4 DO - https://doi.org/10.2760/79490 VL - JRC117501 SP - 1 EP - 451 PB - Publications Office of the European Union CY - Luxembourg AN - OPUS4-50425 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gaillard, C. A1 - Mech, A. A1 - Wohlleben, W. A1 - Babick, F. A1 - Hodoroaba, Vasile-Dan A1 - Ghanem, A. A1 - Weigel, S. A1 - Rauscher, H. T1 - A technique-driven materials categorisation scheme to support regulatory identification of nanomaterials JF - Nanoscale Advances N2 - Worldwide there is a variety of regulatory provisions addressing nanomaterials. The identification as nanomaterial in a regulatory context often has the consequence that specific legal rules apply. In identifying nanomaterials, and to find out whether nanomaterial-specific provisions apply, the external size of particles is globally used as a criterion. For legal certainty, its assessment for regulatory purposes should be based on measurements and methods that are robust, fit for the purpose and ready to be accepted by different stakeholders and authorities. This should help to assure the safety of nanomaterials and at the same time facilitate their international trading. Therefore, we propose a categorisation scheme which is driven by the capabilities of common characterisation techniques for particle size measurement. Categorising materials according to this scheme takes into account the particle properties that are most important for a determination of their size. The categorisation is exemplified for the specific particle number based size metric of the European Commission's recommendation on the definition of nanomaterial, but it is applicable to other metrics as well. Matching the performance profiles of the measurement techniques with the material property profiles (i) allows selecting the most appropriate size determination technique for every type of material considered, (ii) enables proper identification of nanomaterials, and (iii) has the potential to be accepted by regulators, industry and consumers alike. Having such a scheme in place would facilitate the regulatory assessment of nanomaterials in regional legislation as well as in international relations between different regulatory regions assuring the safe trade of nanomaterials. KW - Nanomaterial KW - Nanoparticles KW - Categorisation scheme KW - EC definition of a nanomaterial KW - Regulatory identification of nanomaterials PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-471623 DO - https://doi.org/10.1039/C8NA00175H SN - 2516-0230 SP - 1 EP - 11 PB - The Royal Society of Chemistry AN - OPUS4-47162 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gea, M. A1 - Bonetta, S. A1 - Iannarelli, L. A1 - Giovannozzi, A. M. A1 - Maurino, V. A1 - Bonetta, S. A1 - Hodoroaba, Vasile-Dan A1 - Armato, C. A1 - Rossi, A. M. A1 - Schilirò, T. T1 - Shape-engineered titanium dioxide nanoparticles (TiO2-NPs): cytotoxicity and genotoxicity in bronchial epithelial cells JF - Food and Chemical Toxicology N2 - The aim of this study was to evaluate cytotoxicity (WST-1 assay), LDH release (LDH assay) and genotoxicity (Comet assay) of three engineered TiO2-NPs with different shapes (bipyramids, rods, platelets) in comparison with two commercial TiO2-NPs (P25, food grade). After NPs characterization (SEM/T-SEM and DLS), biological effects of NPs were assessed on BEAS-2B cells in presence/absence of light. The cellular uptake of NPs was analyzed using Raman spectroscopy. The cytotoxic effects were mostly slight. After light exposure, the largest cytotoxicity (WST-1 assay) was observed for rods; P25, bipyramids and platelets showed a similar effect; no effect was induced by food grade. No LDH release was detected, confirming the low effect on plasma membrane. Food grade and platelets induced direct genotoxicity while P25, food grade and platelets caused oxidative DNA damage. No genotoxic or oxidative damage was induced by bipyramids and rods. Biological effects were overall lower in darkness than after light exposure. Considering that only food grade, P25 and platelets (more agglomerated) were internalized by cells, the uptake resulted correlated with genotoxicity. In conclusion, cytotoxicity of NPs was low and affected by shape and light exposure, while genotoxicity was influenced by cellular-uptake and aggregation tendency. KW - Nanoparticles KW - Shape-engineered KW - Raman spectroscopy KW - Genotoxic and oxidative damage KW - Cytotoxicity PY - 2019 UR - https://www.sciencedirect.com/science/article/pii/S0278691519301036?via%3Dihub DO - https://doi.org/10.1016/j.fct.2019.02.043 SN - 0278-6915 SN - 1873-6351 VL - 127 SP - 89 EP - 100 PB - Elsevier AN - OPUS4-47532 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gollwitzer, C. A1 - Marguet, S. A1 - Maurino, V. A1 - Hodoroaba, Vasile-Dan T1 - Computation of scattering curves for particles with arbitrary shapes using Debye’s formula N2 - Small-angle scattering data from particle dispersions with narrow size distributions are usually analysed by fitting a model function to the data, which is composed of a monodisperse form factor with a size distribution and, optionally, a structure factor. For common particle shapes like solid spheres, core-shell particles, ellipsoids or rods, the form factor can be computed analytically, and several software packages are readily available which provide a compilation of form factors.1,2 Recently, highly monodisperse nanoparticles with a variety of shapes have been synthesized, e.g. cubes and bipyramids3,4 with lightly capped edges, for which analytic form factors are harder to derive. We compute an approximation to the scattering curve of arbitrary shapes by filling the shape with a quasi-random distribution of point scatterers and using Debye’s formula to get the overall scattering curve. The highly optimized debyer code is used to perform an efficient evaluation of Debye’s formula,5 which can perform the evaluation of 500,000 point scatterers in two minutes on commodity hardware. Moderate polydispersity is handled by interpolating the computed scattering curve over q from a master curve. In this way, the code is fast enough to perform data fitting of particle ensembles with moderate polydispersity for arbitrary shapes to experimental data. This work was partly funded by the 17NRM04 nPSize project of the EMPIR programme co-financed by the EMPIR participating states and by the European Union’s Horizon 2020 research and innovation programme. T2 - 17th Nordic Workshop on Scattering from Soft Matter CY - Linköping, Sweden DA - 14.01.2020 KW - X-ray scattering KW - Nanoparticles KW - Particle shape KW - Modelling KW - Form factor PY - 2020 UR - http://nssm2020.se/ AN - OPUS4-50368 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Guehrs, E. A1 - Schneider, M. A1 - Günther, Ch. M. A1 - Hessing, P. A1 - Heitz, K. A1 - Wittke, D. A1 - López-Serrano Oliver, Ana A1 - Jakubowski, Norbert A1 - Plendl, J. A1 - Eisebitt, S. A1 - Haase, A. T1 - Quantification of silver nanoparticle uptake and distribution within individual human macrophages by FIB/SEM slice and view JF - Journal of Nanobiotechnology N2 - Quantification of nanoparticle (NP) uptake in cells or tissues is very important for safety assessment. Often, electron microscopy based approaches are used for this purpose, which allow imaging at very high resolution. However, precise quantification of NP numbers in cells and tissues remains challenging. The aim of this study was to present a novel approach, that combines precise quantification of NPs in individual cells together with high resolution imaging of their intracellular distribution based on focused ion beam/ scanning electron microscopy (FIB/SEM) slice and view approaches. KW - Nanoparticles KW - FIB/SEM slice and view KW - Absolute dose KW - Cellular internalization KW - Macrophage PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-400626 DO - https://doi.org/10.1186/s12951-017-0255-8 SN - 1477-3155 VL - 15 SP - Article 21, 1 EP - 11 AN - OPUS4-40062 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Heilmann, Maria A1 - Bienert, Ralf A1 - Prinz, Carsten A1 - Emmerling, Franziska T1 - Synthesis of bimetallic nickel nanoparticles as catalysts for the Sabatier reaction N2 - Nanoparticles (NP) have become important materials for a variety of chemical technologies. The enhanced surface-area-to-volume ratio of NPs, making them excellent for use as catalyst, in analytical assays, and for antimicrobial applications. Nickel NPs have exhibited immense potential as important catalyst for the Sabatier reaction, i.e. converting waste to energy via transformation of CO2 into CH4, and could replace the rare earth elements such as Ru, PT, or Rh. In this work we describe the solvothermal synthesis of monometallic and bimetallic nickel nanoparticles. Monodisperse monometallic Ni NPs were synthesized using Oleylamin as solvent and reducing agent. The nanoparticles were investigated using small angle scattering (SAXS), scanning transmission electron microscopy (STEM) and energy dispersive X-ray spectroscopy (EDX), showing that the NPs are stable while the surface is not entirely covered. However, Ni has a high propensity to undergo oxidation, and becoming deactivated by coke formation. Hence, we further explore the preparation of bimetallic NPs, where a second metal is added to stabilize the Ni. Bimetallic Cu-Ni NPs were synthesized by simultaneous solvothermal reduction. These bimetallic NPs exhibit excellent catalytic properties are promising candidates to be used as catalysts for efficient energy storage. T2 - 31. Tag der Chemie 2019 CY - Berlin, Germany DA - 11.07.2019 KW - Nanoparticles KW - Catalysis KW - Synthesis PY - 2019 AN - OPUS4-50171 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Heilmann, Maria A1 - Bienert, Ralf A1 - Prinz, Carsten A1 - Emmerling, Franziska T1 - Synthesis of bimetallic nickel nanoparticles for catalysis N2 - We present the synthesis of monodisperse monometallic Ni nanoparticles (NPs) and bimetallic NiCu respectively NiCo NPs. The NPs were investigated using SAXS, STEM, EDX, and XANES, showing that the NPs are size tunable and stable while the surface is not entirely covered. Nickel NPs have exhibited immense potential as important catalyst for the Sabatier reaction, i.e. converting waste to energy via transformation of CO2 into CH4. T2 - 11th Joint BER II and BESSY II User Meeting CY - Berlin, Germany DA - 04.12.2019 KW - Nanoparticles KW - Catalysis KW - Synthesis PY - 2019 AN - OPUS4-50172 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Heilmann, Maria A1 - Bienert, Ralf A1 - Prinz, Carsten A1 - Emmerling, Franziska T1 - Synthesis of bimetallic nickel nanoparticles as catalysts for the Sabatier reaction N2 - Nanoparticles (NPs) have become important materials for a variety of chemical technologies. The enhanced surface-area-to-volume ratio of NPs, making them excellent for use as catalyst, in analytical assays, and for antimicrobial applications. Nickel NPs have exhibited immense potential as important catalyst for the Sabatier reaction, i.e. converting waste to energy via transformation of CO2 into CH4, and could replace the rare earth elements such as Ru, PT, or Rh. In this work we describe the solvothermal synthesis of monometallic and bimetallic nickel nanoparticles. Monodisperse monometallic Ni NPs were synthesized using Oleylamin as solvent and reducing agent. The nanoparticles were investigated using small angle scattering (SAXS), scanning transmission electron microscopy (STEM) and energy dispersive X-ray spectroscopy (EDX), showing that the NPs are stable while the surface is not entirely covered. However, Ni has a high propensity to undergo oxidation, and becoming deactivated by coke formation. Hence, we further explore the preparation of bimetallic NPs, where a second metal is added to stabilize the Ni. Bimetallic Cu-Ni NPs were synthesized by simultaneous solvothermal reduction. These bimetallic NPs exhibit excellent catalytic properties are promising candidates to be used as catalysts for efficient energy storage. T2 - Adlershofer Forschungsforum 2019 CY - Berlin, Germany DA - 11.11.2019 KW - Nanoparticles KW - Catalysis KW - Synthesis PY - 2019 AN - OPUS4-50173 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Heilmann, Maria A1 - Kulla, Hannes A1 - Prinz, Carsten A1 - Bienert, Ralf A1 - Marquardt, Julien A1 - de Oliveira Guilherme Buzanich, Ana A1 - Emmerling, Franziska T1 - Synthesis of Bimetallic Nickel Nanoparticles as Catalysts for the Sabatier Reaction N2 - Nanoparticles (NP) have become important materials for a variety of chemical technologies. The enhance surface-area-to-volume ratio of NPs is very high, making them excellent for use as catalyst, in analytical assays, and for antimicrobial applications. Nickel NPs have exhibited immense potential as important catalyst for the Sabatier reaction, i.e. converting waste to energy via transformation of CO2 into CH4, and could replace the rare earth elements such as Ru, PT, or Rh. In this work we describe the solvothermal synthesis of monometallic and bimetallic nickel nanoparticles. Monodisperse monometallic Ni nanoparticles were synthesized using Oleylamin as solvent and reducing agent. The nanoparticles were investigated using small angle scattering (SAXS), scanning transmission electron microscopy (STEM) and energy dispersive X-ray spectroscopy (EDX), showing that the catalytically active sites are accessible. However, Ni has a high propensity to undergo oxidation, and becoming deactivated by coke formation. Hence, we further explore the preparation of bimetallic NPs, where a second metal is added to stabilize the Ni. Bimetallic Cu-Ni NPs were synthesized by simultaneous solvothermal reduction. These bimetallic NPs exhibit excellent catalytic properties are promising candidates to be used as catalysts for efficient energy storage. T2 - Joint Polish-German Crystallographic Meeting CY - Wroclaw, Poland DA - 24.02.2020 KW - Nanoparticles KW - Synthesis KW - Catalysis PY - 2020 AN - OPUS4-51663 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Heilmann, Maria A1 - Prinz, Carsten A1 - Bienert, Ralf A1 - Wendt, Robert A1 - Kunkel, Benny A1 - Radnik, Jörg A1 - Hoell, Armin A1 - Wohlrab, Sebastian A1 - de Oliveira Guilherme Buzanich, Ana A1 - Emmerling, Franziska T1 - Size-Tunable Ni-Cu Core-Shell Nanoparticles: Structure, Composition, and Catalytic Activity N2 - Nanoparticles (NPs) have become important materials for a variety of chemical technologies, including catalysis. One of the main challenges is the reduction of green house gases, such as CO2. One opportunity besides the capturing is the conversion to synthesis gas via the reverse water-gas shift reaction. A facile and efficient method is described for the solvothermal synthesis of size-tunable, stable, and uniform NiCu core-shell NPs. The diameter of the NPs can be tuned in a range from 6 nm to 30 nm and the Ni:Cu ratio from 30:1 to 1:1. The NPs are structurally characterized with combination of transmission electron microscopy, anomalous small-angle X-ray scattering, X-ray photoelectron spectroscopy, and X-ray absorption fine structure. Using these analytical methods, a core-shell-shell structure their chemical composition is elucidated. A depletion from the core to the shell is observed, with the core consisting of NiCu alloy, surrounded by an inner Ni-rich shell and an outer NiO shell. The SiO2-supported NiCu core-shell NPs show pronounced selectivity of >99% for CO in the catalytic reduction of CO2 to CO using hydrogen as reactant (reverse water–gas shift reaction). T2 - Nanoalloys: recent developments and future perspectives Faraday Discussion CY - London, UK DA - 21.09.2022 KW - Nanoparticles KW - Core-shell KW - Catalysis PY - 2022 AN - OPUS4-56831 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Heilmann, Maria A1 - Prinz, Carsten A1 - Bienert, Ralf A1 - Wendt, R. A1 - Kunkel, B. A1 - Radnik, Jörg A1 - Hoell, A. A1 - Wohlrab, S. A1 - de Oliveira Guilherme Buzanich, Ana A1 - Emmerling, Franziska T1 - Size-Tunable Ni–Cu Core–Shell Nanoparticles—Structure, Composition, and Catalytic Activity for the Reverse Water–Gas Shift Reaction JF - Advanced Engineering Materials N2 - A facile and efficient methodology is described for the solvothermal synthesis of size-tunable, stable, and uniform NiCu core–shell nanoparticles (NPs) for application in catalysis. The diameter of the NPs is tuned in a range from 6 nm to 30 nm and to adjust the Ni:Cu ratio from 30:1 to 1:1. Furthermore, the influence of different reaction parameters on the final NPs is studied. The NPs are structurally characterized by a method combination of transmission electron microscopy, anomalous small-angle X-ray scattering, X-ray absorption fine structure, and X-ray photoelectron spectroscopy. Using these analytical methods, it is possible to elucidate a core–shell–shell structure of all particles and their chemical composition. In all cases, a depletion from the core to the shell is observed, with the core consisting of NiCu alloy, surrounded by an inner Ni-rich shell and an outer NiO shell. The SiO2-supported NiCu core–shell NPs show pronounced selectivity of >99% for CO in the catalytic reduction of CO2 to CO using hydrogen as reactant (reverse water–gas shift reaction) independent of size and Ni:Cu ratio. KW - Nanoparticles KW - Core-shell KW - Catalysis PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-543606 DO - https://doi.org/10.1002/adem.202101308 SN - 1438-1656 SP - 1 EP - 13 PB - Wiley VCH AN - OPUS4-54360 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Heinrich, Thomas A1 - Sparnacci, K. A1 - Unger, Wolfgang A1 - Schneider, Markus A1 - Müller, Anja T1 - Chemical Analysis of Core-Shell Nanoparticles using ToF-SIMS and XPS N2 - The analysis of nanomaterials is current an important task - especially in case of risk assessment, as the properties of these material class are not well understood currently. The rather high surface area of these objects renders their interactions significantly different to their corresponding bulk. Thus, the surfaces chemical composition has to be investigated to get a better understanding and prediction of the nanomaterials' behavior. ToF-SIMS has proven as a powerful tool to determine said chemical composition. Its superior surface sensitivity allows us to study mainly the utmost atomic layer and therefore gives us an idea of the interactions involved. Here, we show first result from the validation of the method for the analysis of polystyrene and gold nanoparticles. ToF-SIMS will be compared to other methods like XPS, T-SEM or REM. Furthermore, principle component analysis (PCA) will be used to detect the influence of different sample preparation performed by an innovative microfluidic device. ToF-SIMS imaging is desired to be implemented for single particle detection as well. T2 - DPG-Frühjahrstagung der Sektion Kondensierte Materie gemeinsam mit der EPS CY - Berlin, Germany DA - 11.03.2018 KW - XPS KW - ToF-SIMS KW - Nanoparticles PY - 2018 N1 - Geburtsname von Müller, Anja: Hermanns, A. - Birth name of Müller, Anja: Hermanns, A. AN - OPUS4-44790 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Heinrich, Thomas A1 - Müller, Anja A1 - Schneider, Markus A1 - Sparnacci, K. A1 - Unger, Wolfgang T1 - Chemical Analysis of Core-Shell Nanoparticles using ToF-SIMS and XPS N2 - The analysis of nanomaterials is currently an important task - especially in case of risk assessment – as the properties of these material class are not well understood. The rather high surface area of these objects renders their interactions significantly different to their corresponding bulk. Thus, the surface’s chemical composition must be investigated to get a better understanding and prediction of the nanomaterials’ behavior. ToF-SIMS and XPS have proven to be powerful tools to determine the general chemical composition. The superior surface sensitivity of ToF-SIMS furthermore allows us to study mainly the utmost atomic layer and thus gives us an idea of the interactions involved. Here, we present initial data on the analysis of Hyflon®-polystyrene core-shell nanoparticles which can be used as a model system due to the known preparation and a rather good chemical as well as physical separation of core and shell. Furthermore, principle component analysis (PCA) will be used to detect the influence of sample preparation and for a better separation of different samples. ToF-SIMS imaging is desired to be implemented for single particle detection as well. T2 - RSC-NPL Symposium: Nanoparticle concentration – critical needs and state-of-the-art measurement CY - London, UK DA - 24.04.2018 KW - XPS KW - ToF-SIMS KW - Nanoparticles PY - 2018 AN - OPUS4-44795 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Heinrich, Thomas A1 - Müller, Anja A1 - Unger, Wolfgang T1 - Chemical characterisation of (core-shell) nanoparticles using PCA assisted ToF-SIMS and XPS N2 - The analysis of nanomaterials is currently an important task - especially in case of risk assessment – as the properties of these material class are not well understood. The rather high surface area of these objects renders their interactions significantly different to their corresponding bulk. Thus, the surface’s chemical composition must be investigated to get a better understanding and prediction of the nanomaterials’ behavior. ToF-SIMS and XPS have proven to be powerful tools to determine the general chemical composition. The superior surface sensitivity of ToF-SIMS furthermore allows us to study mainly the utmost atomic layers and thus gives us an idea of the interactions involved. Here, we present initial data on the analysis of Hyflon®-polystyrene core-shell nanoparticles which can be used as a model system due to the known preparation and a rather good chemical as well as physical separation of core and shell. Furthermore, results on Au nanoparticles with and without an antibody shell are presented. Principle component analysis (PCA) will be used to detect the influence of sample preparation and for a better separation of different samples. ToF-SIMS imaging is desired to be implemented for single particle detection as well. T2 - 3rd NanoSafety Forum for Young Scientists CY - Valetta, Malta DA - 08.09.2018 KW - Nanoparticles KW - ToF-SIMS KW - XPS PY - 2018 AN - OPUS4-46248 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Heinrich, Thomas A1 - Müller, Anja A1 - Schneider, Markus A1 - Sparnacci, Katja A1 - Unger, Wolfgang T1 - Chemical characterisation and classification of (Core-Shell) nanoparticles using PCA assisted ToF-SIMS N2 - The analysis of nanomaterials is currently an important task - especially in case of risk assessment – as the properties of these material class are not well understood and their growing use in everyday life. The rather high surface area of these objects renders their interactions significantly different to their corresponding bulk. Thus, the surface’s chemical composition must be investigated to get a better understanding and prediction of the nanomaterials’ behaviour. ToF-SIMS and XPS have proven to be powerful tools to determine the general chemical composition. The superior surface sensitivity of ToF-SIMS furthermore allows us to study mainly the utmost atomic layers and thus gives us an idea of possible interactions involved. Supported by multivariate data analysis such as principal component analysis (PCA), the method can also be used for sub-classification of different materials using slight differences in surface chemistry. Here, we present data of the analysis of Hyflon®-polystyrene core-shell nanoparticles which can be used as a model system due to the known preparation and a rather good chemical as well as physical separation of core and shell. Principle component analysis (PCA) will be used to detect the influence of sample preparation and for a better separation of different samples. This is achieved by measurement of a statistically relevant set of samples for every particle sample. We acquired surface spectra under static SIMS conditions with Bi32+ and analysed the resulting spectra by PCA. The carefully selected and refined peaks allow a reasonable categorization and further a reliable allocation of blank feeds. In detail, the fluorine containing, organic fragments are an indication for a heterogeneous shell that has errors. Furthermore, results on Au nanoparticles with and without an antibody shell are presented. ToF-SIMS imaging is desired to be implemented for single particle detection as well. T2 - SIMS-Europe CY - Münster, Germany DA - 16.09.2018 KW - Nanoparticles KW - ToF-SIMS KW - XPS KW - PCA KW - Titania KW - Core-Shell PY - 2018 AN - OPUS4-46249 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Heinrich, Thomas A1 - Schneider, Markus A1 - Schäpe, Kaija A1 - Unger, Wolfgang A1 - Stockmann, Jörg M. T1 - Classification of engineered Titania nanomaterials via surface analysis using principal component analysis (PCA) assisted Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS) N2 - Due to the growing number of engineered nanomaterials (NM) the need for a reliable risk assessment for these materials is today bigger than ever before. Especially the nanomaterial’s surface or shell directly interacts with its environment and therefore is a crucial factor for NM’ toxicity or functionality. Especially, titania is one of the NM with the greatest technological importance. It is used for a large number of applications and can be found in food, cosmetics, glasses, mirrors, paints to mention only a few. In 2012, experts estimate[d] the annual European nano-titania production or utilization at an amount of more than 10,000 t. Great progress has been achieved in the area of NM investigation and characterization during the past decade. A variety of publications provide information about technological innovation as well as hazard potential, which means the potential risk on human health and ecosystems. However, enhanced data harmonization and well-defined standards for nanomaterial analysis, could significantly improve the reliability of such studies which often suffers from varying methods, parameters and sample preparations. To develop a suitable approach for the NM’s risk assessment, the ACEnano project aims at establishing a toolbox of verified methods. The size of this well-structured European project allows to handle even those big challenges like data harmonization and standardization. Due to its powerful combination of superior surface sensitivity and lateral resolution down to the Nano regime, ToF-SIMS could become one of these toolbox methods. Supported by multivariate data analysis such as principal component analysis (PCA), the method can be used for sub-classification of nanomaterial families using slight differences in surface chemistry. Here, we show a PCA supported classification of titania nanoparticles from various sources (NIST, JRC, BAM) with ToF-SIMS. Parameters like size, shell, pre-preparation and crystal system cause variance in the data and allow us to distinguish the species from each other. Moreover, this variance in the data also occurs and can be used for investigation when we compare our measurements of particle ensembles with those of grown titania films. The carefully selected and refined peaks allow a reasonable particle categorization and further a reliable allocation of blank feeds, which introduces a promising approach for NM characterization in the context of NM risk assessment. T2 - SIMS-Europe CY - Münster, Germany DA - 16.09.2018 KW - Nanoparticles KW - ToF-SIMS KW - XPS KW - PCA KW - Titania PY - 2018 AN - OPUS4-46250 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan A1 - Hörenz, Christoph A1 - Pellegrino, F. A1 - Maurino, V. A1 - Durande, B. A1 - Taché, O. T1 - Nanoparticle size, shape, and concentration measurement at once – two VAMAS pre-standardization projects ready to start N2 - A case study on the TEM analysis of the size and shape distribution of TiO2 bipyramidal nanoparticles prepared on TEM grids was included in the recently published ISO standard ISO 21363. It was agreed to organize at a later stage a second inter-lab comparison with the nanoparticles distributed to the participants as a liquid suspension. Protocols for uniform nanoparticle deposition on suited supports developed and optimized within the EMPIR nPSize project are also prepared to be distributed. For this, we have chosen the VAMAS platform (www.vamas.org) which offers an excellent international infrastructure of laboratories with high competence in nanoparticle measurement. The VAMAS technical working area dedicated to nanoparticle measurement is TWA 34 ‘Nanoparticle populations’. For this type of nanoparticles, the size and shape distributions are the primary parameters to be reported. Due to the good deposition protocols developed, an automated image analysis is enabled (in contrast to the manual analysis of irregular TiO2 nanoparticles. In parallel with the TiO2 nanoparticle exercise, two spherical SiO2 nanoparticle samples with bi-modal size distributions (nominal relative number concentrations of 1:1 and 10:1) are prepared for a second VAMAS inter-lab comparison. Here, the nanoparticle concentration is the primary parameter to be measured. For the imaging methods it is targeted to measure the relative nanoparticle concentrations of the two modes. For the absolute nanoparticle concentration to be measured by imaging methods it is necessary to control the volume of the liquid suspension deposited on the substrate and to obtain such a homogeneous nanoparticle deposition on the substrate which allows to count (or extrapolate) all the deposited particles. T2 - Microscopy and Microanalysis 2021 CY - Online meeting DA - 01.08.2021 KW - Nanoparticles KW - Electron microscopy KW - VAMAS KW - Inter-laboratory comparison KW - TiO2 KW - SiO2 PY - 2021 AN - OPUS4-53065 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan T1 - Nanoparticles and films characterization: Electron microscopy and related techniques N2 - Scanning Electron Microscopy (SEM) represents the mostly widespread method available in analytical laboratories dedicated to the characterization of physical properties such as morphology of various solid materials from ‘micro-’ down to the nanometre scale. The use of secondary electrons excited by a sharply, nm-focussed primary electron beam enables at any modern SEM to image objects with high in-depth and lateral sensitivity, i.e. with high spatial resolution. Hence, e. g. nanoparticles (NPs) are able to be easily characterized with respect to their individual size and shape, but also to the morphology of their surface. By preparing the nano-objects on thin membranes as electron transparent samples it is possible to perform electron microscopy in the transmission mode (TEM and TSEM). The corresponding transmission (i.e. mass-thickness) contrast reveals in-depth information, but is also well suited for dimensional measurements in the 2D projection image. Both the surface sensitive mode and the transmission one are meanwhile available at any modern SEM. If an X-ray spectrometer is attached to an electron microscope, it is possible to analyse the characteristic X-rays induced by electron bombardment. Most electron microscopes have attached an energy dispersive X-ray spectrometer (EDX) so that EDX elemental maps can be carried out. Recent technological developments of high throughput EDS detectors and their advantages regarding high-resolution X-ray analysis down to the nm range are reviewed. High-resolution micrographs (SEM, TSEM, TEM) and corresponding X-ray elemental maps on various representative nanoparticles, but also layered samples prepared in cross-section, will be presented and discussed. The importance of selecting the best suited analysis conditions will be highlighted. Also other, often challenging, topics such as sample preparation and image data processing will be critically addressed by practical examples. Further analytical techniques able to be employed at an electron microscope, like cathodoluminescence (CL) or micro-X-ray fluorescence (µXRF) will be briefly surveyed. T2 - Nanoscience Meets Metrology - Synthesis, Characterization, Testing and Applications of Validated Nanoparticles - International Summer School CY - Turin, Italy DA - 04.09.2016 KW - Nanoparticles KW - Electron microscopy KW - High-resolution KW - Thin films KW - X-ray spectroscopy PY - 2016 UR - http://www.setnanometro.eu/events/ AN - OPUS4-37325 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan A1 - Rades, Steffi A1 - Ortel, Erik T1 - Inter-laboratory comparison on shape of bipyramidal TiO2 nanoparticles by TEM N2 - The TiO2 material selected for the present inter-laboratory comparison (ILC) was the bipyramidal anatase UT001 batch synthesized hydrothermally by University of Turin in the frame of the EU/FP7 Project SETNanoMetro and carefully prepared on TEM grids by BAM to be distributed to the ILC participants. A clear measurement protocol including data analysis and reporting (including an xls reporting template) has been also prepared by BAM. 14 of 18 participants have measured and reported results which have been already checked by BAM as being conform to the agreed protocol. After receiving the last results (of 4 participants) the ILC data evaluation will be carried out by BAM in line with agreed ISO/TC229 procedures as for the other case sudies. T2 - Annual Meeting of ISO/TC 229 Nanotechnologies CY - Singapore, Republic of Singapore DA - 07.11.2016 KW - TiO2 KW - Nanoparticles KW - Inter-laboratory comparison KW - Shape KW - TEM KW - Particle size distribution PY - 2016 AN - OPUS4-38868 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan A1 - Ortel, Erik T1 - Proposal of an inter-laboratory comparison on shape of bipyramidal TiO2 nanoparticles by TEM N2 - A proposal of an inter-laboratory study (ILC) on determination of size and shape distribution of TiO2 nanoparticles (NPs) by transmission electron microscopy is presented. The anatase NPs synthesized in a controllable fashion within the EU/FP7 project SETNanoMetro can be considered as shape-defined (bipyramidal) and are offered to complete the list of case studies already in progress within ISO/TC229/JWG2. The main points of the measurement procedure are presented as well as a proposed procedure to evaluate the size and shape according to the standard operation procedure already developed within SETNanoMetro is discussed. Potential ILC participants and a plan with next step to be carried out are proposed. T2 - Joint Meeting IEC TC 113 'Nanotechnology for electrotechnical products and systems' and ISO/TC229/JWG2 'Nanotechnologies'/'Measurement and characterization' CY - Lowell, MA, USA DA - 09.05.2016 KW - Nanoparticles KW - TiO2 KW - TEM KW - Shape KW - Inter-laboratory comparison KW - ISO PY - 2016 AN - OPUS4-38900 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan A1 - Mielke, Johannes A1 - Dohányosová, P. A1 - Müller, P. A1 - López-Vidal, S. T1 - Controlled deposition of nanoparticles by electrospray for improved analysis by imaging techniques N2 - Of many experimental techniques for measuring particle sizes and size distributions, electron microscopy (EM) is still considered as the gold standard, especially in the nano range (1–100 nm). Furthermore, high-resolution X-ray spectroscopy (EDX) in conjunction with EM can be applied to individual NPs. Preparation of an EM sample for generic particulate materials is a difficult task. Usually the particles in a suspension are deposited on a support. However, this procedure includes the drying of larger solvent amounts on the substrate itself, and this can affect the spatial distribution of the deposited particles. One possibility to overcome this is the use of an electrospray system, where the suspension of particles is sprayed onto the substrate in charged droplets that are so small that they either dry off on the substrate immediately without affecting the position of particles, or even already during their flight time to the substrate. Additionally, the charging of particles minimizes agglomeration and aggregation, maximizing the collection of the EM grids. The prototype of an electrospray deposition system from RAMEM under its trademark IONER (www.ioner.eu) was tested. Electrospray is theoretically described since a long time, but no dedicated commercial instruments are available for the preparation of TEM grids yet, apart from electrostatic deposition of aerosols.2 Several materials have been sprayed onto TEM grids and the resulting particle distributions were evaluated. Operation parameters such as the sample flow-rate, capillary – substrate distance, electric field strength and sampling period length have been optimized. It was found that the particles deposited by electrospray generally show a much more homogeneous spatial distribution on the substrate and a substantial increase of the number of single particles (suited to automatic analysis). T2 - RSC-NPL Symposium: Nanoparticle concentration – critical needs and state-of-the-art measurement CY - London, UK DA - 24.04.2018 KW - Electrospray deposition KW - Nanoparticles KW - Electron microscopy PY - 2018 AN - OPUS4-44802 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan T1 - Lessons on measurement of nanoparticle size and shape learnt from NanoDefine N2 - The EC Recommendation on the definition of nanomaterial1, based solely on size of the constituent particles, foresees development of harmonised measurement methods ensuring ‘consistent results across materials and over time’. The EU/FP7 large research project NanoDefine (http://www.nanodefine.eu) has been exclusively dedicated to support the implementation of this EC Recommendation for the European Union’s legislation. For the first time, measurement techniques able to determine the size of nanoparticles have been evaluated systematically on a well-defined set of quality control materials (spherical, monodisperse) as well as industrial materials of complex shapes and considerable polydispersity. Particularly based on the analytical performance of the measurement techniques as tested on the challenging real-world particulate materials, it was possible to formulate recommendations for use of a new tiered approach consisting of screening and confirmatory techniques. Thus, a consistent framework of guidance for nanomaterial identification according to the EC Definition has been issued in form of the NanoDefiner e-tool (https://labs.inf.fh-dortmund.de/NanoDefiner), with a transparent decision flow scheme and an extensive user manual. Selected examples of analysis and classification as nano-/non-nanomaterials will be given, highlighting the limits of applicability of the available measurement techniques in dependence on sample properties. On some recent relevant developments in sample preparation – as a crucial part for an accurate analysis - will be also reported. T2 - RSC-NPL Symposium: Nanoparticle concentration – critical needs and state-of-the-art measurement CY - London, UK DA - 24.04.2018 KW - Nanoparticles KW - Nanomaterial KW - Particle size distribution KW - EU definition of nanomaterial PY - 2018 AN - OPUS4-44804 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan A1 - Mielke, Johannes A1 - Dohányosová, P. A1 - Müller, P. A1 - López-Vidal, S. T1 - Controlled electrospray deposition of nanoparticles for improved analysis by electron microscopy N2 - Of many experimental techniques for measuring particle sizes and size distributions, electron microscopy (EM) is considered as the gold standard, especially in the nano range (1–100 nm). Furthermore, high-resolution X-ray spectroscopy (EDX) in conjunction with EM can be applied to individual NPs. Preparation of an EM sample for generic particulate materials is a difficult task. Usually, the particles in a suspension are deposited on a support. However, this procedure includes the drying of larger solvent amounts on the substrate itself, and this can affect the spatial distribution of the deposited particles. One possibility to overcome this is the use of an electrospray system, where the suspension of particles is sprayed onto the substrate in charged droplets that are so small that they either dry off on the substrate immediately without affecting the position of particles, or even already during their flight time to the substrate. Additionally, the charging of particles minimizes agglomeration and aggregation, maximizing the collection of the EM grids. The prototype of an electrospray deposition system from RAMEM under its trademark IONER (www.ioner.eu) was tested. Electrospray is theoretically described since a long time, but no dedicated commercial instruments are available for the preparation of TEM grids yet, apart from electrostatic deposition of aerosols. Several materials have been sprayed onto TEM grids and the resulting particle distributions were evaluated. Operation parameters such as the sample flow-rate, capillary – substrate distance, electric field strength and sampling period length have been optimized. It was found that the particles deposited by electrospray generally show a much more homogeneous spatial distribution on the substrate and a substantial increase of the number of single particles (suited to automatic analysis). The project has received funding from the European Union’s Seventh Programme for research, technological development and demonstration under grant agreement No 604347. T2 - NanoWorkshop 2018 (Workshop on reference nanomaterials, current situation and needs: development, measurement, standardization) CY - Berlin, Germany DA - 14.05.2018 KW - Nanoparticles KW - Electrospray KW - Electron microscopy PY - 2018 AN - OPUS4-44994 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan A1 - Bosse, H. T1 - Improved traceability chain of nanoparticle size measurements – the new EMPIR project nPSize N2 - Coming as response to the needs expressed by The European Commission mandating CEN, CENELEC and ETSI to develop European standards for methods that can characterize reliably manufactured nanomaterials, a new European metrology research project ‘nPSize - Improved traceability chain of nanoparticle size measurements’ has received funding for the next three years. The project will develop methods, reference materials and modelling to improve the traceability chain, comparability and compatibility for nanoparticle size measurements to support standardization. nPSize has selected only those nanoparticle sizing techniques which are able to provide traceable results: electron microscopy (SEM, TSEM and TEM), AFM and SAXS. Metrologists from national metrological or designated institutes (PTB, LNE, LGC, VSL, SMD and BAM) will work together with scientists with know-how in development of new nano reference nanoparticles (CEA, University of Turin, LGC, BAM) and with experts in advanced data processing, e.g. by machine learning (POLLEN). With the support of DIN, the project outcomes will be channelized to standardization bodies such as ISO/TC 229 ‘Nanotechnologies’/JWG 2 ‘Nanoparticle Measurement and Characterization’ (SEM, TSEM and TEM), CEN/TC 352 ‘Nanotechnologies’ (SEM, TSEM and TEM), ISO/TC 201/SC 9 (AFM), ISO/TC 24/SC 4 (SAXS). Three technical work packages will ensure input for impact to standardization community, nanoparticle manufacturers, instrument manufacturers, and (accredited) service laboratories: - WP1 Performance and traceability of characterization methods - WP2 Reference materials - Preparation and Characterization - WP3 Modelling and development of measurement procedures Well-defined non-spherical nanoparticles shapes such as cubes, platelets, bipyramids, rods/acicular will be developed, with mono- and polydisperse size distribution, as well as with accurate particle number concentration (by SAXS and isotopically enrichment for ICP-MS). Physical modelling of the signal for TSEM, SEM, 3D-AFM and SAXS will be used to feed machine learning modeling from a-priori measurement data. Further, data fusion will be developed for hybrid sizing techniques: SEM with TSEM/TEM, SEM/TSEM with AFM, SEM/TSEM with SAXS with the final aim of improving the true shape and size of non-spherical nanoparticles by a better estimation of the measurement uncertainties. In the second half-time of the project dedicated workshops (focused on method improvement and reference materials development) will be organized to disseminate the gained knowledge to end-users. Further, a data library with relevant tagged measurement data is planned to be organized and made publicly available. Inter-laboratory comparisons based on the newly developed multi-modal nano reference materials will be organized preferably within VAMAS/TWA 34 ‘Nanoparticle populations’. T2 - NanoWorkshop 2018 (Workshop on reference nanomaterials, current situation and needs: development, measurement, standardization) CY - Berlin, Germany DA - 14.05.2018 KW - Nanoparticles KW - Size KW - Shape KW - Traceable size PY - 2018 AN - OPUS4-44995 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan A1 - Yamamoto, K. A1 - Grulke, E. A. A1 - Maurino, V. T1 - Shape controlled TiO2 nanoparticles as candidates for nano-CRM’s – an ISO case study N2 - Extraction of true, 3D shape (and size) of non-spherical nanoparticles (NPs) is associated with errors by conventional 2D electron microscopy using projection images. Significant efforts within the ISO technical committee TC 229 ‘Nanotechnologies’ are aimed at establishing accurate TEM and SEM measurement of NP size and shape as robust, standard procedures. Study groups have been organizing inter-laboratory comparisons on well-selected NP systems according to the market needs, such as aggregated titania nano-powder for which size and shape distribution of primary crystallites of irregular shape must be measured accurately. To be noticed is e. g. the fact that the measurement procedure allows only manual selection of the particles clearly distinguishable for analysis as well as manual definition of the contour of the imaged NPs. An inter-laboratory exercise on titania NPs (pure anatase, grown by hydrothermal synthesis) of well-defined non-spherical shape, i.e. bipyramidal has been recently started within ISO/TC 229 under similar conditions as for the irregular shaped titania. Overlapped particles were allowed to be considered, as long as they are clearly distinguishable. One decisive NP selection criterion was to analyze only those NPs with a roundness value below 0.7, i.e. the NPs laying on the support foil and, hence, with projection areas clearly deviating from perfect circles (R=1). The overall evaluation (for 15 labs) of the size descriptors (area, Feret, minFeret, perimeter) and shape descriptors (aspect ratio, roundness, compactness, extent) by analysis of variance is just to be finished and included in ISO/WD 21363 Nanotechnologies -- Protocol for particle size distribution by transmission electron microscopy. T2 - NanoWorkshop 2018 (Workshop on reference nanomaterials, current situation and needs: development, measurement, standardization) CY - Berlin, Germany DA - 14.05.2018 KW - Titanium oxide KW - Nanoparticles KW - Shape-controlled KW - Electron microscopy KW - Reference material PY - 2018 AN - OPUS4-44996 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan T1 - Measurement of nanoparticle size and shape distribution – Current situation and outlook N2 - The EC Recommendation on the definition of nanomaterial, based solely on size of the constituent particles, foresees development of harmonised measurement methods ensuring ‘consistent results across materials and over time’. The EU/FP7 research project NanoDefine has been exclusively dedicated to support the implementation of this EC Recommendation for the European Union’s legislation. For the first time, measurement techniques able to determine the size of nanoparticles have been evaluated systematically on a well-defined set of quality control materials (spherical, monodisperse) as well as industrial materials of complex shapes and considerable polydispersity. Particularly based on the analytical performance of the measurement techniques as tested on the challenging real-world particulate materials, it was possible to formulate recommendations for use of a new tiered approach consisting of screening and confirmatory techniques. Thus, a consistent framework of guidance for nanomaterial identification according to the EC Definition has been issued in form of the NanoDefiner e-tool, with a transparent decision flow scheme and an extensive user manual. Selected examples of analysis and classification as nano-/non-nanomaterials will be given, highlighting the limits of applicability of the available measurement techniques in dependence on sample properties. On some recent relevant developments in sample preparation – as a crucial part for an accurate analysis - will be also reported. Further, ISO/TC 229 ‘Nanotechnologies’ activities aiming at establishing accurate TEM and SEM measurement of NP size and shape as robust, traceable, standard procedures are highlighted. With participation of BAM, study groups have been organizing inter-laboratory comparisons on well-selected NP systems according to the market needs, such as aggregated or shape-controlled titania nano-powder for which size and shape distribution of primary particles must be measured accurately. T2 - Symposium Preparation, Characterization and Processing of Nano and Submicron Powders CY - Berlin, Germany DA - 14.06.2018 KW - Nanoparticles KW - Nanomaterial KW - EC definition KW - Nanoparticle size distribution PY - 2018 AN - OPUS4-45191 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan A1 - Mielke, Johannes A1 - Babick, F. A1 - Ullmann, C. T1 - Evaluation of particle sizing techniques for the implementation of the EC definition of a nanomaterial N2 - Many techniques are available for measuring particle size distribution. For ideal materials (spherical particles, well dispersed) it is possible to evaluate the Performance of These methods. The performance of the analytical instrumentation for the purpose of classifying materials according to EC Definition is unknown. In this work the performance of commercially available particle sizing techniques on representative NanoDefine set of real-world testing materials (RTM) and quality control materials (QCM) for the implementation of the Definition is evaluated. T2 - 4. Sitzung des wissenschaftlichen Beirats zum Themefeld Umwelt der BAM CY - BAM, Berlin, Germany DA - 13.04.2018 KW - Nanoparticles KW - Nanomaterial KW - Characterization methods KW - EU definition KW - Nanodefine PY - 2018 AN - OPUS4-44693 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan T1 - nPSize - Improved traceability chain of nanoparticle size measurements N2 - The overall objective of project Improved traceability chain of nanoparticle size measurements is to improve the traceability chain for nanoparticle size measurements. The main impact will be achieved by manifold contributions to standard documents for CEN/TC 352 “Nanotechnologies”, which directly addresses the research needs of CEN, CENELEC and ETSI mandated by EC to develop standards for methods and reference materials to accurately measure the size and size distribution of nanoparticles. This will take place in collaboration with ISO/TC229 ‘Nanotechnologies’, ISO/TC24/SC4 ‘Particle characterization’ and ISO/TC201 ‘Surface analysis’/ SC9 ‘Scanning probe microscopy’. T2 - 4. Sitzung des wissenschaftlichen Beirats zum Themefeld Umwelt der BAM CY - BAM, Berlin, Germany DA - 13.04.2018 KW - Nanoparticles KW - Nanoparticle size KW - Traceability KW - Standardization PY - 2018 AN - OPUS4-44695 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan A1 - Wohlleben, W. A1 - Mielke, Johannes A1 - Rauscher, H. T1 - Volume specific surface area (VSSA) by BET as a reliable metric for (nano)particle size analysis for powders N2 - We discuss the role of the volume specific surface area (VSSA) as determined from the specific surface area measured by the (extended) Brunauer-Emmett-Teller (BET) technique, in the identification process of powdered nano- and non-nanomaterials in line with the EU definition of nanomaterial. Results obtained in the NanoDefine project demonstrate that under appropriate conditions, VSSA can be used as proxy to the number-based particle size distribution. The extent of agreement between nano/non-nano classification by electron microscopy (EM) and classification by VSSA is investigated systematically on a large set of diverse particulate substances, representing most of the cases expected in regulatory practice. Thus, parameters such as particle shape, size polydispersity/multi-modality, and particle (inner or coating) porosity are evaluated. Based on these results, we derive a tiered screening strategy for powders, involving the use of VSSA for the purpose of implementing the definition of nanomaterial, and recommend it for inclusion in a technical guidance for the implementation of the definition. T2 - RSC-NPL Symposium: Nanoparticle concentration – critical needs and state-of-the-art measurement CY - London, UK DA - 24.04.2018 KW - Nanoparticles KW - Nanomaterial KW - Particle size distribution KW - BET KW - VSSA PY - 2018 AN - OPUS4-44801 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan A1 - Yamamoto, K. A1 - Grulke, E. A. A1 - Maurino, V. T1 - Size and shape distribution of bipyramidal TiO2 nanoparticles by TEM - An inter-laboratory comparison N2 - Extraction of true, 3D shape (and size) of non-spherical nanoparticles (NPs) is associated with errors by conventional 2D electron microscopy using projection images. Significant efforts within the ISO technical committee TC 229 ‘Nanotechnologies’ are aimed at establishing accurate TEM and SEM measurement of NP size and shape as robust, standard procedures. Study groups have been organizing inter-laboratory comparisons on well-selected NP systems according to the market needs, such as aggregated titania nano-powder for which size and shape distribution of primary crystallites of irregular shape must be measured accurately. To be noticed is e. g. the fact that the measurement procedure allows only manual selection of the particles clearly distinguishable for analysis as well as manual definition of the contour of the imaged NPs. An inter-laboratory exercise on titania NPs (pure anatase, grown by hydrothermal synthesis) of well-defined non-spherical shape, i.e. bipyramidal has been recently started within ISO/TC 229 under similar conditions as for the irregular shaped titania. Overlapped particles were allowed to be considered, as long as they are clearly distinguishable. One decisive NP selection criterion was to analyze only those NPs with a roundness value below 0.7, i.e. the NPs laying on the support foil and, hence, with projection areas clearly deviating from perfect circles (R=1). The overall evaluation (for 15 labs) of the size descriptors (area, Feret, minFeret, perimeter) and shape descriptors (aspect ratio, roundness, compactness, extent) by analysis of variance is just to be finished and included in ISO/WD 21363 Nanotechnologies -- Protocol for particle size distribution by transmission electron microscopy. T2 - Microscopy & Microanalysis 2018 CY - Baltimore, MD, USA DA - 05.08.2018 KW - Nanoparticles KW - Electron microscopy KW - ISO KW - Nanotechnology PY - 2018 AN - OPUS4-45750 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Hodoroaba, Vasile-Dan T1 - Gold nanocubes with monodispersed size distribution (SEM SE) T2 - Microscopy Today N2 - Gold nanocubes with a monodispersed size distribution (edge = 55 nm) deposited on a silicon wafer. These tiny uniform cubes were produced as reference nanoparticles in the frame of the European project nPSize - Improved traceability chain of nanoparticle size measurements. SEM Image acquired at 10 kV with an in-lens secondary electron detector. Image colored in ImageJ using LUT “Orange hot.” Published in Microscopy and Microanalysis 25(S2) (2019) 2328. KW - Nanoparticles KW - Nanocubes KW - Electron microscopy KW - Reference materials PY - 2020 DO - https://doi.org/10.1017/S1551929520001157 VL - 28 IS - 4 SP - 12 EP - 12 PB - Cambridge University Press CY - Cambridge, UK AN - OPUS4-51352 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Hodoroaba, Vasile-Dan T1 - 2020 Microscopy Today Micrograph Awards T2 - Microscopy Today N2 - Gold nanocubes with a monodispersed size distribution (edge = 55 nm) deposited on a silicon wafer. These tiny uniform cubes were produced as reference nanoparticles within the EMPIR project nPSize - Improved traceability chain of nanoparticle size measurements. SEM image acquired at 10 kV with an in-lens secondary electron detector. Image colored in ImageJ using LUT “Orange hot.” Published in Microscopy and Microanalysis 25(S2) (2019) 2328. KW - Nanoparticles KW - Au-nanocubes KW - Reference materials KW - Electron microscopy PY - 2020 DO - https://doi.org/10.1017/S1551929520001339 VL - 28 IS - 5 SP - 14 EP - 15 PB - Cambridge University Press CY - Cambridge, UK AN - OPUS4-51357 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan T1 - Quantitative microstructural analysis - VAMAS/TWA 37 N2 - The 44th Meeting of the Versailles Project on Advanced Materials and Standards (VAMAS) Steering Committee has just taken place at NIST in Boulder (CO, USA). BAM participates with significant contributions in Technical Working Areas on nanoparticle and surface chemistry characterization, but also has positioned itself to new global material challenges and trends in the developement of advanced materials and their characterization, such as thermal properties, self-healing materials, and micro- and nanoplastic. T2 - Annual Meeting of the Versailles Project on Advanced Materials and Standards (VAMAS) Steering Committee CY - Boulder, CO, USA DA - 22.05.2019 KW - VAMAS KW - Nanoparticles KW - Microbeam analysis KW - Advanced materials PY - 2019 AN - OPUS4-48184 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan A1 - Hörenz, Christoph A1 - Durande, B. A1 - Taché, O. A1 - Bartczak, D. A1 - Cuello-Nuñez, S. A1 - Ábad-Alvaro, I. A1 - Goenaga-Infante, H. T1 - Analysis of Particle Size Distribution for Bimodal Model Nanoparticles by Scanning Electron Microscopy N2 - The present study addresses the capability of measurement of relative particle number concentration by scanning electron microscopy for model bimodal silica and gold samples prepared in the frame of the European research project “nPSize - Improved traceability chain of nanoparticle size measurements” as candidate reference nanoparticles. T2 - Microscopy and Microanalysis 2020 CY - Online meeting DA - 03.08.2020 KW - Nanoparticles KW - Silica KW - Gold KW - Electron microscopy KW - Particle size distribution PY - 2020 AN - OPUS4-51112 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan A1 - Cios, G. A1 - Tokarski, T. A1 - Mansfeld, Ulrich A1 - Ortel, Erik A1 - Mielke, Johannes A1 - Pellegrino, F. A1 - Maurino, V. T1 - Towards 3D understanding of non spherical nanoparticles by Transmission Kikuchi Diffraction (TKD) for improved particle size distribution by electron microscopy N2 - In this paper one refined approach is applied to determine the exact orientation of bipyramidal TiO2 nanoparticles prepared with good dispersion as almost isolated particles on a carbon TEM grid. The advantages of the recently developed high-throughput Transmission Kikuchi Diffraction (TKD) are used to identify quickly and reliably the geometrical orientation of the crystalline TiO2 nanoparticle bipyramids (anatase) on a statistically relevant number of particles. T2 - Microscopy and Microanalysis 2020 CY - Online meeting DA - 03.08.2020 KW - Nanoparticles KW - Transmission Kikuchi Diffraction (TKD) KW - TiO2 KW - 3D KW - Electron microscopy PY - 2020 AN - OPUS4-51113 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan A1 - Rühle, Bastian T1 - Towards automated electron microscopy image segmentation for nanoparticles of complex shape by convolutional neural networks N2 - In this contribution different ways are explored with the aim to generate suitable training data for ‘non-ideal’ samples using various approaches, e.g., computer-generated images or unsupervised learning algorithms such as generative adversarial networks (GANs). We used these data to train simple CNNs to produce segmentation masks of SEM images and tested the trained networks on real SEM images of complex nanoparticle samples. The novel use of CNN for the automated analysis of the size of nanoparticles of complex shape and with a high degree of agglomeration has proved to be a promising tool for the evaluation of particle size distribution on a large number of constituent particles. Further development and validation of the preliminary model, respectively larger training and validation data sets are necessary. T2 - Microscopy and Microanalysis 2020 CY - Online meeting DA - 03.08.2020 KW - Nanoparticles KW - Automatisation KW - Image segmentation KW - Convolutional neural networks KW - Electron microscopy PY - 2020 AN - OPUS4-51114 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan T1 - EMPIR nPSize - Improved Traceability Chain of Nanoparticle Size Measurement; What nPSize can offer after 2Ys? N2 - The main outcomes of the EMPIR project nPSize are presented and the suitability of the new capabilities (e.g. reference materials, measurement procedures, inter-laboratory comparisons) as pertinent contributions to normative projects within CEN/TC 352 Nanotechnologies are discussed. T2 - 28th Meeting of CEN/TC 352 Nanotechnologies CY - Online meeting DA - 16.10.2020 KW - Nanoparticles KW - CEN/TC 352 Nanotechnologies KW - Particle size distribution KW - Traceability PY - 2020 AN - OPUS4-51437 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan A1 - Mansfeld, Ulrich A1 - Pellegrino, F. A1 - Maurino, V. A1 - Marguet, S. A1 - Testard, F. A1 - Tache, O. A1 - Bartzcak, D. T1 - New reference material candidates for traceable size measurement of nonspherical nanoparticles N2 - Size measurement of nanoparticles (NP) becomes a challenging analytical problem when non-spherical shapes must be traceably measured. However, most industrial NPs have irregular shapes and broad size distribution making it often more complex to follow European regulatory to identify a material as a nanomaterial according to which accurate measurement of the smallest dimension and its size Distribution is necessary. The European research project nPSize - Improved traceability chain of nanoparticle size measurements aims to fill this gap by developing potential non-spherical reference nanoparticles, measurement procedures and physical modelling to improve the traceability chain, comparability and compatibility for NP size measurements between different methods. Therefore, new model NP with well-controlled shape has been synthesized and are supposed to be systematically characterized using the traceable methods scanning/transmission electron microscopy, atomic force microscopy and small angle X-ray scattering. Following NP candidates are under investigation with respect to their homogeneity and stability: (i) titania nanoplatelets (10-15 nm thickness x 50-100 nm lateral), (ii) titania bipyramides (~60 nm length x 40 nm width), (iii) titania acicular particles (100 nm length x 15-20 nm width; aspect ratio 5.5/6), (iv) gold nanorods (~10 nm width x 30 nm length), and (v) gold nanocubes (~55 nm x 55 nm x 55 nm). In addition, sample preparation procedures as well as measurement analysis procedures with evaluation of appropriate measurands and descriptors for each material class and method are being developed to support standardization. To underpin the traceability of the size measurement of nonspherical NP, physical modelling of the signals in e.g. electron microscopy techniques will be used and in combination, the implementation of machine learning is aimed to facilitate measurement Analysis procedures, especially regarding the accurate thresholding/segmentation of the NPs. T2 - European Conference on Applications of Surface and Interface Analysis ECASIA 2019 CY - Dresden, Germany DA - 15.09.2019 KW - Nanoparticles KW - Size distribution KW - Electron microscopy KW - Certified reference materials KW - Traceability PY - 2019 AN - OPUS4-49227 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan A1 - Mansfeld, Ulrich A1 - Pellegrino, F. A1 - Maurino, V. A1 - Marguet, S. A1 - Testard, F. A1 - Tache, O. A1 - Bartczak, D. T1 - New reference material candidates for traceable size measurement of non-spherical nanoparticles N2 - New model nanoparticles with well-controlled shape were synthesized within the EMPIR project nPSize - Improved traceability chain of nanoparticle size measurements. Their systematic characterization takes place by the traceable methods scanning/transmission electron microscopy, atomic force microscopy and small angle X-ray scattering. Following reference nanoparticle candidates are under investigation with respect to their homogeneity and stability: titania nanoplatelets (10-15 nm x 50-100 nm), titania bipyramides (~60 nm x 40 nm), titania acicular particles (100 nm x 15-20 nm; aspect ratio 5.5/6), gold nanorods (~10 nm x 30 nm), and gold nanocubes (~55 nm x 55 nm x 55 nm). T2 - HyMET Workshop on optical surface analysis methods for nanostructured layers CY - Berlin, Germany DA - 10.10.2019 KW - Nanoparticles KW - Reference materials KW - Traceability KW - Particle size distribution PY - 2019 AN - OPUS4-49285 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan A1 - Mansfeld, Ulrich A1 - Hörenz, Christoph A1 - Pellegrino, F. A1 - Maurino, V. A1 - Marguet, S. A1 - Testard, F. A1 - Tache, O. A1 - Bartczak, D. A1 - Goenaga-Infante, H. T1 - Challenges in Traceable Size Measurement of Non-Spherical, Non-Monodisperse Nanoparticles - nPSize N2 - Size measurement of nanoparticles (NP) becomes a challenging analytical problem when non-spherical shapes must be traceably measured. However, most industrial NPs have irregular shapes and broad size distribution making it often more complex to follow European regulatory to identify a material as a nanomaterial according to which accurate measurement of the smallest dimension and its size Distribution is necessary. The European research project nPSize - Improved traceability chain of nanoparticle size measurements aims to fill this gap by developing potential non-spherical reference nanoparticles, measurement procedures and physical modelling to improve the traceability chain, comparability and compatibility for NP size measurements between different methods. Therefore, new model NP with well-controlled shape has been synthesized and are supposed to be systematically characterized using the traceable methods scanning/transmission electron microscopy, atomic force microscopy and small angle X-ray scattering. Following NP candidates are under investigation with respect to their homogeneity and stability: (i) titania nanoplatelets (10-15 nm thickness x 50-100 nm lateral), (ii) titania bipyramides (~60 nm length x 40 nm width), (iii) titania acicular particles (100 nm length x 15-20 nm width; aspect ratio 5.5/6), (iv) gold nanorods (~10 nm width x 30 nm length), and (v) gold nanocubes (~55 nm x 55 nm x 55 nm). In addition, sample preparation procedures as well as measurement analysis procedures with evaluation of appropriate measurands and descriptors for each material class and method are being developed to support standardization. To underpin the traceability of the size measurement of nonspherical NP, physical modelling of the signals in e.g. electron microscopy techniques will be used and in combination, the implementation of machine learning is aimed to facilitate measurement Analysis procedures, especially regarding the accurate thresholding/segmentation of the NPs.zeige mehr T2 - Nanoparticle Reference Materials - Production and Cerification Training Course CY - London, UK DA - 10.12.2019 KW - Nanoparticles KW - Traceability KW - Particle size distribution KW - Electron microscopy KW - Reference materials KW - Non-spherical shape PY - 2019 AN - OPUS4-50040 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan A1 - Mansfeld, Ulrich A1 - Pellegrino, F. A1 - Maurino, V. A1 - Marguet, S. A1 - Testard, F. A1 - Tache, O. T1 - Towards accurate analysis of particle size distribution for non-spherically shaped nanoparticles as quality control materials N2 - Measurement of nanoparticle size (distribution) becomes a challenging analytical problem when non-spherical nanoparticles must be accurately measured. Most industrial nanoparticles have not only non-spherical shapes but also possess polydisperse size distributions, and due to their agglomeration/aggregation state are difficult (or even impossible) to be addressed individually. Moreover, driven by regulatory purposes related to the identification of a material as a nanomaterial, the accurate measurement of the smallest dimension of a (nano)particulate material makes the analysis even more complex. In the first phase of the EU Project nPSize - Improved traceability chain of nanoparticle size measurements (https://www.bam.de/Content/DE/Projekte/laufend/nPSize/npsize.html), the efforts are focused on synthesis of nanoparticles of well-defined, non-spherical shape. Following candidates of reference materials (CRM) with certifiable particle size (distribution) are under characterization with respect to their homogeneity and stability: (i) titania nanoplatelets (10-15 nm thickness x 50-60 nm lateral), (ii) titania bipyramides (~60 nm length x 40 nm width), (iii) titania acicular particles (100 nm length x 15-20 nm width; aspect ratio 5.5/6), (iv) gold nanorods (~10 nm width x 30 nm length), and (v) gold nanocubes (~55 nm x 55 nm x 55 nm). T2 - Microscopy & Microanalysis 2019 CY - Portland, OR, USA DA - 03.08.2019 KW - Nanoparticles KW - Reference materials KW - Traceability KW - Non-spherical shape KW - Titanium dioxide PY - 2019 AN - OPUS4-48671 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan T1 - EMPIR nPSize - Improved Traceability Chain of Nanoparticle Size Measurement; nPSize offer after 2 Ys N2 - The main outcomes of the EMPIR project nPSize are presented and the suitability of the new capabilities (e.g. reference materials, measurement procedures, VAMAS inter-laboratory comparisons) to be standardized and implemented in accredited analytical laboratories is discussed. T2 - EMPIR nPSize Training Course "Metrology for Measurement of Nanoparticle Size by Electron Microscopy and Atomic Force Microscopy" CY - Online meeting DA - 27.10.2020 KW - Nanoparticles KW - Size KW - Shape KW - Traceability KW - EMPIR KW - Reference materials KW - VAMAS PY - 2020 AN - OPUS4-51477 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan T1 - EMPIR nPSize Improved Traceability Chain of Nanoparticle Size Measurement - Outcomes for the Strategy/Metrology Groups of ISO/TC 229 Nanotechnologies N2 - The main outcomes of the EMPIR project nPSize are presented and the suitability of the new capabilities (e.g. reference materials, measurement procedures, VAMAS inter-laboratory comparisons) to be standardized and implemented in accredited analytical laboratories is discussed. Complementation and/or filling gaps of published and ongoing standardisation projects on size, shape and number concentration measurements under ISO/TC 229/JWG 2 are offered. T2 - Annual Meeting of ISO/TC 229 Nanotechnologies - Strategy and Metrology Groups CY - Online meeting DA - 06.11.2020 KW - Nanoparticles KW - Size KW - nPSize KW - Inter-laboratory comparison KW - ISO/TC 229 KW - VAMAS PY - 2020 AN - OPUS4-51544 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan A1 - Schmitt, M. T1 - EMPIR nPSize - Improved Traceability Chain of Nanoparticle Size Measurement; What nPSize can offer to CEN/TC 352? N2 - The main outcomes of the EMPIR project nPSize are presented and the suitability of the new capabilities (e.g. reference materials, measurement procedures, inter-laboratory comparisons) as pertinent contributions to normative projects within CEN/TC 352 Nanotechnologies are discussed. E.g. the first technical report of nPSize on full algorithm sequences for nanoparticle detection and size measurement as developed on both a physical basis (SEM, TSEM, AFM and SAXS) and by machine learning is put at disposal. T2 - 29th Meeting of CEN/TC 352 Nanotechnologies CY - Online meeting DA - 25.03.2021 KW - Nanoparticles KW - Electron microscopy KW - CEN/TC 352 Nanotechnologies KW - Particle size distribution KW - Modelling KW - Machine learning PY - 2021 AN - OPUS4-52464 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan A1 - Mielke, Johannes A1 - Dohányosová, P. A1 - Müller, P. A1 - López-Vidal, S. T1 - Improved Deposition of Nanoparticles vy Electrospray Analaysis with SEM/TEM and EDS N2 - Although there are many experimental techniques for measuring particle sizes and size distributions, electron microscopy (EM) is still considered as the gold standard in this field, especially when it comes to particle sizes in the nanorange (1 nm – 100 nm). Furthermore, high-resolution X-ray spectroscopy (EDS) can be applied to individual nanoparticles. To be able to extract accurate information from the EM micrographs and EDS elemental maps that are representative for the material under investigation, one needs to assure the representativity of the particles as sampled on the substrate and their homogeneous spatial distribution, to avoid operator bias when selecting the imaged area. Furthermore, agglomeration should be avoided as far as possible. Several sample preparation techniques exist since a long time, the most common way being suspending the particles in a liquid and depositing them on the grid. However, this procedure includes the drying of larger solvent amounts on the substrate itself, which can affect the spatial distribution of the deposited particles. One possibility to overcome this problem is the use of an electrospray system, where the suspension of particles is sprayed onto the substrate in charged droplets that are so small that they either dry off on the substrate immediately without affecting the position of particles, or even already during their flight time to the substrate. No dedicated commercial instruments are available for the preparation of TEM grids yet, only electrostatic deposition of aerosols on TEM grids has been reported so far. To test the prototype and assess its performance, several materials have been sprayed onto TEM grids and the resulting particle distributions were compared to more traditional sample preparation strategies like the “drop on grid” method. Operation parameters such as the sample flow-rate, capillary – substrate distance, electric field strength and sampling period length have been optimised. It was found that the particles deposited by electrospray generally show a much more homogeneous spatial distribution on the substrate and a substantial increase of the number of single particles, which are much better suited to an automatic image evaluation procedure than the agglomerated particles observed otherwise. The applicability of the technique to a broad range of materials is demonstrated by various examples, but also the influence of the substrate, the choice of the particular TEM grid, on the obtained spatial particle distribution is assessed. T2 - EMAS 2017 - 15th European Workshop on MODERN DEVELOPMENTS AND APPLICATIONS IN MICROBEAM ANALYSIS and IUMAS-7 Meeting CY - Konstanz, Germany DA - 07.05.2017 KW - Electrospray deposition KW - TEM grids KW - Nanoparticles KW - Agglomeration PY - 2017 AN - OPUS4-40257 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan T1 - Improved traceability chain of nanoparticle size measurements N2 - The overall objective of project Improved traceability chain of nanoparticle size measurements is to improve the traceability chain for nanoparticle size measurements. The main impact will be achieved by manifold contributions to standard documents for CEN/TC 352 “Nanotechnologies”, which directly addresses the research needs of CEN, CENELEC and ETSI mandated by EC to develop standards for methods and reference materials to accurately measure the size and size distribution of nanoparticles. This will take place in collaboration with ISO/TC229 ‘Nanotechnologies’, ISO/TC24/SC4 ‘Particle characterization’ and ISO/TC201 ‘Surface analysis’/ SC9 ‘Scanning probe microscopy’. T2 - EMPIR 2017 Review Conference CY - Monaco DA - 9.11.2017 KW - Nanoparticles KW - Traceability KW - Electron micrsocopy KW - Size KW - Shape PY - 2017 AN - OPUS4-43019 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan T1 - Analysis of TiO2 nanoparticles – Various activities at BAM N2 - The presentation goes into the characterization of TiO2 engineered nanoparticles within EU/FP7 SETNanoMetro Project and the nanomaterial classification according to the EC definition tested within EU/FP7 NanoDefine Project. Further, ISO/TC 229/JWG 2 activities related on ISO standards in development and inter-laboratory comparisons on measurement of nanoparticle size and shape distribution by SEM and TEM are discussed. T2 - Seminar CY - PTB Braunschweig, Germany DA - 23.03.2017 KW - Nanoparticles KW - Electron microscopy KW - Nanomaterial KW - Standardization KW - Inter-laboratory comparison PY - 2017 AN - OPUS4-39527 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan T1 - Available particle-sizing techniques at work for the classification as a nanomaterial - How reliable it really is? N2 - The capability of currently available particle sizing techniques for reliable classification of materials that potentially fall under the EU Definition of a nanomaterial is discussed. A systematic quantitative evaluation of the sizing techniques is presented together with representative case studies of analysis of industrially relevant materials. Recommendations on the most appropriate and efficient use of techniques for different types of material are given. T2 - Frontiers of Nanomaterial Characterization CY - Tokyo, Japan DA - 28.05.2017 KW - Nanomaterial classification KW - Nanoparticles KW - Number-weighted median size KW - Particle size analysis KW - Characterization techniques PY - 2017 AN - OPUS4-40474 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan T1 - NanoDefine – a brief overview N2 - The large European nanometrology Project NanoDefine is presented briefly with respect to the challenges of measurement of particle size distribution for complex nanoparticulate materials. The methods chosen for a tiered approach for the classification of a nanomaterial are discussed with regard to their peformance. Representative resuls on real life, complex shaped nanoparticulate materials are shown. The recently initiated VAMAS inter-laboratory comparisons to determine the reproducibility necessary for international standardisation have been also presented. T2 - Metrology Study Group of ISO/TC 229 Nanotechnologies /JWG2 'Measurement and Characterization' CY - Tokyo, Japan DA - 31.05.2017 KW - EU definition of a nanomaterial KW - Nanomaterial classification KW - Nanoparticles KW - Nanoparticle size distribution KW - VAMAS inter-laboratory comparison KW - Particle sizing techniques PY - 2017 AN - OPUS4-40475 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan T1 - SETNanoMetro advances: Fabrication and measurement of TiO2 engineered nanoparticles N2 - The press conference on the results of the European Project FP7 constitutes a dissemination event dedicated to the production and characterization of "Shape-engineered TiO2 nanoparticles for metrology of functional properties: setting design rules from material synthesis to nanostructured devices" with the main large-scale applications in the three reference sectors: energy, health and environment. T2 - Press conference on the results of the European Project FP7 CY - Istituto Nazionale di Ricerca Metrologica (INRiM), Torino, Italy DA - 31.03.2017 KW - TiO2 KW - Nanoparticles KW - Measurement KW - Metrology KW - Shape-enegineered nanoparticles PY - 2017 AN - OPUS4-39622 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan T1 - Advanced methods for nanomaterial characterization N2 - At the Final Outreach Event of the European FP7 NanoDefine project the results achieved during 4 years of intensive research and development work (2013-2017) with relevant stakeholders and wider community, and their practical implications and impact are presented and discussed. The newly developed particle-size related measurement tools and their practical suitability and applicability to classify materials, formulations and products according to the EC recommendation on the definition of a nanomaterial (2011/696/EU) are demonstrated. T2 - Final Outreach Event “Classification of nanomaterials according to the EU definition” CY - Brüssel, Belgium DA - 19.09.2017 KW - Nanomaterial KW - Nanoparticles KW - Particle sizing techniques KW - Nanomaterial classification PY - 2017 AN - OPUS4-42390 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan A1 - Mielke, Johannes A1 - Dohányosová, P. A1 - Müller, P. A1 - López-Vidal, S. T1 - Deposition of nanoparticles by electrospray for improved analysis by SEM/TEM and EDX N2 - Of many experimental techniques for measuring particle sizes and size distributions, electron microscopy (EM) is still considered as the gold standard, especially in the nano range (1–100 nm). Furthermore, high-resolution X-ray spectroscopy (EDX) in conjunction with EM can be applied to individul NPs. Preparation of an EM sample for generic particulate materials is a difficult task. Usually, the particles in a suspension are deposited on a support. However, this procedure includes the drying of larger solvent amounts on the substrate itself, and this can affect the spatial distribution of the deposited particles. One possibility to overcome this is the use of an electrospray system, where the suspension of particles is sprayed onto the substrate in charged droplets that are so small that they either dry off on the substrate immediately without affecting the position of particles, or even already during their flight time to the substrate. Additionally, the charging of particles minimizes agglomeration and aggregation, maximizing the collection of the EM grids. The prototype of an electrospray deposition System was tested. Electrospray is theoretically described since a long time, but no dedicated commercial instruments are available for the preparation of TEM grids yet, apart from electrostatic deposition of aerosols. Several materials have been sprayed onto TEM grids and the resulting particle distributions were evaluated. Operation parameters such as the sample flow-rate, capillary – substrate distance, electric field strength and sampling period length have been optimized. It was found that the particles deposited by electrospray generally show a much more homogeneous spatial distribution on the substrate and a substantial increase of the number of single particles (suited to automatic analysis). T2 - 17th European Conference on Applications of Surface and Interface Analysis (ECASIA 2017) CY - Montpellier, France DA - 24.09.2017 KW - Electrospray deposition KW - Nanoparticles KW - SEM KW - TEM KW - TEM grid PY - 2017 AN - OPUS4-42393 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan A1 - Rades, Steffi A1 - Wirth, Thomas A1 - Holzweber, Markus A1 - Pellegrino, F. A1 - Martra, G. T1 - Analysis of Fluorine Traces in TiO2 Nanoplatelets by SEM/EDX, AES and TOF-SIMS N2 - The synthesis of TiO2 nanoplatelets with fluorine-containing reactants is carried out using Ti (IV) butoxide as precursor and concentrated HF as shape controller, the final product requires a working up in order to eliminate or at least to reduce the amount of residual fluorides, which is realized here by well-defined thermal treatment. Qualitative investigation of the bulk elemental composition by means of EDX of TiO2 nanoparticles (NPs) has identified fluorine in case of the as-synthesized samples. EDX spectra of thermally treated products exhibit either a fluorine content close to the limit of detection. The latter holds also true for the reference sample, TiO2 NPs of bipyramidal shape and prepared by a different synthesis route. For differentiation whether fluorine is present in the bulk or at the surface of the TiO2 nanoplatelets, top-surface sensitive AES and ToF-SIMS has been applied. Secondary ions of fluorine are detected in ToF-SIMS spectra of all samples, but could be roughly quantified by measurement of same reference sample as for EDX, namely TiO2 nano-bipyramids. This revealed that the amount of fluorine within1 nm depth beneath the surface is reduced in the thermally treated specimen compared to the raw product down to a content about as low as in the reference sample. AES allows analyzing analysis of the first few nanometers from the top-surface of individual NPs by point analysis. An F KLL peak has been detected at the surface of samples of as-prepared TiO2 nanoplatelets under optimized measurement conditions, but was not detectable after their calcination, which is in agreement with ToF-SIMS results. Moreover, high resolution AES on single TiO2 nanoplatelets elucidated that the surface atomic layers surrounding the TiO2 nanopaltelet contain fluorides before thermal treatment of the NPs. T2 - 17th European Conference on Applications of Surface and Interface Analysis ECASIA 2017 CY - Montpellier, France DA - 24.09.2017 KW - Titania KW - Nanoparticles KW - Fluorine KW - SEM/EDX KW - Auger Electron Spectroscopy KW - Nanoplatelets PY - 2017 AN - OPUS4-42656 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan A1 - Rades, Steffi A1 - Ortel, Erik A1 - Wirth, Thomas A1 - García, S. A1 - Martinez, A. A1 - Blanco, M. A1 - Alberto, Gabriele A1 - Borghetti, P. A1 - Jupille, J. A1 - Martra, G. T1 - Functionalization of TiO2 Nanoparticles and supports for Assembly of Multiple Porous Layers N2 - Self-assembly of TiO2 nanoparticles in multiple layers by layer-by-layer deposition has been selected of different deposition procedures usually applied for fabrication of TiO2 thin films with defined and homogeneous thickness on supports of interest for the large-scale applications. The substrates tested were: conductive (FTO) glass, silica glass and titanium alloy. The selected film fabrication technique consists of the deposition of alternating layers of oppositely charged, i.e. functionalized, TiO2 nanoparticle layers with wash steps in between. The controlled assembly of TiO2 nanoparticles on the supports surface requires both a proper functionalization of the supports to promote the adhesion of the TiO2 film to the substrates and proper functionalization of TiO2 nanoparticles to allow attachment to substrate and subsequent reaction between different NP layers. The current study focusses on the analytical control of the functionalization of the substrates with 3-Aminopropyltriethoxysilane (APTS) and glutaraldehyde (GA) by means of surface sensitive methods, XPS, Auger Electron Spectroscopy (AES) and ToF-SIMS. Chemical composition of surface of functionalized substrates shows differences in the degree and type of modification in dependence on substrate. T2 - European Conference on Applications of Surface and Interface Analysis ECASIA 2017 CY - Montpellier, France DA - 24.09.2017 KW - Functionalization KW - Substrates KW - Titania KW - Nanoparticles KW - SEM/EDX KW - XPS KW - Auger Electron Spectroscopy KW - ToF-SIMS PY - 2017 AN - OPUS4-42658 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan A1 - Mielke, Johannes A1 - Babick, F. A1 - Ullmann, C. T1 - Evaluation of particle sizing techniques for implementation of the EC Definition of a nanomaterial N2 - Many techniques are available for measuring particle size distribution. For ideal materials (spherical particles, well dispersed) it is possible to evaluate the Performance of these methods. The performance of the analytical instrumentation for the purpose of classifying materials according to EC Definition is unknown. In this work the performance of commercially available particle sizing techniques on representative NanoDefine set of real-world testing materials (RTM) and quality control materials (QCM) for the implementation of the Definition is evaluated. T2 - Final NanoDefine Outreach Event Classification of nanomaterials according to the EU definition CY - Brüssel, Belgium DA - 19.09.2017 KW - Nanomaterial classification KW - Particle sizing techniques KW - Nanoparticles KW - EC definition of a nanomaterial PY - 2017 UR - http://www.nanodefine.eu/index.php/nanodefine-meetings/125-final-outreach-event-2017 AN - OPUS4-42507 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan A1 - Mielke, Johannes A1 - Dohányosová, P. A1 - Müller, P. A1 - López-Vidal, S. A1 - Hodoroaba, Vasile-Dan T1 - Electrospray as a sample preparation tool for electron microscopy: Toward quantitative evaluation of nanoparticles N2 - Electrospray ionization constitutes a promising deposition technique for high-resolution imaging. Particle distribution on TEM grids takes place homogeneously and no losses occur. Suspension must be appropriate (stabilizer may induce artefacts). ESI parameters need to be optimized for each material. T2 - Final NanoDefine Outreach Event: Classification of nanomaterials according to the EU definition CY - Brüssel, Belgium DA - 19.09.2017 KW - Electrospray deposition KW - Electron microscopy KW - Nanoparticles PY - 2017 UR - http://www.nanodefine.eu/index.php/nanodefine-meetings/125-final-outreach-event-2017 AN - OPUS4-42508 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan A1 - Wohlleben, W. A1 - Mielke, Johannes A1 - Rauscher, H. T1 - Volume specific surface area (VSSA) by BET: concept and demonstration on industrial materials N2 - Volume specific surface area (VSSA) as measured by BET constituites a simple and reliable solution to (most) powders. Porous, coated, polydisperse/multimodal materials are to be treated with care, i.e. doubled by analysis with electron microscopy or more advanced BET analysis (e.g. t-plot)for each material in part. T2 - Final NanoDefine Outreach Event: Classification of nanomaterials according to the EU definition CY - Brüssel, Belgium DA - 19.09.2017 KW - VSSA KW - BET KW - Nanoparticles KW - Powder KW - Nanomaterial classfication PY - 2017 UR - http://www.nanodefine.eu/index.php/nanodefine-meetings/125-final-outreach-event-2017 AN - OPUS4-42509 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan A1 - Mielke, Johannes A1 - Dohányosová, P. A1 - Müller, P. A1 - López-Vidal, S. T1 - Electrospray as a sample preparation tool for electron microscopic investigations: Toward quantitative evaluation of nanoparticles N2 - The potential of electrospray deposition, for the controlled preparation of particles for imaging in electron microscopes, is evaluated on various materials: from mono-modal suspensions of spherical particles to multimodal suspensions and to real-world industrial materials. It is shown that agglomeration is reduced substantially on the sample carrier, compared with conventional sample preparation techniques. For the first time, it is possible to assess the number concentration of a tri-modal polystyrene suspension by electron microscopy, due to the high Deposition efficiency of the electrospray. We discovered that some suspension stabilizing surfactants form artifact particles during electrospraying. These can be avoided by optimizing the sprayed suspension. T2 - Microscopy & Microanalysis 2017 Meeting CY - St. Louis, MO, USA DA - 06.08.2017 KW - Electrospray deposition KW - Nanoparticles KW - Electron microscopy KW - Sample preparation KW - TEM KW - SEM PY - 2017 AN - OPUS4-41578 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan A1 - Wollschläger, Nicole A1 - Pallase, L. A1 - Häusler, Ines A1 - Ortel, Erik A1 - Dirscherl, K. T1 - Characterization of Porous, TiO2 Nanoparticle Films Using On-Axis TKD in SEM – a New Nano-Analysis Tool for a Large-Scale Application N2 - A combined methodical approach is tested with respect to the characterization of the inner structure of porous TiO2 layers as typically used in modern dye sensitized solar cells (DSSC). Their performance is directly linked to the surface area of the pore network. The micrometer thick layer employed was manufactured by screen-printing of a starting TiO2 powder constituted of shape-controlled, bipyramidal anatase nanoparticles on FTO/glass substrates. The analytical methods exploited in our study are Focused Ion Beam (FIB) slicing followed by 3D reconstruction as well as the new approach transmission Kikuchi diffraction (TKD) technology in the scanning electron microscope (SEM). Size and shape distribution of the TiO2 NPs within the layer can be extracted. SEM in transmission mode and atomic force microscopy (AFM) have been used to verify the dimensional data obtained by the new combined methodical approach. Its analytical benefits but also the challenges and limitations are highlighted. T2 - Microscopy & Microanalysis 2017 Meeting CY - St. Louis, MO, USA DA - 06.08.2017 KW - Porous layers KW - TiO2 KW - Nanoparticles KW - Size and shape distribution KW - TKD KW - SEM PY - 2017 AN - OPUS4-41660 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan A1 - Rades, Steffi A1 - Borghetti, P. A1 - Ortel, Erik A1 - Wirth, Thomas A1 - Garcia, S. A1 - Gómez, E. A1 - Blanco, M. A1 - Alberto, Gabriele A1 - Martra, G. T1 - Organic surface modification and analysis of TiO2 nanoparticles for self-assembly in multiple layers N2 - Parameters of TiO2 coatings can greatly influence their final performance in largescale applications such as photocatalytic measurements, orthopedic and/or dental prostheses, cell cultures, and dye-sensitized solar cells. From different film deposition procedures, self-assembly of TiO2 NPs in multiple layers was selected for systematic characterization. EDX, AES and ToF-SIMS analysis have been carried out in order to evaluate the functionalization of several types of TiO2 NPs differing in size, shape and surface area. T2 - Microscopy & Microanalysis 2017 Meeting CY - St. Louis, MO, USA DA - 06.08.2017 KW - TiO2 KW - Nanoparticles KW - EDX KW - ToF-SIMS KW - XPS KW - Auger electron spectroscopy KW - Functionalization PY - 2017 AN - OPUS4-41662 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan T1 - Overview on the most advanced and suitable NanoDefine measurement methods N2 - The EC Recommendation on the definition of nanomaterial, based solely on size of the constituent particles, foresees development of harmonised measurement methods ensuring ‘consistent results across materials and over time’. The EU/FP7 research project NanoDefine has been exclusively dedicated to support the implementation of this EC Recommendation for the European Union’s legislation. For the first time, measurement techniques able to determine the size of nanoparticles have been evaluated systematically on a well-defined set of quality control materials (spherical, monodisperse) as well as industrial materials of complex shapes and considerable polydispersity. Particularly based on the analytical performance of the measurement techniques as tested on the challenging real-world particulate materials, it was possible to formulate recommendations for use of a new tiered approach consisting of screening and confirmatory techniques. Thus, a consistent framework of guidance for nanomaterial identification according to the EC Definition has been issued in form of the NanoDefiner e-tool, with a transparent decision flow scheme and an extensive user manual. Selected examples of analysis and classification as nano-/non-nanomaterials will be given, highlighting the limits of applicability of the available measurement techniques in dependence on sample properties. On some recent relevant developments in sample preparation – as a crucial part for an accurate analysis - will be also reported. T2 - VCI-NanoDefine Follow-up Meeting CY - VCI, Frankfurt am Main, Germany DA - 25.09.2018 KW - Nanoparticles KW - Nanomaterial KW - EC definition of nanomaterial KW - Nanoparticle size distribution PY - 2018 AN - OPUS4-46251 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan T1 - EMPIR nPSize - improved traceability chain of nanoparticle size measurements - Is a liaison to CEN/TC 352 nanotechnologies useful? N2 - The main objectives of the new EMPIR project nPSize are to establish EU capability of traceable measurement of NP size and shape, lower uncertainties of NP size measurement by developement of new nano-CRMs, new models (physical and machine learning), 3D method combination, and also by new ISO and CEN standards on accurate NP size measurement and guidance and knowledge transfer. The envisaged outcomes of the project will be presented and their suitability will be discussed to be taken over as pertinent contributions to normative projects within CEN/TC 352 Nanotechnologies. T2 - Joint Working Groups and 24th CEN/TC 352 Nanotechnologies Meetings CY - DIN, Berlin, Germany DA - 09.10.2018 KW - Nanoparticles KW - Size KW - Particle size distribution KW - Particle shape KW - Traceability KW - Standardisation KW - CEN/TC 352 Nanotechnologies PY - 2018 AN - OPUS4-46252 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan T1 - Surface and Microbeam Analytical Methods @BAM N2 - An overview of the activities in the field of surface and microbeam analysis at BAM-6.1 is given with focus on physico-chemical characterization at the nanoscale. Ideas of potential joint activities are presented: structural and chemical analysis of graphene, deposition techniques for nanoparticles, EBSD on steel for a broader range of methods, instruments and types of steel, soft X-ray Analysis of low-Z materials, analysis of mesoporous thin films, etc. T2 - BAM-IFW Workshop CY - Dresden, Germany DA - 28.03.2019 KW - PC characterisation KW - Nanoscale KW - Nanoparticles PY - 2019 AN - OPUS4-47860 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan A1 - Donėlienė1, J. A1 - Rudzikas, M. A1 - Rades, Steffi A1 - Dörfel, Ilona A1 - Peplinski, Burkhard A1 - Sahre, Mario A1 - Pellegrino, F. A1 - Maurino, V. A1 - Ulbikas, J. A1 - Galdikas, A. T1 - Electron Microscopy and X-Ray Diffraction Analysis of Titanium Oxide Nanoparticles Synthesized by Pulsed Laser Ablation in Liquid N2 - A femto-second pulsed laser ablation in liquid (PLAL) procedure for the generation of titanium oxide nanoparticles (NP) is reported with the purpose of understanding morphology and structure of the newly generated NPs. Ablation duration was varied for optimization of NP generation processes between 10 and 90 min. Surface morphology of NPs as well as their size and shape (distribution) were analysed by various complementary electron microscopy techniques, i.e. SEM, TSEM and TEM. The crystalline structure of titanium oxide particles was investigated by XRD and HR-TEM. Concentration of generated titanium oxide NPs in liquid was analysed by ICP-MS. A mix of crystalline (mainly anatase), partly crystalline and amorphous spherical titanium oxide NPs can be reported having a mean size between 10 and 20 nm, which is rather independent of the laser ablation (LA) duration. A second component consisting of irregularly shaped, but crystalline titanium oxide nanostructures is co-generated in the LA water, with more pronounced occurrence at longer LA times. The provenance of this component is assigned to those spherical particles generated in suspension and passing through the converging laser beam, being hence subject to secondary irradiation effects, e. g. fragmentation. T2 - Microscopy & Microanalysis 2018 CY - Baltimore, MD, USA DA - 05.08.2018 KW - Nanoparticles KW - Titanium oxide KW - Laser ablation in liquid KW - Electron microscopy KW - XRD PY - 2018 AN - OPUS4-46502 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan A1 - Rades, Steffi A1 - Oswald, F. A1 - Narbey, S. A1 - Radnik, Jörg T1 - Complementary methodical approach for the analysis of a perovskite solar cell layered system N2 - Loss in efficiency of perovskite solar cells may be caused by structural and/or chemical alterations of the complex layered system. As these changes might take place either in the bulk and/or on the surface of the stratified material, analytical tools addressing both key issues are selected and combined. SEM/EDX combined with XPS were chosen as appropriate methodical approach to characterise perovskite laboratory cells in depth and complementary on top, before and after light exposure. The layered perovskite system investigated here is based on glass covered with fluorine doped tin oxide (FTO), followed by three porous thin films of TiO2, ZrO2 and a thick monolithic carbon. The TiO2 film is subdivided into a dense layer covered by a porous one constituted of nanoparticles with a truncated bipyramidal shape. This layered system serves as the matrix for the perovskite. After infiltration of perovskite solution and annealing, EDX spectral maps on cross-sections of the specimen have been measured. The distribution of relevant elements – Si, Sn, Ti, Zr and C – correlates conclusively with layers visible in the acquired SEM images. Lead and iodine are distributed throughout the porous layers C, ZrO2 and TiO2. In a SEM micrograph taken of the cross-section of a sample after illumination, the glass substrate and all layers FTO, TiO2, ZrO2 as well as C are clearly identified. By EDX it was found that several weeks of ambient daylight did not change significantly the qualitative elemental composition of lead and iodine throughout the solar cell system. It was confirmed with EDX that nanoparticles identified in high-resolution SEM micrographs contain mainly Pb and I, indicating these to be the perovskite crystals. However, a time-dependent compositional and chemical altering was observed with XPS for the near-surface region of the outermost ~10 nm after two months of illumination. T2 - Microscopy & Microanalysis 2017 Meeting CY - St. Louis, MO, USA DA - 06.08.2017 KW - Thin films KW - EDX KW - XPS KW - SEM KW - Nanoparticles KW - Perovskite KW - TiO2 PY - 2017 AN - OPUS4-41664 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hodoroaba, Vasile-Dan A1 - Cios, G. A1 - Tokarski, T. A1 - Mansfeld, Ulrich A1 - Ortel, Erik A1 - Mielke, Johannes A1 - Pellegrino, F. A1 - Maurino, V. T1 - Towards 3D Understanding of Non-spherical Nanoparticles by Transmission Kikuchi Diffraction (TKD) for Improved Particle Size Distribution by Electron Microscopy JF - Microscopy and Microanalysis N2 - In this paper one refined approach is applied to determine the exact orientation of bipyramidal TiO2 nanoparticles prepared with good dispersion as almost isolated particles on a carbon TEM grid. The advantages of the recently developed high-throughput Transmission Kikuchi Diffraction (TKD) are used to identify quickly and reliably the geometrical orientation of the crystalline TiO2 nanoparticle bipyramids (anatase) on a statistically relevant number of particles. KW - Nanoparticles KW - Transmission Kikuchi Diffraction (TKD) KW - Electron microscopy KW - TiO2 KW - 3D PY - 2020 DO - https://doi.org/10.1017/S1431927620013999 VL - 26 IS - S2 SP - 260 EP - 261 PB - Cambridge University Press CY - Cambridge, UK AN - OPUS4-51772 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan A1 - Feltin, N. T1 - Hybrid metrology for microscopy of nanoparticles N2 - This presentation is structured in two parts: i) Hybrid metrology by combining SEM with AFM (N. Feltin) and ii) hybridization and corelative microscopy by SEM, STEM-in-SEM, TEM, EDS, Auger Electron Microscopy, TKD and more (D. Hodoroaba). The first part is focused on the metrological part of the hybrid measurement SEM-AFM, the second part offers some further possibilities of correlative microscopy of nanoparticles based on practical examples. T2 - EMPIR nPSize Training Course "Metrology for Measurement of Nanoparticle Size by Electron Microscopy and Atomic Force Microscopy" CY - Online meeting DA - 27.10.2020 KW - Nanoparticles KW - SEM KW - AFM KW - Metrology KW - Particle size distribution KW - Correlative imaging KW - STEM-in-SEM (TSEM) PY - 2020 AN - OPUS4-51476 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hodoroaba, Vasile-Dan A1 - Rades, Steffi A1 - Borghetti, P. A1 - Ortel, Erik A1 - Wirth, Thomas A1 - Garcia, S. A1 - Gómez, E. A1 - Blanco, M. A1 - Alberto, G. A1 - Martra, G. T1 - Organic surface modification and analysis of titania nanoparticles for self‐assembly in multiple layers JF - Surface and Interface Analysis N2 - The characteristics of TiO2 coatings can greatly influence their final performance in large‐scale applications. In the present study, self‐assembly of TiO2 nanoparticles (NPs) in multiple layers was selected as a deposition procedure on various substrates. For this, the main prerequisite constitutes the surface modification of both NPs and substrate with, for example, silane coupling agents. A set of functionalized TiO2 NPs has been produced by reaction with either (3‐aminopropyl)triethoxysilane (APTES) or (3‐aminopropyl)phosphonic acid (APPA) to functionalize the NP surface with free amino‐groups. Then, the complementary functionalized NP set can be obtained from an aliquot of the first one, through the conversion of free surface amino groups to aldehydes by reaction with glutaraldehyde (GA). Several types of TiO2 NPs differing in size, shape, and specific surface area have been functionalized. Fourier‐transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), SEM/ energy‐dispersive X‐ray spectroscopy (EDS), XPS, Auger electron spectroscopy (AES), and Time‐of‐Flight (ToF)‐SIMS analyses have been carried out to evaluate the degree of functionalization, all the analytical methods employed demonstrating successful functionalization of TiO2 NP surface with APTES or APPA and GA. KW - TiO2 KW - Nanoparticles KW - Surface functionalization KW - Layer-by-layer deposition KW - Surface chemical analysis PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-508601 DO - https://doi.org/10.1002/sia.6842 SN - 1096-9918 VL - 52 IS - 12 SP - 829 EP - 834 PB - John Wiley & Sons Ltd AN - OPUS4-50860 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hodoroaba, Vasile-Dan A1 - Rades, Steffi A1 - Salge, T. A1 - Mielke, Johannes A1 - Ortel, Erik A1 - Schmidt, R. T1 - Characterisation of nanoparticles by means of high-resolution SEM/EDS in transmission mode JF - IOP Conf. Series: Materials Science and Engineering N2 - Advances in scanning electron microscopy (SEM) enable the high-resolution imaging of single nanoparticles (NPs) with sizes well below 10 nm. The SEM analysis in transmission mode (T-SEM) of NPs on thin film supports has many benefits when compared to the analysis of NPs on bulk substrates. The enhanced material (mass – thickness) contrast of the T-SEM imaging mode is well suited for in-depth and, particularly valuable, to very accurate, traceable, lateral dimensional measurements of NPs. Compared to samples prepared on bulk substrates, T-SEM with energy dispersive X-ray spectroscopy (EDS) achieves a drastically improved spatial resolution of the emitted X-rays. The poor signal-to-noise ratio of the X-ray spectra emitted by a single nanoparticle (NP) can be improved by the use of high-sensitivity (high collection solid angle) silicon drift (SDD), energy-dispersive X-ray spectrometers (EDS). The EDS spectral imaging of a single NP with a spatial resolution below 10 nm has become possible. This is demonstrated by means of various examples of nanostructures. Advanced data processing of T-SEM/EDS results sets the stage for the automated classification of NPs by feature analysis. This method combines the detection of morphological structures of interest by image processing of T-SEM micrographs with the chemical classification by EDS. T2 - European Microbeam Analysis Society’s 14th European Workshop on Modern Developments and Applications in Microbeam Analysis (EMAS 2015) CY - Portorož, Slovenia DA - 03.05.2015 KW - High-resolution KW - SEM KW - T-SEM KW - EDX KW - Nanoparticles PY - 2016 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-355628 UR - http://iopscience.iop.org/article/10.1088/1757-899X/109/1/012006 DO - https://doi.org/10.1088/1757-899X/109/1/012006 SN - 1757-899X VL - 109 SP - 012006-1 EP - 012006-12 PB - IOP Publishing Ltd CY - Bristol, UK AN - OPUS4-35562 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hodoroaba, Vasile-Dan A1 - Yamamoto, K. A1 - Grulke, E. A. T1 - Size and shape distribution of bipyramidal TiO2 nanoparticles by transmission electron microscopy – an inter-laboratory comparison JF - Microscopy and Microanalysis N2 - Extraction of true, 3D shape (and size) of non-spherical nanoparticles (NPs) is associated with errors by conventional 2D electron microscopy using projection images. Significant efforts within the ISO technical committee TC 229 ‘Nanotechnologies’ are aimed at establishing accurate TEM and SEM measurement of NP size and shape as robust, standard procedures. Study groups have been organizing inter-laboratory comparisons on well-selected NP systems according to the market needs, such as aggregated titania nano-powder for which size and shape distribution of primary crystallites of irregular shape must be measured accurately. To be noticed is e. g. the fact that the measurement procedure allows only manual selection of the particles clearly distinguishable for analysis as well as manual definition of the contour of the imaged NPs. An inter-laboratory exercise on titania NPs (pure anatase, grown by hydrothermal synthesis) of well-defined non-spherical shape, i.e. bipyramidal has been recently started within ISO/TC 229 under similar conditions as for the irregular shaped titania. Overlapped particles were allowed to be considered, as long as they are clearly distinguishable. One decisive NP selection criterion was to analyze only those NPs with a roundness value below 0.7, i.e. the NPs laying on the support foil and, hence, with projection areas clearly deviating from perfect circles (R=1). The overall evaluation (for 15 labs) of the size descriptors (area, Feret, minFeret, perimeter) and shape descriptors (aspect ratio, roundness, compactness, extent) by analysis of variance is just to be finished and included in ISO/WD 21363 Nanotechnologies -- Protocol for particle size distribution by transmission electron microscopy. KW - Nanoparticles KW - Electron microscopy KW - Titanium oxide KW - Particle size distribution PY - 2018 UR - https://www.cambridge.org/core/journals/microscopy-and-microanalysis/article/size-and-shape-distribution-of-bipyramidal-tich-nanoparticles-by-transmission-electron-microscopy-an-interlaboratory-comparison/9E2FA0C716DB5F881E3032D014DFD52B DO - https://doi.org/10.1017/S1431927618009017 SN - 1431-9276 SN - 1435-8115 VL - 24 IS - S1 (August 2018) SP - 1706 EP - 1707 PB - Cambridge University Press CY - New York, NY, U.S.A. AN - OPUS4-46005 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hsiao, I.-L. A1 - Bierkandt, Frank A1 - Reichardt, Ph. A1 - Luch, A. A1 - Huang, Y.-J. A1 - Jakubowski, Norbert A1 - Tentschert, J. A1 - Haase, A. T1 - Quantification and visualization of cellular uptake of TiO2 and Ag nanoparticles: comparison of different ICP-MS techniques JF - Journal of Nanobiotechnology N2 - Safety assessment of nanoparticles (NPs) requires techniques that are suitable to quantify tissue and cellular uptake of NPs. The most commonly applied techniques for this purpose are based on inductively coupled plasma mass spectrometry (ICP-MS). Here we apply and compare three different ICP-MS methods to investigate the cellular uptake of TiO2 (diameter 7 or 20 nm, respectively) and Ag (diameter 50 or 75 nm, respectively) NPs into differentiated mouse neuroblastoma cells (Neuro-2a cells). Cells were incubated with different amounts of the NPs. Thereafter they were either directly analyzed by laser ablation ICP-MS (LA-ICP-MS) or were lysed and lysates were analyzed by ICP-MS and by single particle ICP-MS (SP-ICP-MS). KW - Nanoparticles KW - Single particle ICP-MS KW - Laser ablation ICP-MS KW - Cellular internalization KW - Neurons PY - 2016 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-371620 DO - https://doi.org/10.1186/s12951-016-0203-z SN - 1477-3155 VL - 14 SP - Article 50 AN - OPUS4-37162 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hunter, R. D. A1 - Hayward, E. C. A1 - Smales, Glen Jacob A1 - Pauw, Brian Richard A1 - Kulak, A. A1 - Guan, S. A1 - Schnepp, Z. T1 - The effect of nitrogen on the synthesis of porous carbons by iron-catalyzed graphitization JF - Materials Advances N2 - This paper reports a systematic study into the effect of nitrogen on iron-catalyzed graphitization of biomass. Chitin, chitosan, N-acetylglucosamine, gelatin and glycine were selected to represent nitrogen-rich saccharides and amino-acid/polypeptide biomass precursors. The materials were pyrolyzed with an iron catalyst to produce carbons with a wide range of chemical and structural features such as mesoporosity and nitrogen-doping. Many authors have reported the synthesis of nitrogen-doped carbons by pyrolysis and these have diverse applications. However, this is the first systematic study of how nitrogen affects pyrolysis of biomass and importantly the catalytic graphitization step. Our data demonstrates that nitrogen inhibits graphitization but that some nitrogen survives the catalytic graphitization process to become incorporated into various chemical environments in the carbon product. KW - Graphitization KW - Nanoparticles KW - Nanocomposite KW - Porous carbon KW - Nitrogen KW - Scattering PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-575351 DO - https://doi.org/10.1039/d3ma00039g VL - 4 SP - 2070 EP - 2077 PB - Royal Society of Chemistry AN - OPUS4-57535 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hörenz, Christoph T1 - Preparation of Nanoparticulate Samples for Electron Microscopy N2 - This presentation addresses the importance of proper sample preparation to obtain suitable samples for electron microscopic measurements. The objective as well as the requirements are discussed. Further, different sample deposition methods for various types of nanoparticulate samples are shown. T2 - nPSize Web Conference CY - Online meeting DA - 23.07.2020 KW - Nanoparticles KW - Electron microscopy KW - Sample preparation KW - Particle size distribution KW - Particle number concentration PY - 2020 AN - OPUS4-51047 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hörenz, Christoph A1 - Pellegrino, F. A1 - Maurino, V. A1 - Taché, O. A1 - Bartczak, D. A1 - Cuello Nuñez, S. A1 - Abad Álvaro, I. A1 - Goenaga Infante, H. A1 - Hodoroaba, Vasile-Dan T1 - Improved Sample Preparation for the Analysis of Nanoparticles by Electron Microscopy N2 - In this work, we present various promising sample preparation procedures aiming to avoid drying artifacts and guarantee homogeneously distributed NP samples for imaging techniques like TEM, SEM or AFM. This involves retarded drying in an environment of high relative humidity as well as spin coating or freeze drying of the sample on the substrate. Depending on the type of the NPs, different techniques are successful in obtaining homogenous sample deposition. Simple drying at ambient conditions often results in heavily agglomerated NPs densely packed in coffee ring traces. Retardation of the drying speed in an environment of high relative humidity, however, yields homogeneous NP deposition in the case of bimodal SiO2 and bimodal gold NP’s. In contrast, a sample of bipyramidal TiO2, heavily agglomerated when commonly dried, is successfully dispersed by spin coating the suspension on the substrate. The analysis of the particle size distribution of the bimodal silica and gold samples yielded number ratios resembling the nominal number ratios. The reliable measurement of the NP concentration of polydisperse samples by electron microscopy, even if relative, is new and of special relevance because up to now only the size of the particles, i.e. the abscissa of the PSD, can be measured reliably. T2 - NANOSAFE 2020 CY - Online meeting DA - 16.11.2020 KW - Nanoparticles KW - Particle size distribution KW - Electron microscopy KW - Bimodal KW - SiO2 KW - Gold PY - 2020 AN - OPUS4-51714 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hörenz, Christoph T1 - Improved Sample Preparation for the Analysis of Nanoparticles by Electron Microscopy N2 - Various promising sample preparation procedures aiming to avoid drying artifacts and guarantee homogeneously distributed NP samples for imaging techniques like TEM, SEM or AFM are presented. This involves retarded drying in an environment of high relative humidity as well as spin coating or freeze drying of the sample on the substrate. Depending on the type of the NPs, different techniques are successful in obtaining homogenous sample deposition. Simple drying at ambient conditions often results in heavily agglomerated NPs densely packed in coffee ring traces. Retardation of the drying speed in an environment of high relative humidity, however, yields homogeneous NP deposition in the case of bimodal SiO2 and bimodal gold NP’s. In contrast, a sample of bipyramidal TiO2, heavily agglomerated when commonly dried, is successfully dispersed by spin coating the suspension on the substrate. The analysis of the particle size distribution of the bimodal silica and gold samples yielded number ratios resembling the nominal number ratios. The reliable measurement of the NP concentration of polydisperse samples by electron microscopy, even if relative, is new and of special relevance because up to now only the size of the particles, i.e. the abscissa of the PSD, can be measured reliably. T2 - EMPIR nPSize Training Course "Metrology for Measurement of Nanoparticle Size by Electron Microscopy and Atomic Force Microscopy" CY - Online meeting DA - 27.10.2020 KW - Nanoparticles KW - Particle size distribution KW - Sample peparation KW - Electron microscopy PY - 2020 AN - OPUS4-51716 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hörenz, Christoph A1 - Tache, O. A1 - Bartczak, D. A1 - Nunez, S. A1 - Abad Alvaro, I. A1 - Goenaga-Infante, H. A1 - Hodoroaba, Vasile-Dan T1 - A Study on the Analysis of Particle Size Distribution for Bimodal Model Nanoparticles by Electron Microscopy JF - Microscopy and Microanalysis N2 - The present study addresses the capability of measurement of relative particle number concentration by scanning electron microscopy for model bimodal silica and gold samples prepared in the frame of the European research project “nPSize - Improved traceability chain of nanoparticle size measurements” as candidate reference nanoparticles. KW - Nanoparticles KW - Particle size distribution KW - Bimodal size distribution KW - Traceability PY - 2020 DO - https://doi.org/10.1017/S1431927620021054 VL - 26 IS - S2 SP - 2282 EP - 2283 PB - Cambridge University Press CY - Cambridge, UK AN - OPUS4-51771 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hülagü, Deniz A1 - Tobias, Charlie A1 - Climent Terol, Estela A1 - Gojani, Ardian A1 - Rurack, Knut A1 - Hodoroaba, Vasile-Dan T1 - Generalized Analysis Approach of the Profile Roughness by Electron Microscopy with the Example of Hierarchically Grown Polystyrene–Iron Oxide–Silica Core–Shell–Shell Particles JF - Advanced Engineering Materials N2 - The roughness as a property of core–shell (CS) microparticles plays a key role in their functionality. Quantitative evaluation of the roughness of CS microparticles is, however, a challenging task with approaches using electron microscopy images being scarce and showing pronounced differences in terms of methodology and results. This work presents a generalized method for the reliable roughness determination of nonplanar specimens such as CS particles from electron microscopic images, the method being robust and reproducible with a high accuracy. It involves a self-written software package (Python) that analyzes the recorded images, extracts corresponding data, and calculates the roughness based on the deviation of the identified contour. Images of single particles are taken by a dual mode scanning electron microscopy (SEM) setup which permits imaging of the same field-of-view of the sample with high resolution and surface sensitive in SE InLens mode as well as in transmission mode (TSEM). Herein, a new type of polystyrene core–iron oxide shell–silica shell particles is developed to serve as a set of lower micrometer-sized study objects with different surface roughness; the analysis of their images by the semiautomatic workflow is demonstrating that the particles’ profile roughness can be quantitatively obtained. KW - Core–shell particles KW - Image analysis KW - Nanoparticles KW - Roughness KW - SEM KW - transmission mode PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-542576 DO - https://doi.org/10.1002/adem.202101344 SP - 1 EP - 9 PB - Wiley-VCH AN - OPUS4-54257 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Iannarelli, L. A1 - Giovanozzi, A. M. A1 - Diomede, L. A1 - Morelli, F. A1 - Viscotti, F. A1 - Maurino, V. A1 - Bigini, P. A1 - Martra, G. A1 - Spoto, G. A1 - Ortel, Erik A1 - Hodoroaba, Vasile-Dan A1 - Rossi, A. M. T1 - Shape engineered TiO2 nanoparticles in Caenorhabditis elegans: a Raman imaging based approach to assist tissue-specific toxicological studies N2 - In vivo detailed spatial distribution of TiO2 NPs was here investigated for the first time using a 2D chemical imaging analysis based on Confocal Raman Spectroscopy. The invertebrate nematode C. elegans was employed as prototypical model of living organism. Rod, bipyramidal and quasi-spherical engineered TiO2 NPs with different primary particle sizes and agglomeration states were prepared, characterized and then administered to nematodes. Exploiting the typical fingerprint of TiO2 in the Raman spectrum, we monitored the biodistribution of NPs inside the worm using a non-invasive, label-free method. The high spatial resolution chemical imaging and the specificity of the Raman technique in the localization of TiO2 NPs helped in the design of behavioral C. elegans studies aimed at elucidating the relationship among the size, shape, and agglomeration state of NPs and their ability to induce specific toxic effects. T2 - 16th European Conference on Applications of Surface and Interface Analysis ECASIA'15 CY - Fortaleza, Brazil DA - 14.08.2016 KW - TiO2 KW - Nanoparticles KW - Raman imaging KW - Toxicological studies PY - 2016 AN - OPUS4-38240 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -