TY - CONF A1 - Kern, Simon A1 - Michalik-Onichimowska, Aleksandra A1 - Riedel, Jens A1 - Panne, Ulrich A1 - King, R. A1 - Maiwald, Michael T1 - “Click” analytics for “click” chemistry – a simple method for calibration-free evaluation of online NMR spectra N2 - Currently research in chemical manufacturing moves towards flexible plug-and-play approaches focusing on modular plants, capable of producing small scales on-demand with short down-times between individual campaigns. This approach allows for efficient use of hardware, a faster optimization of the process conditions, and thus, an accelerated introduction of new products to the market [1]. Driven mostly by the search for chemical syntheses under biocompatible conditions, so-called “click” chemistry rapidly became a growing field of research. The resulting simple one-pot reactions are so far only scarcely accompanied by an adequate optimization via comparably straightforward and robust analysis techniques. Here we report on a fast and reliable calibration-free online high field NMR monitoring approach for technical mixtures. It combines a versatile fluidic system, continuous-flow measurement with a time interval of 20 s per spectrum, and a robust, automated algo-rithm to interpret the obtained data. All spectra were acquired using a 500 MHz NMR spectrometer (Varian) with a dual band flow probe having a 1/16 inch polymer tubing working as a flow cell. Single scan 1H spectra were recorded with an acquisition time of 5 s, relaxation delay of 15 s. T2 - 11. Doktorandenseminar 2017 des Arbeitskreis Prozessanalytik der GDCh und DECHEMA CY - Berlin, Germany DA - 12.03.2017 KW - Online NMR Spectroscopy KW - Click chemistry KW - Data analysis PY - 2017 AN - OPUS4-39397 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kern, Simon A1 - Michalik-Onichimowska, Aleksandra A1 - Riedel, Jens A1 - Panne, Ulrich A1 - King, R. A1 - Maiwald, Michael T1 - “Click” analytics for “click” chemistry – a simple method for calibration-free evaluation of online NMR spectra N2 - Currently research in chemical manufacturing moves towards flexible plug-and-play approaches focusing on modular plants, capable of producing small scales on-demand with short down-times between individual campaigns. This approach allows for efficient use of hardware, a faster optimization of the process conditions, and thus, an accelerated introduction of new products to the market. Driven mostly by the search for chemical syntheses under biocompatible conditions, so-called “click” chemistry rapidly became a growing field of research. The resulting simple one-pot reactions are so far only scarcely accompanied by an adequate optimization via comparably straightforward and robust analysis techniques. Here we report on a fast and reliable calibration-free online high field NMR monitoring approach for technical mixtures. It combines a versatile fluidic system, continuous-flow measurement with a time interval of 20 s per spectrum, and a robust, automated algorithm to interpret the obtained data. All spectra were acquired using a 500 MHz NMR spectrometer (Varian) with a dual band flow probe having a 1/16 inch polymer tubing working as a flow cell. Single scan 1H spectra were recorded with an acquisition time of 5 s, relaxation delay of 15 s. As a proof-of-concept, the thiol-ene coupling between N-boc cysteine methyl ester and allyl alcohol was conducted in non-deuterated solvents while its time-resolved behaviour was characterised with step tracer experiments Through the application of spectral modeling the signal area for each reactant can be deconvoluted in the online spectra and thus converted to the respective concentrations or molar ratios. The signals which were suitable for direct integration were used herein for comparison purposes of both methods. T2 - EuroPACT 2017 CY - Potsdam, Germany DA - 10.05.2017 KW - Online NMR Spectroscopy PY - 2017 AN - OPUS4-40283 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bruno, Giovanni A1 - Kupsch, Andreas A1 - Mueller, Bernd R. A1 - Lange, Axel T1 - X-ray refraction 2D and 3D techniques N2 - X-ray refraction techniques represent a very promising, yet not so wide-spread, set of X-ray techniques based on refraction effects. They allow determining internal specific surface (surface per unit volume) in a non-destructive fashion, position and orientation sensitive, and with nanometric detectability. While they are limited by the X-ray absorption of the material under investigation, we demonstrate showcases of ceramics and composite materials, where understanding of microstructural features could be achieved in a way unrivalled even by high-resolution techniques such as electron microscopy or computed tomography. T2 - ICTMS 2017 CY - Lund, Sweden DA - 26.06.2017 KW - X-ray refraction KW - Composites KW - Damage KW - Cracks KW - Cearmics PY - 2017 AN - OPUS4-41042 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Usmani, Shirin A1 - Schlishka, Joerg A1 - Klutzny, Kerstin A1 - de Laval, Yvonne A1 - Plarre, Rüdiger A1 - Krahl, Thoralf A1 - Stephan, Ina A1 - Huebert, Thomas A1 - Kemnitz, Erhard T1 - Wood protection with nanoparticles: MgF2 and CaF2 N2 - Alkaline earth metal fluoride nanoparticles have been investigated for application in wood protection. Sols of MgF2 and CaF2 were synthesized and their efficacy was tested against fungi and termites (Rehmer 2016, Krahl et al. 2016). The sols were characterized by XRD and SEM. The wood specimens were vacuum impregnated with nanoparticles and then exposed to fungi and termites according to EU certified test conditions. Our results show that wood impregnated with metal fluoride nanoparticles significantly reduce cellulose hydrolysis by fungi and termites. The wood samples were exposed to brown-rot fungi; Coniophora puteana and Poria placenta. Between the two fungi, the overall mass lost due to fungal degradation was lower for treated (MgF2 and CaF2) wood samples exposed to Coniophora puteana. Thus, the metal fluoride nanoparticles impregnated in the wood samples were more efficient in reducing cellulose degradation from Coniophora puteana than from Poria placenta. However the mass loss in samples treated with MgF2 was similar to those treated with CaF2, irrespective of type of fungi. Therefore, it is likely that fungal degradation in treated samples was dependent on the biocidal action of fluorides rather than on the differences in chemical and physical properties of MgF2 and CaF2, respectively. Conversely, for termite exposure, wood samples treated with MgF2 had lower cellulose degradation compared to those treated with CaF2. A possible explanation for this difference in results could be fungi and termites use separate mechanisms for cellulose hydrolysis which will be further investigated. Future experiments include testing the leaching potential of MgF2 and CaF2 nanoparticles from wood. The results from the leaching experiment will test if metal fluoride nanoparticles can provide long-term and environmentally safe protection to wood. T2 - International Research Group (IRG48) Scientific Conference on Wood Protection CY - Ghent, Belgium DA - 04.06.2017 KW - Fluoride KW - Nanoparticles KW - Brown-rot fungi KW - Termites PY - 2017 AN - OPUS4-41019 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan A1 - Wohlleben, W. A1 - Mielke, Johannes A1 - Rauscher, H. T1 - Volume specific surface area (VSSA) by BET: concept and demonstration on industrial materials N2 - Volume specific surface area (VSSA) as measured by BET constituites a simple and reliable solution to (most) powders. Porous, coated, polydisperse/multimodal materials are to be treated with care, i.e. doubled by analysis with electron microscopy or more advanced BET analysis (e.g. t-plot)for each material in part. T2 - Final NanoDefine Outreach Event: Classification of nanomaterials according to the EU definition CY - Brüssel, Belgium DA - 19.09.2017 KW - VSSA KW - BET KW - Nanoparticles KW - Powder KW - Nanomaterial classfication PY - 2017 UR - http://www.nanodefine.eu/index.php/nanodefine-meetings/125-final-outreach-event-2017 AN - OPUS4-42509 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bertin, Annabelle A1 - Asadujjaman, Asad A1 - Ahmadi, Vahid T1 - Upper critical solution temperature (UCST)- type thermoresponsive polymers from acrylamide-based monomers N2 - UCST-type thermoresponsive polymers that phase separate from solution upon cooling present a tremendous potential not only in aqueous media where they can be used in drug delivery, diagnostic and microfluidic applications, but also in water/alcohol mixtures, where they can be used for instance in sensing systems for alcohol-soluble drugs. However, only a few thermoresponsive polymers have been reported that present an UCST in a relevant temperature range and “green” solvents such as water or ethanol. In this context, acrylamide-based monomers can be very useful building blocks for designing novel UCST-type polymers because of their hydrophilic nature (with the right side chain) and propensity to form hydrogen bonds. We want to present our latest results on the copolymer poly(acrylamide-co-acrylonitrile) (P(AAm-co-AN)) that present a UCST in water as well as on two homopolymers based on an acrylamide derivative of 2,6-diaminopyridine, namely poly(N-(6-aminopyridin-2-yl)acrylamide) (PNAPAAm) and poly(N-(6-acetamidopyridin-2-yl)acrylamide) (PNAcAPAAm) that show UCST-type thermoresponsiveness in water/alcohol mixtures. Our focus for P(AAm-co-AN)) is its aggregation behaviour above and below its phase transition temperature as the size of thermoresponsive polymeric systems is of prime importance for biomedical applications (as size dependent processes take place in the body) and is linked to the optical properties of a material that matter in materials science. In the case of PNAPAAm and PNAcAPAAm, we focused on the co-solvency/co-non solvency effect on the phase transition temperature in water/alcohol mixture. Indeed, polymers with UCST behavior below 60°C in water/alcohol mixtures are extremely promising for the preparation of “smart” materials for sensing. T2 - 31st Conference of the European Colloid and Interface Society (ECIS 2017) CY - Madrid, Spain DA - 03.09.2017 KW - Thermoresponsive polymers KW - UCST polymers KW - Acrylamide based polymers PY - 2017 AN - OPUS4-41902 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kästner, Claudia A1 - Thünemann, Andreas T1 - Tuning the catalytic activity of silver nanoparticles N2 - The use of silver nanoparticles in consumer related products has significantly increased over the last decade, especially due to their antimicrobial properties. Today they are used in a variety of products, which range from textiles to dietary supplements. Thus, investigations on nanoscale silver become increasingly important in many fields like biomedicine or catalysis. Unfortunately, the results of these studies are extremely diverse and do not lead to a consistent evaluation of the toxicity of silver nanoparticles. The main problem is the use of nonuniform and poorly characterized particles with broad size distributions. To overcome this problem we modified the known polyol process to synthesize ultra-small core-shell silver nanoparticles in a large scale. The particles are highly stable and show no aggregation for more than six months. Small-angle X-ray scattering analysis reveals a narrow size distribution of the silver cores with a mean radius of 3 nm and a distribution width of 0.6 nm. Dynamic light scattering provides a hydrodynamic radius of 10.0 nm and a PDI of 0.09. The stabilizing ligand PAA can be easily exchanged by biomolecules to modify the surface functionality. Replacements of PAA with glutathione and bovine serum albumin have been successfully performed. To demonstrate the broad applicability of our particles we performed catalysis experiments with the reduction of 4-nitrophenol as model reaction. The PAA-stabilized particles show a catalytic activity of (436 ± 24) L g-1 s-1, which is the highest reported in literature for silver nanoparticles. In contrast, GSH and BSA passivate the surface substantially resulting in lower catalytic activities. T2 - Australian Colloid and Interface Symposium 2017 CY - Coffs Harbour, New South Wales, Australia DA - 29.01.2017 KW - SAXS KW - Protein coating KW - Catalysis PY - 2017 AN - OPUS4-39203 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Abbas, Ioana M. A1 - Hoffmann, Holger A1 - Weller, Michael G. T1 - Troubleshooting for the clinical measurement of iron biomarkers using LC-MS/MS: Suppression of sample losses in autosampler vials N2 - We developed a rapid and robust HPLC-MS/MS (QqQ) method for the quantification of hepcidin-25, a promising new biomarker in iron metabolism, in human samples. The novelty of the method is the use of special HPLC vials to avoid adsorptive losses due to the basic character of the peptide that causes interaction with the silanol groups of the vial’s glass surface. Up to 90% decrease in the MS/MS signal was observed, when commercial HPLC vials were used, while vials treated with 3-(2-aminoethylamino)propylmethyldimethoxysilane or 1H,1H,2H,2H-perfluorooctyltriethoxysilane, leading to no losses in the range of physiological hepcidin-25 mean serum levels (10-20 µg/L). T2 - MSACL 2017 EU CY - Salzburg, Austria DA - 10.09.2017 KW - Peptide losses KW - Adsorption KW - Silanization PY - 2017 AN - OPUS4-44613 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rades, Steffi A1 - Ortel, Erik A1 - Wirth, Thomas A1 - Holzweber, Markus A1 - Pellegrino, F. A1 - Martra, G. A1 - Hodoroaba, Vasile-Dan T1 - Tracing fluorine at the surface and in the bulk of TiO2 nanoplatelets by means of SEM-EDX, AES and ToF-SIMS N2 - The synthesis of TiO2 nanoplatelets with fluorine-containing reactants is carried out using titanium (IV) butoxide as precursor and concentrated HF as shape controller, the final product requires a working up in order to eliminate or at least to reduce the amount of residual fluorides, which is realized here by well-defined thermal treatment of the samples. Bulk and surface sensitive methods namely scanning electron microscopy with energydispersive X-ray spectroscopy (SEM-EDX), Auger electron spectroscopy (AES) and time-of-flight secondary ion mass spectrometry (ToF-SIMS) have been applied to trace the presence of any fluorides in dependence on different information depths and measurement sensitivities of these methods. T2 - EMAS 2017 - 15th European Workshop on MODERN DEVELOPMENTS AND APPLICATIONS IN MICROBEAM ANALYSIS and IUMAS-7 Meeting CY - Konstanz, Germany DA - 07.05.2017 KW - Nanoparticles KW - Surface analysis KW - ToF-SIMS KW - AES KW - SEM-EDX PY - 2017 AN - OPUS4-40265 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Koegler, M. A1 - Paul, Andrea A1 - Pellicer-Alborch, K. A1 - Anane, E. A1 - Birkholz, M. A1 - Bunker, A. A1 - Viitala, T. A1 - Junne, S. A1 - Neubauer, P. T1 - Time-gated Raman spectroscopy and SERS as advanced technologies in bioprocess monitoring N2 - Raman spectroscopy is becoming a powerful process analytical technology (PAT) tool. Until now Raman technology has not shown its full potential in bioprocess on-line monitoring due to several technical challenges. Because of only small? interference from water molecules, Raman-spectroscopy is in contrast to IR spectroscopy able to follow changes of metabolite concentrations in dilute aqueous solutions. Results from common CCD-based process Raman-spectrometers reveal only barely identifiable peaks with a dominating (fluorescence) background. To solve this, Raman spectroscopy needs: (A) an enhancement to increase the limit of detection (LOD), and (B) a reliable method to distinguish the Raman signal from the sample-related auto-fluorescence. SERS (surface enhanced Raman spectroscopy) acts as an optical "nano-antenna"-effect. It causes a dipolar localized surface Plasmon resonance effect due to noble metallic nanoparticles or roughened metal and improves the limit of detection (LOD) significantly. Another new process-monitoring technique, which removes the fluorescence background in Raman-measurements is called time-gated Raman spectroscopy. It uses a picosecond pulsed Nd:YVO4-laser as emission source (exc= 532 nm) and a gated SPAD-array (Single Photon Avalanche Detector) detector instead of commonly used CCD (Charged Coupled Device)-detectors and CW (Continues Wave) laser emission. Time-Gate can measure the Raman-signal before the stronger fluorescence signal reaches the detector. In this study we utilized both SERS (Surface Enhanced Raman Spectroscopy) and time-gated Raman spectroscopy (TG-Raman) in combination on cell-free supernatant samples of an Escherichia coli cultivation with mineral salt media and a lactic acid bacteria fermentation with complex media. As a reference method for the estimation of amino acids and other metabolites, HPLC-RID and HPLC-FLD were used to evaluate the Raman-based detection. The quantitative evaluation of Raman data was performed by multivariate data analysis such as principal component analysis (PCA) and partial least squares regression (PLSR). For the first time, we can show that both qualitative and quantitative measurements are conducted successfully with both, SERS and time-gated Raman methods in industrially relevant media, so that a fast and reliable in situ or bypassed concentration measurement becomes feasible. T2 - 2. Photonics Finland, Optics and Photonics Days 2017 CY - Oulu, Finland DA - 29.05.2017 KW - Time-gate Raman KW - PAT KW - Chemometrics PY - 2017 UR - http://www.photonics.fi/event/opd17-optics-photonics-days-2017/ AN - OPUS4-41182 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kage, Daniel A1 - Hoffmann, Katrin A1 - Witkamp, M. A1 - Ameskamp, J. A1 - Göhde, W. A1 - Thiele, T. A1 - Schedler, U. A1 - Resch-Genger, Ute T1 - Time domain flow cytometry utilizing lifetime-encoded polymer microparticles N2 - Flow cytometry is a widely used method in biological research and medical diagnostics. Depending on the respective application, two opposing directions of development are currently of interest. On the one hand, there is a need for analyses of growing complexity employing more and more fluorescent labels and codes. On the other hand, cost-effective methods and portable, miniaturized, and robust instruments are desired. Commonly performed spectral multiplexing utilizing a color code suffers from several problems, such as the sensitivity of fluorescence intensity measurements to fluctuations in excitation light intensity and dye concentration and hence, photobleaching, dye leaking for certain encoding procedures, and spectral crosstalk, limiting the achievable number of detection channels. Moreover, it typically requires several costly excitation light sources. An innovative alternative can be lifetime multiplexing and the discrimination between different encoding fluorophores and carrier beads based on their fluorescence decay kinetics. In order to examine the potential of this approach, dye encoded beads (lifetime encoded surface chemistry) were prepared using several fluorophores from different dye classes and their suitability for lifetime discrimination in a flow was tested in conjunction with a custom designed flow cytometer equipped with a pulsed light source and a fast detector. In a first step, the spectroscopic properties of micrometer-sized dye-stained PMMA beads were studied by means of steady state and time-resolved photoluminescence measurements. For the performance of studies on the practical use of these microbeads in flow cytometry applications, a custom-built demonstrator model for a flow system was employed. Our results demonstrated that lifetime discrimination and simultaneous readout of a ligand fluorescence signal for analyte quantification with a set of dye-stained polymer microbeads at single wavelength excitation is feasible. These studies are expected to pave the road for new applications of fluorescence lifetime multiplexing within the framework of time-domain flow cytometry and bead-based assays. T2 - ANAKON 2017 CY - Tübingen, Germany DA - 03.04.2017 KW - Flow cytometry KW - Fluorescence KW - Life sciences KW - Lifetime encoding KW - Polymer particles PY - 2017 AN - OPUS4-39995 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan A1 - Rades, Steffi A1 - Oswald, F. A1 - Narbey, S. A1 - Radnik, Jörg T1 - Time dependent Analysis of Morphology, Elemental and Chemical Composition of CH3NH3PbI3/TiO2 Solar Cell Layered System N2 - The motivation of this work is to produce thin films perovskite solar cells with constant high light conversion efficiency over time. Loss of efficiency may be caused by structural and/or chemical alterations of the complex layered system. As these changes might take place either in the bulk and/or on the surface of the stratified material, analytical tools addressing both key issues are selected and combined. SEM/EDS combined with XPS were chosen as appropriate methodical approach to characterise perovskite laboratory cells in depth and complementary on top, before and after light exposure. The layered perovskite system investigated here is based on glass covered with fluorine doped tin oxide (FTO), followed by three porous thin films of TiO2, ZrO2 and a thick monolithic carbon. The TiO2 film is subdivided into a dense layer covered by a porous one constituted of nanoparticles with a truncated bipyramidal shape. This layered system serves as the matrix for the perovskite. After infiltration of perovskite solution and annealing, EDS spectral maps on cross-sections of the specimen have been measured. The distribution of relevant elements – Si, Sn, Ti, Zr and C – correlates conclusively with layers visible in the acquired SEM images. Lead and iodine are distributed throughout the porous layers C, ZrO2 and TiO2. Specimens were exposed to ambient daylight for 7 weeks. In a SEM micrograph taken of the cross-section of a sample after illumination, the glass substrate and all layers FTO, TiO2, ZrO2 as well as C are clearly identified. EDS data have been acquired under the same measurement conditions as before the illumination. It was found that several weeks of ambient daylight did not change significantly the qualitative elemental composition of lead and iodine throughout the solar cell system. It was confirmed with EDS that nanoparticles identified in high-resolution SEM micrographs contain mainly Pb and I, indicating these to be the perovskite crystals. However, a time-dependent compositional and chemical altering was observed with XPS for the near-surface region of the outermost ~10 nm after 2 months of illumination. T2 - EMAS 2017 - 15th European Workshop on MODERN DEVELOPMENTS AND APPLICATIONS IN MICROBEAM ANALYSIS and IUMAS-7 Meeting CY - Konstanz, Germany DA - 07.05.2017 KW - Perovskite KW - Layer analytics KW - SEM/EDX KW - XPS KW - Solar cells PY - 2017 AN - OPUS4-40253 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Beckmann, Jörg A1 - Spranger, Holger A1 - Bär, Sylke T1 - THz-TDS-SAFT for the detection of inherent discontinuities in dielectric materials N2 - X-ray computed tomography (CT) model holds only for THz-TDS reconstruction if minor refraction index differences between the inhomogeneities and the surrounding material matrix exist. A Time Domain SAFT algorithm has been developed to overcome the restrictions. THz time domain measurement on representative sample sets with inherent artefacts were performed to use them for the Image reconstructions. The results will be presented and compared with optical surface images of the used test objects to evaluate the SAFT algorithm in relation to the reconstruction quality. T2 - 42nd International Conference on Infrared, Millimeter and THz waves CY - Cancun, Mexico DA - 27.08.2017 KW - THz-time-domain spectroscopy KW - SAFT KW - Tomography PY - 2017 AN - OPUS4-42034 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mishurova, Tatiana A1 - Thiede, Tobias A1 - Cabeza, Sandra A1 - Bruno, Giovanni A1 - Kromm, Arne A1 - Nadammal, Naresh T1 - The influence of the support structure on residual stress and distortion in SLM Inconel 718 parts N2 - The effect of support structure and of removal from the base plate on the residual stress state in Selective Laser Melted IN718 parts was studied by means of synchrotron X-ray diffraction. The residual stresses in subsurface region of two elongated prisms in as-built condition and after the cutting from the base plate were determined. One sample was directly built on a base plate and another one on a support structure. Also, the distortion on the top surface due to stress release was measured by contact profilometry. High tensile residual stress values were found, with pronounced stress gradient along the hatching direction. In the sample on support stress redistribution took place after removal of the base plate, as opposed to simple stress relaxation for the sample without support. The sample on support structure showed larger distortion compared to sample without support. We conclude that the use of a support decreases stress values but stress relieving heat treatments are still needed. T2 - User Meeting HZB 2018 CY - Berlin, Germany DA - 14.12.2017 KW - Additive manufacturing KW - Selective laser melting KW - Residual stress KW - Synchrotron X-ray diffraction PY - 2017 AN - OPUS4-43460 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sobol, Oded A1 - Steiner, S. A1 - Albe, K. A1 - Froemling, T. A1 - Unger, Wolfgang T1 - The characterization of oxygen diffusion in (Na1/2Bi1/2)TiO3 piezo-ceramics by Time-of-Flight secondary ion mass spectrometry (ToF-SIMS) N2 - The ferroelectric ceramic NBT and its solid solutions with barium titanate (BT) are examples for the most promising lead free materials to substitute the dominant Pb(Zr,Ti)O3 (PZT). Lead based material should generally be disregarded due to environmental and health reasons. However, there is no class of lead-free piezoelectric materials that can replace PZT entirely. Not only the often inferior ferroelectric properties but also the lack of understanding of the defect chemistry of NBT is still a challenge for the replacement of lead containing piezo-ceramics. Just recently it could be shown by Li et al. that NBT obtains extraordinarily high oxygen ionic conductivity when doped with Mg as acceptor. It was actually expected that doping just leads to a hardening of the ferroelectric properties. However, it became clear that the known defect chemical behavior of PZT cannot be extrapolated to NBT materials. Hence, to gain information on general doping effects a better defect chemical investigation is needed. This is particularly important for the applications with high reliability demands to investigate possible degradation and fatigue mechanisms. In the present work Time-of-flight-secondary ion mass spectrometry (ToF-SIMS) was used in order to observe the influence of different acceptor dopants (Fe, Ni, Al) on the oxygen diffusion in NBT. ToF-SIMS holds the ability to gain a full elemental distribution in a sub-micron resolution and was therefore chosen to provide the essential information on the favorable diffusion paths of oxygen in NBT in dependence of the chosen doping element. 18O was used as a tracer for oxygen as its natural abundance is only 0.2%. The doped NBT samples have been annealed for 5 h at 500°C in a 0.2 bar 18O-tracer atmosphere to be able to detect oxygen ion diffusion. ToF-SIMS investigations were conducted on a ToF-SIMS IV (ION TOF GmbH, Münster, Germany) using a Bi+ primary ion beam (25KeV in collimated burst alignment mode with a beam diameter of ~150 nm) and a Cs+ sputter beam (3KeV). The results illustrate the different impact of dopants on the diffusion properties which is evidence for a highly non-linear dependence on dopant type and concentration. T2 - 21st International Conference on Secondary Ion Mass Spectrometry - SIMS21 CY - Krakow, Poland DA - 10.09.2017 KW - ToF-SIMS KW - NBT KW - Piezoceramics PY - 2017 UR - http://sims.confer.uj.edu.pl/boa_poster.php?id=93 AN - OPUS4-42911 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sobol, Oded A1 - Steiner, S. A1 - Albe, K. A1 - Froemling, T. A1 - Unger, Wolfgang T1 - The characterization of oxygen diffusion in (Na1/2Bi1/2)TiO3 piezo-ceramics by Time-of-Flight secondary ion mass spectrometry (ToF-SIMS) N2 - The ferroelectric ceramic NBT and its solid solutions with barium titanate (BT) are examples for the most promising lead free materials to substitute the dominant Pb(Zr,Ti)O3 (PZT). Lead based material should generally be disregarded due to environmental and health reasons. However, there is no class of lead-free piezoelectric materials that can replace PZT entirely. Not only the often inferior ferroelectric properties but also the lack of understanding of the defect chemistry of NBT is still a challenge for the replacement of lead containing piezo-ceramics. Just recently it could be shown by Li et al.[1] that NBT obtains extraordinarily high oxygen ionic conductivity when doped with Mg as acceptor. It was actually expected that doping just leads to a hardening of the ferroelectric properties. However, it became clear that the known defect chemical behavior of PZT cannot be extrapolated to NBT materials. Hence, to gain information on general doping effects a better defect chemical investigation is needed. This is particularly important for the applications with high reliability demands to investigate possible degradation and fatigue mechanisms. In the present work Time-of-flight-secondary ion mass spectrometry (ToF-SIMS) was used in order to observe the influence of different acceptor dopants (Fe, Ni, Al) on the oxygen diffusion in NBT. ToF-SIMS holds the ability to gain a full elemental distribution in a sub-micron resolution and was therefore chosen to provide the essential information on the favorable diffusion paths of oxygen in NBT in dependence of the chosen doping element. 18O was used as a tracer for oxygen as its natural abundance is only 0.2%. The doped NBT samples have been annealed for 5 h at 500°C in a 0.2 bar 18O-tracer atmosphere to be able to detect oxygen ion diffusion. ToF-SIMS investigations were conducted on a ToF-SIMS IV (ION TOF GmbH, Münster, Germany) using a Bi+ primary ion beam (25KeV in collimated burst alignment mode with a beam diameter of ~150 nm) and a Cs+ sputter beam (3KeV). The results illustrate the different impact of dopants on the diffusion properties which is evidence for a highly non-linear dependence on dopant type and concentration. 1) Li, M., et al., Nature Materials, 2014. 13(1): p. 31-35. T2 - 21st International Conference on Secondary Ion Mass Spectrometry - SIMS21 CY - Krakow, Poland DA - 10.09.2017 KW - NBT-Piezoceramics KW - ToF-SIMS PY - 2017 UR - http://sims.confer.uj.edu.pl/boa_poster.php?id=93 AN - OPUS4-42863 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Asadujjaman, Asad A1 - Wagner, Sabine A1 - Rurack, Knut A1 - Bertin, Annabelle T1 - Temperature switches “on” and “off” nanoparticle fluorescence in a core/shell/shell architecture N2 - Fluorescent nanoparticles that light “on/off” by applying external stimuli are of particular interest in the fields of sensing, diagnostics, photonics, protective coatings and microfluidics. The current challenge for these materials is for instance to combine fluorescence and its response to a stimulus such as temperature in a precise manner. Here we present such a system based on a core/shell/shell architecture consisting of a silica core with a fluorescent layer and a thermoresponsive shell. In this work the silica core nanoparticles were first coated with a fluorescent shell using surface initiated reversible addition-fragmentation chain transfer (RAFT) polymerization. The fluorescent nanoparticles were then completely engulfed by a switchable protective coating made of thermoresponsive poly(N-isopropylacrylamide). The fluorescence of the nanoparticles could be “switched on” at room temperature and “switched off” with increasing environmental temperature because of the presence of the thermoresponsive layer. Insights into this phenomenon will be given based on temperature dependent fluorescence measurements and dynamic light scattering. T2 - Makromolecular Konferenz CY - Freiburg, Germany DA - 15.02.2017 KW - Thermoresponsive polymers KW - Sensors KW - Core/Shell/Shell PY - 2017 AN - OPUS4-39230 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bertin, Annabelle A1 - Asadujjaman, Asad A1 - Kent, B. T1 - Temperature Sensitive Aggregation Behavior of Poly(Acrylamide-co-Acrylonitrile) in Water N2 - Thermoresponsive polymers have shown great potential in applications such as bioseparation, drug delivery and diagnostic. Only few thermoresponsive polymers that present an upper critical solution temperature (UCST), i.e. phase separate from solution upon cooling, in a relevant temperature range have been reported so far. Herein, a robust UCST-type copolymer of acrylamide (AAm) and acrylonitrile (AN) (poly(AAm-co-AN)) was prepared by reversible addition fragmentation chain transfer (RAFT) polymerization and its thermo-induced aggregation behavior in aqueous media was studied. We propose a model for the temperature-induced aggregation behaviour of UCST-type poly(AAm-co-AN) copolymer in aqueous solution on the basis of turbidity measurements, SLS, DLS, SANS and cryo-TEM. T2 - German Physical Society - Spring Meeting 2017 CY - Dresden, Germany DA - 19.03.2017 KW - Thermoresponsive polymers KW - UCST-type copolymer PY - 2017 AN - OPUS4-39465 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Detjens, Marc A1 - Hübert, Thomas A1 - Tiebe, Carlo A1 - Banach, Ulrich T1 - Temperature influence on coulometric trace humidity measurement N2 - Coulometric sensors were tested in humidified synthetic air at various gas temperatures. Generated frost point temperature in the gas ranged from -30 °C to -60 °C and were measured by coulometric sensors and in addition by a calibrated dew point hygrometer. The gas temperatures, which were measured by a calibrated Pt100 sensor, were set to -20 °C, 0 °C, 23 °C, 40 °C, 50 °C, and 60 °C during the experiments. Empiric nonlinear functions were calculated between the humidity and the sensor signal. In comparison to the measured signals at 23 °C, the sensor signals were lower at the other gas temperatures. Measurements at 60 °C showed indistinct results due to a great signal noise. The response behavior of the sensors was similar at 23 °C, 40 °C and 50 °C. In contrast to that, the sensors reacted slowly at a gas temperature of -20 °C and 0 °C. In summary, with coulometric sensors it was possible to measure continuously trace humidity with an expanded uncertainty below 2 K. T2 - IEEE Sensors 2017 CY - Glasgow, Scotland, UK DA - 30.10.2017 KW - Coulometric sensors KW - Trace humidity measurement KW - Temperature influence KW - Chemical reaction KW - Response behavior PY - 2017 AN - OPUS4-42756 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kulow, Anicó A1 - de Oliveira Guilherme Buzanich, Ana A1 - Radtke, Martin A1 - Reinholz, Uwe A1 - Riesemeier, Heinrich A1 - Streli, Christina T1 - S²XAFS: A new experimental setup for time-resolved X-ray absorption fine structure spectroscopy in a 'single shot' N2 - A newly developed EXAFS setup is presented. It enables both time- and spatially resolved EXAFS information simul-taneously in a single shot. First tests of this setup were performed at the BAMline @ BESSY-II (Berlin, Germany). A primary broadband beam generated by a filter/X-ray-mirror combination passes through the sample and is then dif-fracted by a convexly bent Si (111) crystal. This results in a divergent beam which is collected by an area sensitive detector, in a θ-2θ-geometry. Beside tests on metal foils the first in situ measurements were successfully carried out. The case-study deals with research on Zn-based Metal-Organic-Frameworks (MOF) with medical/pharmaceutical applications. This hot topic of MOFs research concerns drug delivery and encapsulation of therapeutically relevant proteins (e.g. BSA). Questions like how does a certain protein influences the coordination of Zn can be answered with this new setup. We were able to track structural changes within a 1s time resolution. T2 - CSI XL CY - Pisa, Italy DA - 11.06.2017 KW - XAFS KW - Time-resolved KW - Dispersive KW - In-situ measurement PY - 2017 AN - OPUS4-41052 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Dhamo, Lorena A1 - Würth, Christian A1 - Raevskaya, A. E. A1 - Stroyuk, O. L. A1 - Gaponik, N. A1 - Eychmüller, A. A1 - Resch-Genger, Ute T1 - Syntheses and characterization of 2-4nm AgInS2/ZnS quantum dots N2 - Ternary semiconductors Quantum Dots (t-QDs) like AgInS (AIS) QDs are interesting alternatives to Cd-based QDs for applications as optical active materials in light-emitting diodes (LEDs), solar concentrators and solar cells as well as as biodiagnostic tools, respectively. AIS QDs exhibit broad photoluminescence (PL) spectra in the visible and near infrared, which are tunable by size and chemical composition (ratio of components or doping). In order to enhance the PL quantum yield (PL QY or Fpl) and prevent material deterioration and oxidation, these QDs are covered by ZnS shell. Here we show a spectroscopic study of differently colored AIS QDs synthesized in water, evaluating their PL properties, their PL QY and their PL decay. The simple aqueous synthesis that avoids further ligand exchange steps for bioanalytical applications, the tunable emission color, the high PL QY, the high absorption coefficients and the long lifetime make these t-QDs promising Cd-free materials as biodiagnostic tools or optical active materials. T2 - Summer School "EXCITING NANOSTRUCTURES" CY - Bad Honnef, Germany DA - 17.07.2017 KW - Semiconductor KW - Nanoparticle KW - Quantum dot KW - Flourescence KW - Synthesis KW - Spectral multiplexing KW - Ternary quantum dot PY - 2017 AN - OPUS4-41173 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Asadujjaman, Asad A1 - Wagner, Sabine A1 - Rurack, Knut A1 - Bertin, Annabelle T1 - Switching of nanoparticles' fluorescence between "ON" and "OFF" states by a thermoresponsive polymeric layer N2 - Fluorescent nanoparticles that “light up”/”dim down” by applying external stimuli are of particular interest in the fields of sensing, diagnostics, photonics, protective coatings and microfluidics. The current challenge for these materials is to combine for instance fluorescence and its response to a stimulus such as temperature in a precise manner. Here we present such a system based on a core/shell/shell architecture consisting of a silica core with a fluorescent layer and a thermoresponsive shell. The silica core nanoparticles were first coated with a fluorescent shell using surface initiated reversible addition-fragmentation chain transfer (RAFT) polymerization. The fluorescent nanoparticles were then completely engulfed by a switchable protective coating made of thermoresponsive poly(N-isopropylacrylamide). The fluorescence of the nanoparticles could be “switched on” at room temperature and “switched off” with increasing environmental temperature because of the presence of the thermoresponsive layer. Insights into this phenomenon will be given based on temperature dependent fluorescence measurements and dynamic light scattering. T2 - Hybrid materials Konferenz CY - Lisbon, Portugal DA - 06.03.2017 KW - Core/shell/shell KW - Thermoresponsive polymers KW - Fluorescence materials PY - 2017 AN - OPUS4-39581 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rades, Steffi A1 - Ortel, Erik A1 - Wirth, Thomas A1 - García, Sarai A1 - Gómez, Estibaliz A1 - Blanco, Miren A1 - Alberto, Gabriele A1 - Martra, Gianmario A1 - Hodoroaba, Vasile-Dan T1 - Surface and in-depth analysis of functionalization of TiO2 nanoparticles for self-assembly in multiple layers N2 - Parameters of TiO2 coatings can greatly influence their final performance in largescale applications such as photocatalytic measurements, orthopedic and/or dental prostheses, cell cultures, and dye-sensitized solar cells. From different film deposition procedures, self-assembly of TiO2 NPs in multiple layers was selected for systematic characterization. EDX, AES and ToF-SIMS analysis have been carried out in order to evaluate the functionalization of several types of TiO2 NPs differing in size, shape and surface area. T2 - EMAS 2017 - 15th European Workshop on MODERN DEVELOPMENTS AND APPLICATIONS IN MICROBEAM ANALYSIS and IUMAS-7 Meeting CY - Constance, Germany DA - 07.05.2017 KW - Functionalization KW - Surface analysis KW - Nanoparticles KW - Thin films PY - 2017 AN - OPUS4-40266 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Traub, Heike A1 - Büchner, T. A1 - Drescher, D. A1 - Kneipp, J. A1 - Jakubowski, Norbert T1 - Studying cellular uptake of metal-containing nanoparticles by LA-ICP-MS N2 - Nanoparticles (NPs) have potential applications in medical diagnostics, imaging, drug delivery and other kinds of therapy. Furthermore, studies concerning nanoparticle uptake by cells are important for risk assessment. Size, shape and surface modification of the NPs determine the uptake rate and pathway into the cells, and therefore impact specific cell components and processes. Understanding the different uptake mechanisms and involved processes require sub-cellular resolution to determine, for example, whether the nanoparticles are reaching the nucleus. Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) is an established quantitative multi-elemental analysis and mapping technique. However, sub-cellular imaging has traditionally been challenging to achieve due to a lack of sensitivity at small laser spots. But now novel laser ablation systems with improved sensitivity and washout time allow imaging at high lateral resolution with spot sizes down to 1 µm. Here LA-ICP-MS was applied for the imaging of individual fibroblast cells to study the uptake and intracellular processing of metal-containing NPs. To indicate cell morphology the local distribution of naturally occurring elements in cells like P and Zn was measured, too. Our results show that LA-ICP-MS can be used to localise nanoparticle aggregates within cellular compartments. The studied NPs accumulate in the perinuclear region in the course of intracellular processing, but do not enter the cell nucleus. The uptake efficiency depends strongly on the physico-chemical properties of the nanostructures as well as on the incubation conditions like concentration and incubation time. The potential of LA-ICP-MS for analysis at single cell level will be demonstrated. T2 - Euroanalysis 2017 CY - Stockholm, Sweden DA - 28.08.2017 KW - Laser ablation KW - ICP-MS KW - Nanoparticle KW - Cell PY - 2017 AN - OPUS4-41883 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ramirez Caro, Alejandra A1 - Pauli, Jutta A1 - Artemeva, Elena A1 - Ermilov, Eugeny A1 - Crasselt, Claudia A1 - Stroh, Julia A1 - Mota Gasso, Berta A1 - Schmidt, Wolfram A1 - Resch-Genger, Ute T1 - Study of the hydration of superplasticizer-cement pastes with optical spectroscopy N2 - Chemical admixtures like superplasticizers or stabilizing agents are of ever increasing importance for modern concrete technology. Although such admixtures have meanwhile become common practice in many applications of concrete technology, the understanding of these highly complex systems is still limited and the relevant parameters, which predominantly control the interaction between the superplasticizer and the cement components, have not been identified yet. Optical methods have been successfully used for the analysis and monitoring of the interactions between a broad variety of nanoscale and molecular systems like nanoparticles of various chemical composition and different types of organic ligands or biomolecules. This encouraged us to assess the potential of these methods, and particularly reflectance and fluorescence measurements, for the study of the interactions that occur at the interface between particle or hydrate surfaces and the fluid phase at a very early stage of concrete formation. Special emphasis is dedicated to search for and identify differences between commonly used superplasticizers. Here, we focus on hydration effects using commercial comb shape polycarboxylate ethers (PCEs) with different charge densities, which are known to allow a very low water/cement ratio (w/c of 0.20 or less) while maintaining good workability. Based upon changes of the intensity of the reflectance and fluorescence signal and spectral effects of a dye, acting as optical reporter, a model for the interactions of dye, PCE molecules and cement nanoparticles in the very first phase of cement hydration is derived T2 - Gesellschaft Deutscher Chemiker-Analytische Chemie-Anakon 2017 CY - Tübingen, Germany DA - 03.04.2017 KW - Cement hydration KW - Optical spectroscopy KW - Superplasticizers PY - 2017 AN - OPUS4-39882 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Steger, Simon A1 - Hahn, Oliver T1 - Study of modern reverse paintings on glass with Raman Spectroscopy N2 - The technique of painting on the reverse side of glass was rediscovered by artists in the 20th and gained especially in Germany strong popularity. Compared to other techniques (e.g. canvas, mural paintings), the paint layers are applied in reverse succession. The paintings are viewed in reflected light, thus revealing an impressive gloss, luminosity, and depth of color. Reverse glass paintings comprise a non-porous glass substrate and multi-layered paint system, hence delamination of the paint layer is the most common disfigurement. Scientific investigation of the material provides important information for appropriate conservation concepts. Transport of the precious and fragile objects to the lab is often not feasible. Therefore, in-situ, non-invasive analysis is necessary to analyze colorants and binders. Based on modern reverse glass paintings, we clarify advantages and limitations of mobile Raman spectroscopy for the identification of colorants. We compare the use of mobile Raman spectroscopy with other methods of our mobile lab (i.e. X-ray fluorescence (XRF), Diffuse Reflectance Fourier Transform Infrared Spectroscopy (DRIFTS). T2 - 9th International Congress on the Application of Raman Spectroscopy in Art and Archaeology (RAA2017) CY - Évora, Portugal DA - 24.10.2017 KW - Reverse glass painting KW - Raman spectroscopy KW - Synthetic organic pigments PY - 2017 AN - OPUS4-42825 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kormunda, M. A1 - Hertwig, Andreas A1 - Beck, Uwe A1 - Fischer, Daniel T1 - Study of magnetron sputtering deposited ultrathin FeSnOx films for Surface Plasmon Resonance sensors towards gas sensing applications N2 - In this study, series of coatings with the goal of sensitising gold SPR sensors towards CO, NH4, etc. were prepared. To better understand the mechanism behind the sensitizing effect and to enable the targeted production of optimized layers, the wide range of coatings was studied by multiple methods from spectroscopic ellipsometry for their dielectric function, by XPS for chemical composition and SEM, TEM to determine their microscopic structure. The coatings were deposited at inert Ar gas and reactive Ar/O2 gas mixture by RF magnetron sputtering or DC pulsed magnetron sputtering with settable RF bias on the substrates. The plasma processes were monitors by mass spectrometry. The metal oxide coatings in SPR sensors have to be prepared reproducible with thickness about 5 nm therefore lower deposition rate conditions were advantages. T2 - THE 14th INTERNATIONAL SYMPOSIUM ON SPUTTERING & PLASMA PROCESSES,ISSP 2017 CY - Kanazawa, Japan DA - 05.07.2017 KW - Surface Plasmon Resonance KW - Magnetron sputtering KW - FeSnOx PY - 2017 AN - OPUS4-43536 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Koch, Claudia T1 - Standardization in emerging technologies - The case of additive manufacturing N2 - Additive Manufacturing provides an important enabling technology for the digital transformation of the economy. As an emerging technology it has seen a remarkable development over the last three decades. Nevertheless, it is far from a broad adoption with several barriers to overcome yet. One of the major challenges is the lack of standards. The critical role of standardization for innovation is generally recognized, still the topic too often has been neglected in strategic roadmapping exercises for emerging technologies. Too little is known about the complex dynamics and interrelations of standardization and innovation. The anticipation of standardization needs and the timely and efficient implementation of standards is challenging. This paper aims at contributing to a better understanding of the role that standards play in the multi-dimensional system of innovation. It analyzes the trajectories of innovation in Additive Manufacturing in a systematic and holistic way, focusing on standardization activities with regard to coordination, stakeholders involved, the timing and types of standards developed. Putting standardization in context of the multi-dimensional innovation system of Additive Manufacturing the research shows where standards can support the diffusion of an emerging technology. T2 - ITU Kaleidoscope Academic Conference: Challenges for a data-driven society CY - Nanjing, China DA - 27.11.2017 KW - 3D-Printing KW - Additive Manufacturing KW - Emerging technologies KW - Standardization KW - Standards KW - Technological innovation PY - 2017 AN - OPUS4-49082 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Abad Andrade, Carlos Enrique A1 - Florek, S. A1 - Becker-Ross, H. A1 - Huang, M.-D. A1 - Heinrich, Hans-Joachim A1 - Recknagel, Sebastian A1 - Vogl, Jochen A1 - Jakubowski, Norbert A1 - Panne, Ulrich T1 - Stable isotope amount ratio analysis by using high-resolution continuum source graphite furnace molecular absorption spectrometry N2 - Analysis of stable isotopes has been used as proof of provenance of mineral and biological samples, to estimate a contamination source and to determine geological processes. This kind of analysis needs high accuracy and precision for reliable conclusions. Currently, stable isotope analysis is dominated by mass spectrometric techniques that are time consuming and expensive. Here we present a fast and low cost alternative for isotope analysis of boron and magnesium: high-resolution continuum source graphite furnace molecular absorption spectrometry (HR-CS-GFMAS). Two stable isotope systems were evaluated separately: boron (10B:11B) and magnesium (24Mg:25Mg:26Mg). Their isotope amount ratios were estimated by monitoring their absorption spectra in-situ generated monohydrides. The molecular absorption spectrum of a XH molecule (X= B or Mg) with n isotopes would be a linear combination of n isotopologue spectra and the amount of each component (isotope) could be calculated by a multivariate regression (n= 2 and 3 for B and Mg respectively). For the analysis of boron certified reference materials (CRM), the band 1→1 for the electronic transition X1Σ+ → A1Π was measured around wavelength 437.1 nm. Since boron has a memory effect in graphite furnaces, a combination of 2 % (v/v) hydrogen gas in argon, 1 % trifluoromethane in argon, an acid solution of calcium chloride and mannitol as chemical modifiers were used during the BH vaporization at 2600 °C. Partial least square regression (PLS) for analysis of samples was applied. For this, a spectral library with different isotope ratios for PLS regression was created. Magnesium does not have memory effect. Therefore, only 2 % of hydrogen in argon as gas modifier during vaporization at 2500 °C was employed for analysis of magnesium CRM. Absorption spectra of MgH for the X2Σ→A2Π electronic transition (band 0→0) were recorded around wavelength 513.45 nm. A similar PLS procedure to the BH was applied. Results for B and Mg CRM are metrologically compatible with those reported by mass spectrometric methods. An accuracy of 0.08 ‰ for B and 0.1 ‰ Mg was obtained as the average deviation from the isotope CRM. Expanded uncertainties with a coverage factor of k = 2 range between 0.10 - 0.40 ‰. T2 - FACSS / SciX Conference 2017 CY - Reno, NV, USA DA - 08.10.2017 KW - Boron isotopes KW - High-Resolution Continuum Source Molecular Absorption Spectrometry KW - Graphite furnace KW - Isotopic shift KW - Hydride KW - Isotope ratio PY - 2017 AN - OPUS4-43350 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Griepentrog, Michael A1 - Reinstädt, Philipp A1 - Wollschläger, Nicole A1 - Zeigmeister, U. T1 - Size effects in electrodeposited Ni-coatings N2 - Polycrystalline Ni materials with grain sizes less than 100 nm (nano crystalline NC) and with grain sizes in the micrometer range (micro crystalline MC) in form of thin films have become important in many technologies due to their improved physical, chemical and mechanical properties. Usual the mechanical properties of such coatings are described by a Hardness value and a Young´s modulus measured by Instrumented Indentation Testing (IIT).The behavior of such coatings during indentation test is influenced by different size effects having their representative length scale – grain size, coating thickness, length that characterizes the depth dependence of the hardness (Indentation Size Effect ISE). To estimate realistic values for the intrinsic coating Hardness and Young´s modulus all size effects have to be considered. For this work thin nano crystalline Ni – coatings (average grain size 30 nm) with thickness from 1 μm to 5 μm were electrodeposited on brass substrates. Indentation tests in the continuous stiffness measurement (CSM) mode were provided on as prepared Ni – coatings using a G200 Nanoindentation system (Fa. Keysight). For estimation of the intrinsic hardness of the coatings from composite hardness values calculated from the measured force –displacement curve using the Oliver & Pharr method, the model described by Z.S. Ma [1] was used. It was found that the experimental data can be well described by the model. The fitted values for the intrinsic hardness and the fitting parameters will be given. The different values of intrinsic hardness and of length characterizing depth dependence of the hardness for different coating thickness are discussed as results of changes in the coating structure because of changes in deposition parameters. [1] Z.S. Ma, Y.C. Zhou, S.G. Long, C. Lu: On the intrinsic hardness of a metallic film/substrate system: Indentation size and substrate effects. International Journal of Plasticity 34 (2012) 1-11. This work is supported by European Metrology Program for Innovation and Research (EMPIR) (JRP 14IND03 Strength – ABLE) T2 - Conference: Nanomechanical Testing in Materials Research and Development CY - Dubrovnik, Croatia DA - 01.10.2017 KW - Size effect KW - Substrate effect KW - Electrodeposited Ni - coatings KW - Instrumented indentation testing PY - 2017 AN - OPUS4-42664 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Keller, Julia A1 - Lörchner, Dominique A1 - Koch, Matthias T1 - Simulating biotransformation reactions of citrinin by electrochemistry/mass spectrometry N2 - Mycotoxins can be found worldwide in food and feed and cause a variety of mold-related health risks which makes it necessary to further examine their metabolic fate in human and other mammals. Beside standard in vitro assays with liver cell preparations an increasing interest in new simulation methods are playing a growing role. The online coupling of electrochemistry with mass spectrometry (EC/MS) is one of these novel techniques, successfully applied in pharmacological and drug research for several years now. The primary objective of this study was to investigate the capability of EC/MS to elucidate metabolic pathways of the mycotoxin citrinin as relevant food contaminant. For this purpose, a coulometric flow through cell equipped with a glassy carbon working electrode was used by applying a ramped potential between 0 and 2 V vs Pd/H2. The electrochemically generated oxidation products analyzed by EC/MS were compared to those obtained from in vitro assays. To receive a comprehensive assessment of EC/MS other non-microsomal oxidation techniques such as Fenton-like reaction and UV irradiation were applied. Several hydroxylated derivatives of citrinin were generated by EC/MS and Fenton-like reaction which are similar to microsomal biotransformation products. These data show that EC/MS is a versatile tool that can be easily applied in mycotoxin research to support metabolic investigations of known and unknown mycotoxins. T2 - ANAKON CY - Tübingen, Deutschland DA - 03.04.2017 KW - Electrochemistry KW - Citrinin KW - Mass spectrometry PY - 2017 AN - OPUS4-39765 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Lauer, Franziska A1 - Seifert, Stephan A1 - Kneipp, Janina A1 - Weidner, Steffen T1 - Simplifying the preparation of pollen samples for MALDI-TOF MS classification N2 - Matrix-assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF MS) is a well-implemented analytical technique for the investigation of complex biological samples. In MS, the sample preparation strategy is decisive for the success of the measurements. Here, sample preparation processes and target materials for the investigation of different pollen grains are compared. A reduced and optimized sample preparation process prior to MALDI-TOF measurement is presented using conductive carbon tape as target. The application of conductive tape yields in enhanced absolute signal intensities and mass spectral pattern information, which leads to a clear separation in subsequent pattern analysis T2 - 11. Interdisziplinäres Doktorandenseminar - GdCH Arbeitskreis Prozessanalytik CY - BAM Adlershof, Berlin, Germany DA - 12.03.2017 KW - Sample pretreatment KW - Conductive carbon tape KW - MALDI-TOF MS KW - PCA KW - Pollen PY - 2017 AN - OPUS4-39439 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kern, Simon A1 - Guhl, Svetlana A1 - Wander, Lukas A1 - Meyer, Klas A1 - Maiwald, Michael T1 - Simple calibration concept of an online NMR module demonstrated in a modularised production plant N2 - Monitoring specific information (such as physico-chemical properties, chemical re-actions, etc.) is the key to chemical process control. Within the CONSENS Project, the challenge to adapt a commercially available benchtop NMR spectrometer to the full requirements of an automated chemical production environment was tack-led. The developed online NMR module was provided in an explosion proof housing and involves a compact 43.5 MHz NMR spectrometer together with an acquisition unit, a programmable logic controller for automated triggering, flow con-trol, as well as data communication. First results of an aromatic coupling reaction in lab scale showed a general feasibil-ity according to the signal information in the acquired NMR spectra even though with a considerable overlap. Due to the comparatively low field strength of the NMR spectrometer multivariate methods had to be considered for the prediction of con-centration profiles based on spectral data. Typically, for industrial application of those methods, e.g. Partial Least Squares Regression (PLS-R) as well as Indirect Hard Modeling, large amount of calibration data is demanded, which must be ac-quired in time consuming lab-scale experiments and offline analytics. When it comes to changes in raw materials (e.g., varying functional groups, additional stabi-lizing agents) calibration experiments and data evaluation models are developed again. Here we present an approach of automated data analysis tools for low field NMR spectra with minimal calibration effort. The algorithms are based on Indirect Hard Modeling, whereby each component in each mixture spectra can be rep-resented by several flexible peak functions (pure component models). This means, that only pure component NMR spectra are needed to generate a first evaluation model. The flexibility of peak functions in the spectral model can be adjusted via constraints of peak parameters. The area of any pure component model can either be converted to concentrations based on a one-point calibration on raw material concentration or even neat solvent signals. In several cases it has been shown, the IHM works almost independently of the matrix of the real samples. Such a calibration can be repeated daily in the beginning of each process run with minimal time effort. Moreover, additional pure components can be added to the model or even substitut-ed while keeping the previously adjusted peak function constraints. The proposed method exhibited good agreement of resulting concentration data from low field NMR spectra, when compared to an online high field NMR spectrometer as refer-ence instrument. T2 - 13. Kolloquium des Arbeitskreises Prozessanalytik der DECHEMA und der GDCh-Fachgruppe Analytische Chemie CY - Esslingen, Germany DA - 20.11.2017 KW - Online monitoring KW - Online NMR spectroscopy KW - Modularised production PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-430999 AN - OPUS4-43099 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radunz, Sebastian A1 - Tschiche, Harald Rune A1 - Moldenhauer, Daniel A1 - Resch-Genger, Ute T1 - Simple approach to pKa tunable BOIDPY-based fluorescent pH sensors N2 - Successfull synthesis of pH-responsive fluorescence ON/OFF sensor dyes with tunable pK values covering the pH range of 5 to 12 Immobilizing of multiple dyes with different pK values into a polymer host matrix provides a pH sensor with a dynamic range. T2 - First European/ 10th German BioSensor Symposium CY - Potsdam, Germany DA - 20.03.2017 KW - Fluorescence KW - Sensing KW - pH PY - 2017 AN - OPUS4-39683 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schmidt, R. A1 - Hodoroaba, Vasile-Dan T1 - SEM or TEM for the characterization of nanoparticles? N2 - Scanning Electron Microscopy (SEM) or Transmission Electron Microscopy (TEM) ? This is a question, nowadays discussed in EM labs of research and industry involved in the characterization and metrology of nanoparticles. The Scanning principle is adapted to TEM, the Transmission mode is adapted to Ultra High Resolution SEM. Can modern SEM replace TEM, reach atomic resolution even without Cs corrector or nm lateral resolution for energydispersive X-ray spectroscopy (EDX)? Due to the development of a New Cold Field Emission (NCFE) electron source Hitachi SEMs SU9000 and SU8200 can deliver routinely sub-nm image resolution and EDX mappings at very high count rates and a lateral EDX resolution of a few nm. A TiO2 sample provided by BAM was analysed at 30kV using low kV STEM – simultaneously with the Through-the-lens (TTL) SE detector, the Bright Field transmitted and Dark Field transmitted signals. By this method a pixel precise information of the particles surface using SE, its chemical nature using DF-STEM and its crystalline structure using Bright Field signal is given in one 40sec scan. The advantage of this observation mode compared to Ultra Low Voltage imaging is outlined. T2 - Microscopy Conference 2017 CY - Lausanne, Switzerland DA - 21.08.2017 KW - SEM KW - TEM KW - Nanoparticles PY - 2017 UR - http://www.mc2017.ch/ AN - OPUS4-43890 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Torge, Manfred A1 - Feldmann, Ines A1 - Tagle, R. T1 - SEM and Micro-XRF analysis to investigate stained glass windows N2 - Several restoration projects of stained-glass windows have been performed in Poland since 2010.Chemical analysis of glass samples was performed with SEM/EDX on a FEI ESEM-XL 30, (EDX-EDAX) and with Micro-XRF (M4 Tornado, Bruker).The chemical composition of medieval glass samples and of glass samples of the 19th Century have been determined. T2 - Technart2017 CY - Bilbao, Spain DA - 02.05.2017 KW - SEM KW - Micro-XRF KW - Glass composition PY - 2017 AN - OPUS4-40435 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zavoiura, Oleksandr A1 - Resch-Genger, Ute A1 - Seitz, O. T1 - RNA detection by FRET systems based on peptide nucleic acid-QD conjugates N2 - Today, 40 % of the world’s population live in areas with a significant risk of dengue infection. Early and reliable diagnosis of dengue virus (DENV) is essential to provide the patients with the required medical care and prevent spreading of the disease. Conventional methods for DENV diagnosis like PCR and virus isolation can be used in laboratory settings, yet are difficult to implement in point-of-care diagnostics, requiring simple, selective, fast, and sensitive detection schemes. We present here a novel approach for the detection of DENV, via its RNA, with optical read-out that relies on RNA-catalyzed fluorophore transfer onto a semiconductor quantum dot (QD) and Förster resonance energy transfer (FRET). For this RNA assay, peptide nucleic acid (PNA) oligomers were used as highly specific capture and reporter probes. PNA exhibits remarkable affinity towards RNA as well as extremely high chemical and enzymatic stability. The capture probe, which is immobilized on a QD acting as FRET donor, bears a nucleophile at the N-terminus and the reporter probe is modified with an organic dye acting as FRET acceptor. The presence of DENV genomic RNA in the sample triggers a transfer of the dye onto the QD, signaled by FRET between the QD and the dye. A unique advantage of this system is the ability of one RNA molecule to trigger multiple transfer reactions, thereby amplifying the fluorescence signal. This assay together with the exceptional brightness of QDs and outstanding hybridization properties of PNA allows for highly specific and sensitive detection of DENV RNA in the sub-nM range. T2 - MAF 2017 CY - Brügge, Belgium DA - 10.09.2017 KW - QD KW - RNA detection KW - PNA KW - Click chemistry PY - 2017 AN - OPUS4-43230 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bartholmai, Matthias A1 - Johann, Sergej A1 - Strangfeld, Christoph A1 - Müller, Maximilian A1 - Mieller, Björn T1 - RFID sensor systems embedded in concrete – validation experiments for long-term monitoring N2 - Structural Health Monitoring (SHM) is an important part of buildings surveillance and maintenance to detect material failure as early as possible and to contribute in protection of structures and their users. The implementation of Radio Frequency Identification (RFID) sensor systems without cable connection and battery into building components offers innovative possibilities to enable long-term in-situ SHM of addressed structures, bridges. The objectives of the presented study are complete embedding of RFID sensors systems in concrete, full passive communication with the systems, at best for the whole life span of structures. One challenge for this task is the highly alkaline environment in concrete, which requires non-degrading and robust encapsulation. Further Requirements are passive communication and energy supply, appropriate antenna design, placement and fixation in concrete, and the selection and implementation of sensors and connections. The concept is to develop and optimize a simple and robust system, which meets the requirements, as well as comprehensive validation in concrete specimen and real world applications. Two different systems were developed (HF and UHF RFID, respectively). First tasks were the implementation of analog sensors using the superposition principle for the signal adaption. Investigation of suitable materials for robust encapsulation and sensor protection against basic environments. Four materials were investigated in pH 13 solution for 14 days - 3D-Printer-Polymer was completely resolved - PVC has no noticeable decrease in weight - (VitaPro) glass filter for the sensor protector, has weight loss 2.7 % - The epoxy resin has increased by 1.8 % due to moisture expansion Different concrete samples were prepared for the validation of the systems. RFID sensors were embedded in different integration depths. Investigate the energy- and data transfer through concrete, also with varying moisture content. Additionally, signal strength data was used to optimize and validate the antenna characteristics in concrete. Next steps are to guarantee a sufficient energy supply for UHF RFID systems embedded in different concrete mixtures and further embedding the HF and UHF RFID systems in real bridges and buildings to validate the long term monitoring. T2 - DGZfP-Jahrestagung 2017 CY - Koblenz, Germany DA - 22.05.2017 KW - RFID sensors KW - Long-term requirements KW - Structural health monitoring KW - Passive RFID KW - Sensor requirements KW - Sensors in concrete KW - Smart structures PY - 2017 AN - OPUS4-40348 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wilke, Olaf A1 - Horn, Wolfgang A1 - Mull, B. A1 - Richter, Matthias A1 - Brödner, Doris A1 - Mölders, N. A1 - Renner, M. T1 - Reproducibly emitting reference material for quality assurance/quality control of emission test chamber measurements N2 - Volatile Organic Compounds (VOC) are ubiquitous in the indoor air, since they emit from materials used indoors. Investigations of these materials are mostly carried out in test chambers under controlled climatic conditions. Quality control of these test chamber measurements is important but there is a lack of commercially available homogenous reference materials as required for round robin tests or quality assurance of laboratories. The approach of the present study is the impregnation of a supporting material with VOC, which are reproducibly released in measurable chamber air concentrations under standardised test conditions. A polymer made of Thermoplastic Polyurethane (TPU) was chosen as carrier material. It was impregnated with the VOC trimethyl pentanediol isobutyrat (texanol). T2 - Healthy Buildings 2017 Europe CY - Lublin, Poland DA - 02.07.2017 KW - Emissions testing KW - Volatile organic compounds KW - Polymeric material KW - CO2 assisted impregnation PY - 2017 AN - OPUS4-42351 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hupatz, H. A1 - Schröder, H. V. A1 - Heinrich, Thomas A1 - Schalley, C.A. A1 - Unger, Wolfgang T1 - Redox-Switchable Rotaxanes on Surfaces N2 - Nature has created molecular machines which can perform a variety of different tasks. They exhibit defined operational pathways and order, resulting in directed macroscopic effects. Within the last decades researchers have been developing numerous artificial molecular machines which are so far mostly operating in solution. However, this represents a major obstacle for the generation of a macroscopic output, due to the random orientation of molecules in solution. As a general approach to this problem, interfaces have been used to generate ordered arrays of functional molecules. Recently, we developed a new class of redox-switchable crown ether/ammonium-based [2]- and [3]rotaxanes which incorporate redox-active tetrathiafulvalene and naphthalene diimide units in their wheels resulting in emergent optoelectronic properties. Electrochemical stimuli influence the interactions between the two macrocycles of [3]rotaxanes and induce conformational changes. In a proof-of-principle study [2]pseudorotaxanes were deposited on gold surfaces by “click”-reaction to azide-terminated self-assembled monolayers to generate ordered arrays of redox-active rotaxanes on-surface. X-ray photoelectron spectroscopy (XPS) confirms the successful deposition of a rotaxane monolayer, though angle-resolved near-edge X-ray absorption fine structure spectroscopy (NEXAFS) exhibits poor order of the rotaxanes. Following, new terpyridine-stoppered rotaxanes will be synthesised opening a pathway for the deposition of [2]- and [3]rotaxanes in a layer-by-layer metal-mediated self-assembly procedure. This approach would allow for a programmed sequence of different rotaxanes in multilayers. Electrochemical on-surface switching will be investigated by angle-resolved NEXAFS spectroscopy, XPS, cyclic voltammetry and UV/Vis spectroscopy. A more detailed understanding of the electron-transfer between the surface and the different rotaxane layers as well as of the on-surface switching could give rise to potential applications like optoelectric data-storage devices or potential-driven molecular motors. T2 - GDCh-Wissenschaftsforum Chemie CY - Berlin, Germany DA - 10.09.2017 KW - NEXAFS KW - Rotaxane KW - XPS KW - Surface characterization PY - 2017 AN - OPUS4-42848 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Abad Andrade, Carlos Enrique A1 - Florek, S. A1 - Becker-Ross, H. A1 - Huang, M.-D. A1 - Heinrich, Hans-Joachim A1 - Recknagel, Sebastian A1 - Vogl, Jochen A1 - Jakubowski, Norbert A1 - Panne, Ulrich T1 - Redefining stable isotope analysis by molecular absorption spectrometry N2 - Variations in the isotope amount composition of some elements like lithium, boron, magnesium, calcium, copper and strontium have been used as proof of provenance of a sample and to describe geological processes. Routinely, isotope compositions are determinate by mass spectrometry; the working horse of the isotope analysis. However, mass spectrometric methods are expensive, time consuming and they require a high qualified analysist. Here an alternative faster and low cost optical method for isotope ratio determination is proposed: high-resolution continuum source molecular absorption spectrometry (HR-CS-MAS). Stable isotope amount composition of X= Li, B, Mg, Ca, Cu and Sr have been determined by monitoring the absorption spectrum of their monohydride (XH) in graphite furnace HR-CS-MAS. For example, for the three Mg isotopes (24Mg, 25Mg and 26Mg) band (0→0) for the electronic transition X1Σ+ → A1Π was evaluated around wavelength 513.4 nm (Fig. 1). Partial least square regression (PLS) for analysis of samples and reference materials were applied. For this, a spectral library with different isotopes ratios for PLS regression were built. Results are metrological compatible with those reported by mass spectrometric methods. T2 - Adlershofer Forschungsforum 2017 CY - Berlin, Germany DA - 10.11.2017 KW - Isotopes KW - High-Resolution Continuum Source Molecular Absorption Spectrometry KW - HR-CS-MAS KW - Isotopic shift KW - Metal hydrides KW - Graphite furnace KW - Molecular absorption PY - 2017 AN - OPUS4-43342 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wander, Lukas A1 - Kern, Simon A1 - Guhl, Svetlana A1 - Meyer, Klas A1 - Paul, Andrea A1 - Maiwald, Michael T1 - Reading Between the Lines – Automated Data Analysis for Low-Field NMR Spectra N2 - For reaction monitoring using NMR instruments, in particular, after acquisition of the FID the data needs to be corrected in real-time for common effects using automated methods. When it comes to NMR data evaluation under industrial process conditions, the shape of signals can change drastically due to nonlinear effects. However, the structural and quantitative information is still present but needs to be extracted by applying predictive models. Acquired raw spectra were processed with the following tools: · Phase correction using the Entropy minimization method · Baseline correction using a low-order Polynomial fit · Alignment (icoshift) Pure component models based on Pseudo-Voigt functions can be derived via peak fitting of measured pure components or by the use of spin calculations. T2 - Tackling the Future of Plant Operation - Jointly towards a Digital Process Industry CY - Barcelona, Spain DA - 13.12.2017 KW - Process Monitoring KW - Online NMR Spectroscopy KW - Indirect Hard Modeling KW - Spectral Modeling KW - Process Analytical Technology KW - CONSENS PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-434346 AN - OPUS4-43434 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kern, Simon A1 - Guhl, Svetlana A1 - Meyer, Klas A1 - Paul, Andrea A1 - Maiwald, Michael T1 - Reading between the lines – Automated data analysis for low field NMR spectra N2 - For reaction monitoring and process control using NMR instruments, in particular, after acquisition of the FID the data needs to be corrected in real-time for common effects using fast interfaces and automated methods. When it comes to NMR data evaluation under industrial process conditions, the shape of signals can change drastically due to nonlinear effects. Additionally, the multiplet structure becomes more dominant because of the comparably low-field strengths which results in overlapping of multiple signals. However, the structural and quantitative information is still present but needs to be extracted by applying predictive models. We present a range of approaches for the automated spectra analysis moving from statistical approach, (i.e., Partial Least Squares Regression) to physically motivated spectral models (i.e., Indirect Hard Modeling). By using the benefits of traditional qNMR experiments data analysis models can meet the demands of the PAT community (Process Analytical Technology) regarding low calibration effort/calibration free methods, fast adaptions for new reactants, or derivatives and robust automation schemes. T2 - Small Molecule NMR Conference (SMASH) CY - Baveno, Italy DA - 17.09.2017 KW - Online NMR spectroscopy KW - Data analysis KW - Chemometrics KW - Indirect hard modeling KW - Spectral modeling KW - Line prediction KW - CONSENS KW - SMASH PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-419498 UR - http://www.smashnmr.org/conference/program AN - OPUS4-41949 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Monks, Melissa-Jane A1 - Ritter, B. A1 - Würth, Christian A1 - Krahl, T. A1 - Kemnitz, E. A1 - Resch-Genger, Ute T1 - Rare earth strontium fluoride nanocrystals prepared via sol gel synthesis - Spectroscopic study of upconversion luminescence properties N2 - Obtaining high quality upconverting nanocrystals with only little crystal defects and hence, a high luminescence, affords a reliable synthesis route. Only this guarantees the reproducibility of the material and its spectroscopic properties required for future application. The fluorolytic sol-gel synthesis appears to be a convenient attempt, as this is a method with only few steps influencing the material properties, which can be well controlled. Also creating bright upconverting nanocrystals requires a profound understanding of the interplay of photophysical processes like multiphoton absorption, radiative and non-radiative pathways, and energy transfer in the material. Based on steady-state and time resolved luminescence measurements at different excitation power densities, the influence of the lanthanide doping ratio and synthesis parameters such as the annealing process on SrF2-nanocrystals obtained via the fluorolytic sol-gel synthesis was systematically studied. T2 - GDCh Wissenschaftsforum Chemie CY - Berlin, Germany DA - 10.09.2017 KW - Upconversion KW - Strontiumfluoride KW - Annealing study KW - Doping study KW - Luminescence PY - 2017 AN - OPUS4-42944 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Lauer, Franziska A1 - Diehn, Sabrina A1 - Seifert, Stephan A1 - Weidner, Steffen A1 - Kneipp, Janina T1 - Quantitative profiling of pollen grain mixtures by multivariate MALDI-TOF MSI N2 - Anemophilous plants produce pollen grains, which have to be monitored to provide a national information network for persons suffering from an allergy. The current conventional characterization and identification of pollen is performed by time-consuming microscopic examinations based on the genus-specific pollen shape and size. These examinations need proficient researchers, are not statistically validated, and additionally rely on relatively inaccurate observations of the pollination process. A variety of spectroscopic and spectrometric approaches have been proposed to develop a fast and reliable pollen identification using specific molecular information. Amongst them, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) was recently applied for the rapid investigation of such complex biological samples. The combination of obtained peak patterns from pollen mass spectra and multivariate statistic provide a powerful tool for identifying taxonomic relationships. A novel application based on the use of conductive carbon tape as MALDI target simplified the sample preparation and yielded enhanced the quality of the mass spectra. This led to a sufficient statistical analysis of the MS pattern, which is important when identify pollen grains in natural species mixtures. Based on this approach, promising results could be obtained by MALDI-TOF MS imaging (MSI) of artificial pollen mixtures followed by multivariate analysis. Of special interest is here the determination of the detection limit (number of pollen grains). Therefore, different pollen grain compositions were investigated for quantitative profiling of each individual pollen species within these complex mixtures. Our results can be used to improve the taxonomic differentiation and identification of pollen species and might be useful for the development of a routine method to identify pollen based on imaging mass spectrometry. T2 - Euroanalysis 2017 CY - Stockholm, Sweden DA - 28.08.2017 KW - MALDI-TOF MS KW - Imaging KW - Conductive carbon tape KW - Pollen KW - PCA PY - 2017 AN - OPUS4-42749 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Meyer, Klas A1 - Rademann, K. A1 - Maiwald, Michael T1 - Quantitative NMR spectroscopy for gas metrology – applications in liquefied petroleum gases N2 - The field of gas metrology is dealing with the development and improvement of gas analytical methods, as well as production of highly accurate primary reference standards. These are prepared at national metrological institutes (NMI) and represent the highest national level of traceability. Used for certification of secondary standards provided by specialty gas distributors these are very important for a high number of industrial sectors, which have to proof traceability due to legal or regulatory affairs, e.g., natural gas suppliers. Thus, improvements in the production and certification of these mixtures will have a direct influence on gas industry. Due to its direct correlation to the number of spins within active sample volume quantitative NMR spectroscopy (qNMR) is a highly promising method with absolute comparison abilities in complex systems. Especially for liquefied petroleum gases (LPG) it has the ability of studying the unmodified sample at same conditions like in the cylinder. In contrast to gas chromatography no preparation steps and no changes like evaporation of the sample are necessary. In this work we show the most recent results of our investigations on highly accurate LPG mixtures provided in constant-pressure piston cylinders. A dynamic pressure-resistant setup allows for sampling and circulation of the samples to ensure a homogeneous withdrawal from the cylinder. This is presented on examples of a commercial multicomponent LPG mixture obtained from specialty gas distributor, as well as two cylinders from the key comparison CCQM-K119 at highest level of international metrology. T2 - 5th Panic - Practical Applications of NMR in Industry Conferece CY - Hilton Head Island, SC 29928, USA DA - 20.02.2017 KW - Quantitative NMR spectroscopy KW - Gas metrology KW - Liquefied petroleum gas PY - 2017 AN - OPUS4-39234 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Müller, Anja A1 - Lippitz, Andreas A1 - Dörfel, I. A1 - Ritter, B. A1 - Kemnitz, E. A1 - Unger, Wolfgang T1 - Quantitative chemical depth-profiling by synchrotron-radiation-XPS: Investigation of SrF2-CaF2 core-shell nanoparticles N2 - SrF2 nanoparticles can be doped with trivalent earth metal ions such as Eu3+ and Tb3+ to generate materials exhibiting an intensive red or green fluorescence. A CaF2 shell increases intensity, fluorescence lifetie and quantum yield. The chemical composition of the nanoparticle core-shell region is investigated by XPS at different excitation energies corresponding to different information depths. T2 - Ninth Joint BER II and BESSY II User Meeting CY - Berlin, Germany DA - 13.12.2017 KW - Core-shell nanoparticles KW - Synchrotron-XPS KW - Depth-profiling PY - 2017 N1 - Geburtsname von Müller, Anja: Hermanns, A. - Birth name of Müller, Anja: Hermanns, A. AN - OPUS4-43464 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nirmalananthan-Budau, Nithiya A1 - Moser, Marko A1 - Geißler, Daniel A1 - Behnke, Thomas A1 - Resch-Genger, Ute T1 - Quantification of surface groups on core-shell polymer particles with optical spectroscopy N2 - Polymer nanoparticles (NPs) are of increasing importance for a wide range of applications in the material and life sciences. This includes their use as carriers for dye molecules and drugs, multichromophoric reporters for signal enhancement strategies in optical assays, targeted probes in bioimaging studies, and nanosensors.[1] Application-relevant properties of such NPs include their size, morphology, colloidal stability, and ease of surface functionalization with e.g., sensor molecules and targeting ligands. Many of these features as well as the interaction of NPs with their microenvironment are closely linked to the knowledge of the chemical nature and total number of surface groups as well as the number of surface functionalities accessible for subsequent coupling reactions of differently sized ligands, biomolecules or reporter molecules. This underlines the importance of simple, robust, reliable, and validated methods, which can be employed for the characterization of a broad variety of particle systems independent of their optical properties, i.e., scattering or the presence of encoding dyes.[2] In this respect, we assessed a variety of conventional and newly developed colorimetric or fluorometric labels for the optical surface group analysis, utilizing e.g., changes in intensity and/or color for signal generation.[3] Moreover, novel cleavable and multimodal reporters were developed which consist of a reactive group, a cleavable linker, and an optically active moiety, chosen to contain also heteroatoms for straightforward method validation by elemental analysis, ICP-OES, ICP-MS or NMR. In contrast to conventional labels measured bound at the particle surface, which can favor signal distortions by scattering and encoding dyes, cleavable reporters can be detected colorimetrically or fluorometrically both attached at the particle surface and after quantitative cleavage of the linker in the transparent supernatant after particle removal e.g., by centrifugation. Here, we present first results obtained for the optical quantification of carboxylic and amino groups on a series of self-made NPs with different types of labels and compare their potential and drawbacks for surface group analysis. T2 - Jubiläumskongress "Chemie bewegt" 2017 CY - Berlin, Germany DA - 10.09.2017 KW - Nanoparticle KW - Surface groups KW - Optical assays KW - Carboxy and amin PY - 2017 N1 - Geburtsname von Nirmalananthan-Budau, Nithiya: Nirmalananthan, N. - Birth name of Nirmalananthan-Budau, Nithiya: Nirmalananthan, N. AN - OPUS4-43212 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Guhl, Svetlana A1 - Meyer, Klas A1 - Kern, Simon A1 - Gräßer, Patrick A1 - Maiwald, Michael T1 - Process monitoring of an intensified continuous production unit with compact NMR spectroscopy N2 - Monitoring chemical reactions is the key to chemical process control. Today, mainly optical online methods are applied. NMR spectroscopy has a high potential for direct loop process control. Compact NMR instruments based on permanent magnets are robust and inexpensive analysers, which feature advantages like low maintenance, ease of use, and cryogen-free operation. Instruments for online NMR measurements equipped with a flow-through cell, possessing a good signal-to-noise-ratio, robustness, and meeting the requirements for integration into industrial plants (i.e., explosion safety and fully automated data analysis) are currently not available off the rack. Intensified continuous processes are in focus of current research. Flexible (modular) chemical plants can produce different products using the same equipment with short down-times between campaigns and quick introduction of new products to the market. In continuous flow processes online sensor data and tight closed-loop control of the product quality are mandatory. Otherwise there is a huge risk of producing large amounts of out-of-spec (OOS) products. This is addressed in the European Union’s Research Project CONSENS by development and integration of smart sensor modules for process monitoring and control within such modular plant setups. The presented NMR module is provided in an explosion proof housing with a module size of 57 x 57 x 85 cm and involves a compact 43.5 MHz NMR spectrometer together with an acquisition unit and a programmable logic controller for automated data preparation (phasing, baseline correction) and evaluation. Indirect Hard Modeling (IHM) was selected for data analysis of the low-field NMR spectra. A set-up for monitoring continuous reactions in a thermostated 1/8” tubular reactor using automated syringe pumps was used to validate the IHM models by using high-field NMR spectroscopy as analytical reference method. T2 - Workshop for Process Industry - Tackling the Future of Plant Operation CY - Frankfurt am Main, Germany DA - 25.01.2017 KW - Online NMR spectroscopy KW - Process analytical technology KW - Prozessanalytik KW - Process control KW - CONSENS PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-391386 AN - OPUS4-39138 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Guhl, Svetlana A1 - Kern, Simon A1 - Meyer, Klas A1 - Wander, Lukas A1 - Gräßer, Patrick A1 - Maiwald, Michael T1 - Process monitoring of an intensified continuous production unit with compact NMR spectroscopy N2 - Monitoring chemical reactions is the key to chemical process control. Today, mainly optical online methods are applied. NMR spectroscopy has a high potential for direct loop process control. Compact NMR instruments based on permanent magnets are robust and inexpensive analysers, which feature advantages like low maintenance, ease of use, and cryogen-free operation. Instruments for online NMR measurements equipped with a flow-through cell, possessing a good signal-to-noise-ratio, robustness, and meeting the requirements for integration into industrial plants (i.e., explosion safety and fully automated data analysis) are currently not available off the rack. Intensified continuous processes are in focus of current research. Flexible (modular) chemical plants can produce different products using the same equipment with short down-times between campaigns and quick introduction of new products to the market. In continuous flow processes online sensor data and tight closed-loop control of the product quality are mandatory. Otherwise there is a huge risk of producing large amounts of out-of-spec (OOS) products. This is addressed in the European Union’s Research Project CONSENS by development and integration of smart sensor modules for process monitoring and control within such modular plant setups. The presented NMR module is provided in an explosion proof housing with a module size of 57 x 57 x 85 cm and involves a compact 43.5 MHz NMR spectrometer together with an acquisition unit and a programmable logic controller for automated data preparation (phasing, baseline correction) and evaluation. Indirect Hard Modeling (IHM) was selected for data analysis of the low-field NMR spectra. A set-up for monitoring continuous reactions in a thermostated 1/8” tubular reactor using automated syringe pumps was used to validate the IHM models by using high-field NMR spectroscopy as analytical reference method. T2 - Quantitative NMR Methods for Reaction and Process Monitoring (NMRPM) CY - Kaiserslautern, Germany DA - 19.01.2017 KW - Online NMR spectroscopy PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-390117 AN - OPUS4-39011 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Weigert, Florian A1 - Guhrenz, C. A1 - Strelow, C. A1 - Gaponik, N. A1 - Eychmüller, A. A1 - Mews, A. A1 - Resch-Genger, Ute T1 - Probing the bright and dark fraction of core-shell CdSe nanocrystals with single particle spectroscopy N2 - "The optical properties of semiconductor nanocrystals (SCNC) are controlled by constituent material, particle size, and surface chemistry, specifically the number of dangling bonds favoring nonradiative deactivation. This can lead to a distribution of photoluminescence Quantum yields (PL QY) amongst the SCNC particles, i.e., mixtures of “bright” and “grey” or “dark” SCNCs. Particularly the number of absorbing, yet not emitting particles can have a significant effect on the PL quantum yield obtained in ensemble measurements, leading to ist underestimation. The “dark fraction” is not assessable in common ensemble measurements; it can be probed only on a single particle level using a confocal laser scanning microscope coupled with an AFM. Such a setup was used to study core‐shell CdSe SCNCs with different shells and surface chemistries. Special emphasis was dedicated to correlate brightness, blinking, dark fraction, and decay kinetics of the single SCNCs with the ensemble PL QY and the PL decay kinetics. The results of this study can help to identify new synthetic routes and surface modifications to colloidally and photochemically stable SCNCs with a PL QY of close to unity." T2 - Summer School "EXCITING NANOSTRUCTURES" CY - Bad Honnef, Germany DA - 17.07.2017 KW - Semiconductor KW - Nanoparticle KW - Quantum dot KW - Flourescence KW - CdSe KW - Shell KW - Surface chemistry KW - Single particle spectroscopy PY - 2017 AN - OPUS4-41192 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bennetts, V.H. A1 - Neumann, Patrick P. A1 - Kucner, T.P. A1 - Schaffernicht, E. A1 - Fan, H. A1 - Lilienthal, A.J. T1 - Probabilistic air flow modelling using turbulent and laminar characteristics for ground and aerial robots N2 - For mobile robots that operate in complex, uncontrolled environments, estimating air flow models can be of great importance. Aerial robots use air flow models to plan optimal navigation paths and to avoid turbulence-ridden areas. Search and rescue platforms use air flow models to infer the location of gas leaks. Environmental monitoring robots enrich pollution distribution maps by integrating the information conveyed by an air flow model. In this paper, we present an air flow modelling algorithm that uses wind data collected at a sparse number of locations to estimate joint probability distributions over wind speed and direction at given query locations. The algorithm uses a novel extrapolation approach that models the air flow as a linear combination of laminar and turbulent components. We evaluated the prediction capabilities of our algorithm with data collected with an aerial robot during several exploration runs. The results show that our algorithm has a high degree of stability with respect to parameter selection while outperforming conventional extrapolation approaches. In addition, we applied our proposed approach in an industrial application, where the characterization of a ventilation system is supported by a ground mobile robot. We compared multiple air flow maps recorded over several months by estimating stability maps using the Kullback-Leibler divergence between the distributions. The results show that, despite local differences, similar air flow patterns prevail over time. Moreover, we corroborated the validity of our results with knowledge from human experts. T2 - IEEE International Conference on Robotics and Automation (ICRA) CY - Singapore DA - 29.05.2017 KW - Mapping KW - Field robots KW - Environment monitoring and management KW - Aerial systems KW - Perception and autonomy PY - 2017 AN - OPUS4-40549 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Frenzel, Florian A1 - Würth, Christian A1 - Muhr, V. A1 - Hirsch, T. A1 - Resch-Genger, Ute T1 - Power dependent optical properties of hexagonal β-NaYF4: x % Er3+, 20 % Yb3+ core/ core-shell upconversion nanoparticles in cyclohexane and water N2 - Lanthanide doped photon upconverting nanophosphors (UCNPs) have the unique capability to produce narrow band, multi-color emission in the UV/vis/NIR upon multiphotonic absorption of infrared light, which makes them promising reporters for diagnostic, bioanalytical, and biological applications. This minimizes background signals, which normally occur due to autofluorescence from auxochromes, in biological matrices and enables deep penetration depths in biological applications. Moreover, UCNPs show long luminescence lifetimes in the μs range favorable for time gated emission in conjunction with a high photostability and chemical inertness and they do not blink. One of the most efficient upconversion (UC) phosphors for conversion of 976 nm to 655 nm and 545 nm light presents the hexagonal NaYF4-host crystal doped with 20 % Yb3+ used as sensitizer to absorb infrared light and 2 % Er3+ acting as activator mainly responsible for light emission. The high transparency in the relevant spectral windows of this host together with its low phonon frequencies ensure relatively high luminescence efficiencies. Although UCNPs are ideal candidates for many chemical and biological sensing and imaging applications, compared to other well-known chromophores like organic dyes or QDs, they suffer from a comparatively low brightness due to the low absorption cross sections of the parity forbidden f-f-transitions and low photoluminescence quantum yields (QYUC) particularly in the case of small nanoparticles with sizes of < 50 nm. The rational design of more efficient UCNPs requires an improved understanding of the nonradiative decay pathways in these materials that are influenced by particle architecture including dopant ion concentration and homogeneity of dopant distribution within UCNPs, size/surface-to-volume ratio, surface chemistry, and microenvironment. A promising approach to overcome the low efficiency of UCNPs is to use plasmonic interactions between a noble metal (Ag or Au) structure in the proximity of UCNPs and the incident light. This interaction leads to a modification of the spectroscopic properties due to local field enhancements and can involve an increase of the photoluminescence. In this respect, we study the interactions of UCNPs with metal structures (clusters and shells) by varying shape and size. Here, first results derived from integrating sphere spectroscopy and time-resolved fluorescence measurements are presented. T2 - Summer School "EXCITING NANOSTRUCTURES" CY - Bad Honnef, Germany DA - 17.07.2017 KW - Upconversion KW - Nanoparticle KW - Flourescence KW - Core-shell architecture KW - NIR KW - Absolute flourometry KW - Integrating sphere spectroscopy KW - Er(III) KW - Yb(III) KW - Single particle spectroscopy PY - 2017 AN - OPUS4-41172 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Barnefske, Lena A1 - Benemann, Sigrid A1 - Siebler, Daniel A1 - Sturm, Heinz T1 - PDMS-POS-capsules for prospective self-healing silicone rubber N2 - Capsules made of a polydimethylsiloxane (PDMS) core with a poly(organosiloxane) (POS) shell can be used as a new filler system for self-healing silicone rubber. Synthesis of these PDMS-POS capsules, as well as the characterization based on TGA, SEM and fluorescence spectroscopy is presented. T2 - 6th ICSHM 2017 CY - Friedrichshafen, Germany DA - 25.06.2017 KW - Self-healing KW - Capsules KW - PDMS PY - 2017 AN - OPUS4-40856 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schwaar, Timm A1 - van den Berg, J. W. A1 - Abbas, Ioana M. A1 - Weller, Michael G. T1 - Particle-based epitope analysis of a monoclonal antibody N2 - A method for the examination of the epitope of a monoclonal antibody against a peptide related to hepcidin-25, known as a biomarker in the ion metabolism, was developed. Characterizing the exact binding site helps to understand the properties of the antibody. A peptide consists of different amino acids, each contributing differently to the binding strength. To examine the influence of the amino acids, each amino acid was subsequently exchanged by glycine. If the respective amino acid is critical for binding to the antibody, a significant drop in the binding affinity should be observed. The epitope screening of monoclonal antibodies is a complex and elaborate procedure. For this approach, variants of the peptides were synthesized by conventional Fmoc-based peptide synthesis. The solid support was chosen to be suitable for the synthesis and additional screening against the antibody. To determine the binding affinity, the bead-bound peptides were incubated with a fluorophore-labeled antibody. After the incubation, the beads were placed on a slide and the fluorescence was detected by a fluorescence scanner. A high fluorescence indicates a high binding affinity and vice versa. T2 - Tag der Chemie 2017 CY - Berlin, Germany DA - 05.07.2017 KW - Antibody KW - Epitope analysis PY - 2017 AN - OPUS4-41191 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kraft, Marco A1 - Würth, Christian A1 - Kaiser, Martin A1 - Muhr, V. A1 - Hirsch, T. A1 - Resch-Genger, Ute T1 - Particle size dependent optical properties of hexagonal β-NaYF4: 2 % Er3+, 20 % Yb3+ upconversion nanoparticles in cyclohexane and water N2 - Hexagonal NaYF4 doped with 20 % Yb3+ and 2 % Er3+ is an efficient upconversion (UC) phosphor for the conversion of 976 nm excitation light to emission at 845 nm, 800 nm, 655 nm, 540 nm and 410 nm light. The emission behavior of nanoparticles made from this material is strongly influenced by particle size, surface chemistry, and microenvironment. Furthermore their UC emission originates from multiphotonic absorption processes, rendering the resulting luminescence spectra and intensities excitation power density (P) dependent. Therefore the rational design of efficient nm-sized UC particles e.g., for applications in the material and life sciences requires reliable spectroscopic tools for the characterization of the optical properties of these materials like the excitation power density (P)-dependent UC quantum yield (QYUC) in dispersion, which presents a measure for the efficiency of the conversion of absorbed into emitted photons. Up to date the P-dependent absolute measurement of QYUC in aqueous media with an excitation wavelength of 976 nm presents a considerable challenge due to the low absorption coefficients of the UC materials and the absorption of water at this wavelength. T2 - International Conference on Advanced Materials and Nanotechnology CY - Queenstown, New Zealand DA - 12.02.2017 KW - Upconversion KW - Quantum yield KW - Lifetime KW - Water KW - Cyclohexane PY - 2017 AN - OPUS4-40093 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Torge, Manfred A1 - Feldmann, Ines A1 - Knabe, Nicole A1 - Toepel, J. T1 - Organic surface coatings on medieval stained glass and microbiological investigation N2 - Mediaeval stained glass has been treated with Polymethylmetacrylate coatings by Kwiatkowski in Poland during the 1950th. Such treated panels were found in the Johannis Church of Toruń (without protective glazing), in the Cathedral of Włocławek (behind a protective glazing), and on glass kept in exhibition cases in the museum of Toruń. Surface coatings have been detected and analyzed. There was no extensive contamination by fungi or bacteria if the glass was either coated or not. T2 - Glass Science in Art and Conservation 2017 CY - Lisbon, Portugal DA - 06.06.2017 KW - Microbiological investigation KW - Medieval stained glass KW - SEM analysis PY - 2017 AN - OPUS4-40573 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Illner, M. A1 - Meyer, Klas A1 - Paul, Andrea A1 - Esche, E. A1 - Maiwald, Michael A1 - Repke, J.-U. T1 - Operation and optimal control of multiphase systems – Hydroformylation in microemulsions on the mini-plant scale N2 - develops new process concepts, involving innovative tuneable solvent systems to enable rather difficult or inapplicable synthesis paths. One possible concept is the hydroformylation of long-chained alkenes in microemulsions. For this, a modular mixer-settler concept was proposed, combining high reaction rates and efficient catalyst recycling via the application of technical grade surfactants. The feasibility of such a concept is evaluated in a fully automated, modular mini-plant system within which the characteristics of such a multiphase system pose several obstacles in operating this mini-plant. Maintaining a stable phase separation for efficient product separation and catalyst recycling is complicated by small and highly dynamic operation windows as well as poor measurability of component concentrations in the liquid phases. In this contribution, a model-based strategy is presented to enable concentration tracking and phase state control within dynamic mini-plant experiments. Raman spectroscopy is used as an advanced process analytical tools, which allows for online in-situ tracking of concentrations. Combined with optical and conductivity analysis optimal plant trajectories can be calculated, solving a dynamic optimization problem under uncertainty. Applying these, a stable reaction yield of 40 % was achieved, combined with an oil phase purity of 99,8 % (total amount of oily components in the oil phase) and a catalyst leaching below 0.1 ppm. T2 - 4th European Conference on Process Analytics and Control Technology (EuroPACT 2017) CY - Potsdam, Germany DA - 10.05.2017 KW - Process monitoring KW - Hydroformylation KW - Mini-plant KW - Process control KW - Process analytical technology KW - EuroPACT KW - InPROMPT PY - 2017 UR - http://dechema.de/en/europact17.html AN - OPUS4-40233 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Meyer, Klas A1 - Ruiken, Jan-Paul A1 - Illner, M. A1 - Müller, D. A1 - Esche, E. A1 - Paul, Andrea A1 - Westad, Frank A1 - Repke, J.-U. A1 - Wozny, G. A1 - Maiwald, Michael T1 - Online spectroscopy in micellar systems – A process analytical approach for a hydroformylation mini-plant N2 - Within the Collaborative Research Center InPROMPT a novel process concept for the hydroformylation of long-chained olefins is studied in a mini-plant, using a rhodium complex as catalyst in the presence of syngas. Recently, the hydroformylation in micro¬emulsions, which allows for the efficient recycling of the expensive rhodium catalyst, was found to be feasible. However, the high sensitivity of this multi-phase system with regard to changes in temperature and composition demands a continuous observation of the reaction to achieve a reliable and economic plant operation. For that purpose, we tested the potential of both online NMR and Raman spectroscopy for process control. The lab-scale experiments were supported by off-line GC-analysis as a reference method. A fiber optic coupled probe of a process Raman spectrometer was directly integrated into the reactor. 25 mixtures with varying concentrations of olefin (1-dodecene), product (n-tridecanal), water, n-dodecane, and technical surfactant (Marlipal 24/70) were prepared according to a D-optimal design. Online NMR spectroscopy was implemented by using a flow probe equipped with 1/16” PFA tubing serving as a flow cell. This was hyphenated to the reactor within a thermostated bypass to maintain process conditions in the transfer lines. Partial least squares regression (PLSR) models were established based on the initial spectra after activation of the reaction with syngas for the prediction of unknown concentrations of 1-dodecene and n-tridecanal over the course of the reaction in the lab-scale system. The obtained Raman spectra do not only contain information on the chemical composition but are further affected by the emulsion properties of the mixtures, which depend on the phase state and the type of micelles. Based on the spectral signature of both Raman and NMR spectra, it could be deduced that especially in reaction mixtures with high 1-dodecene content the formation of isomers as a competitive reaction was dominating. Similar trends were also observed during some of the process runs in the mini-plant. The multivariate calibration allowed for the estimation of reactants and products of the hydroformylation reaction in both laboratory setup and mini-plant. T2 - 11. Doktorandenseminar 2017 des Arbeitskreis Prozessanalytik der GDCh und DECHEMA CY - Berlin, Germany DA - 12.03.2017 KW - Online reaction monitoring PY - 2017 AN - OPUS4-39398 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Guhl, Svetlana A1 - Kern, Simon A1 - Meyer, Klas A1 - Wander, Lukas A1 - Gräßer, Patrick A1 - Maiwald, Michael T1 - Online NMR Spectroscopy for Process Monitoring in Intensified Continuous Production Plants N2 - Process analytical techniques are extremely useful tools for chemical production and manufacture and are of particular interest to the pharmaceutical, food and (petro-) chemical industries. Today, mainly optical online methods are applied. NMR spectroscopy has a high potential for direct loop process control. Compact NMR instruments based on permanent magnets are robust and relatively inexpensive analysers, which feature advantages like low cost, low maintenance, ease of use, and cryogen-free operation. Instruments for online NMR measurements equipped with a flow-through cell, possessing a good signal-to-noise-ratio, sufficient robustness, and meeting the requirements for integration into industrial plants (i.e., explosion safety and fully automated data analysis) are currently not available off the rack. A major advantage of NMR spectroscopy is that the method features a high linearity between absolute signal area and sample concentration, which makes it an absolute analytical comparison method which is independent of the matrix. This is an important prerequisite for robust data evaluation strategies within a control concept and reduces the need for extensive maintenance of the evaluation model over the time of operation. Additionally, NMR spectroscopy provides orthogonal, but complimentary physical information to conventional, e.g., optical spectroscopy. It increases the accessible information for technical processes, where aromatic-to-aliphatic conversions or isomerizations occur and conventional methods fail due to only minor changes in functional groups. As a technically relevant example, the catalytic hydrogenation of 2-butyne-1,4-diol and further pharmaceutical reactions were studied using an online NMR sensor based on a commercially available low-field NMR spectrometer within the framework of the EU project CONSENS (Integrated Control and Sensing). T2 - EuroPACT 2017 CY - Potsdam, Germany DA - 10.05.2017 KW - Process Monitoring KW - Online NMR Spectroscopy KW - Process analytical technology KW - Hydrogenation KW - Indirect Hard Modeling KW - CONSENS PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-435507 AN - OPUS4-43550 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Guhl, Svetlana A1 - Kern, Simon A1 - Meyer, Klas A1 - Gräßer, Patrick A1 - Wander, Lukas A1 - Maiwald, Michael T1 - Online NMR spectroscopy for process monitoring in intensified continuous production plants N2 - Die Überwachung chemischer Reaktionen ist der Schlüssel zur chemischen Prozesskontrolle. Die quantitative NMR-Spektroskopie besitzt ein hohes Potential für das kontinuierliche Prozessmonitoring. Sie arbeitet zerstörungsfrei mit geringen Probenmengen, kommt durch den direkten Nachweis der Kernspins ohne Kalibrierung aus und weist auch in Konzentrationsrandbereichen eine sehr hohe Linearität auf. Durch Innovationen im Bereich der Niederfeld-NMR-Spektroskopie sind seit kurzem kompakte Benchtop-Laborgeräte von einer wachsenden Zahl an Herstellern kommerziell erhältlich. Neben der Verwendung für Lehre und Forschung im Labor besteht ein potentieller Markt für prozesstaugliche Analysatoren auf Basis dieser Technologie. Für die Integration in eine industrielle Umgebung werden hohe Anforderungen an die Robustheit und Sicherheit entsprechender Systeme gestellt. Dies umfasst neben einem zuverlässigen, vollautomatisierten Betrieb vor allem die Konformität mit ATEX-Richtlinien für den Einsatz in den zumeist als explosionsgefährdet geltenden Produktionsbereichen [2]. Insbesondere im Fall kontinuierlicher Prozesse sind Online-Sensoren und eine unmittelbar rückwirkende Regelung (Closed-loop-control) im laufenden Betrieb zur Sicherstellung der Produktqualität zwingend erforderlich. Andernfalls besteht ein hohes Risiko, große Mengen von nicht spezifikationskonformen, sog. Out-of-Spec-Produkten (OOS) zu produzieren, die aufwändig aufbereitet oder schlimmstenfalls verworfen werden müssen. Im Rahmen des EU-Projekts CONSENS (Integrated Control and Sensing) wird ein prozesstauglicher Analysator für den Einsatz in modularen Produktionsanlagen auf Basis eines kommerziell erhältlichen Niederfeld-NMR-Spektrometers entwickelt. Zur Validierung und Verbesserung der Systemintegration dieses Moduls wird eine kontinuierlich betriebene Teilreaktion aus einem pharmazeutischen Produktionsprozess untersucht. Hierbei handelt es sich um die Kopplung der aromatischen Systeme Anilin und o-Fluornitrobenzol unter Verwendung eines Lithiumorganyls. Die hohe Reaktionsgeschwindigkeit dieses Prozessbeispiels erlaubt jedoch keine kinetischen Studien des Reaktionsverlaufs, sodass dies am technisch relevanten Beispiel der katalytischen Hydrierung von 2-Butin-1,4-diol oder weiteren pharmazeutischen Reaktionen demonstriert wird. Im Rahmen dieser Prozessanwendungen ist auch der direkte Vergleich mit etablierten spektroskopischen Verfahren wie UV/VIS-, NIR- und Raman-Spektroskopie geplant. N2 - Process analytical techniques are extremely useful tools for chemical production and manufacture and are of particular interest to the pharmaceutical, food and (petro-) chemical industries. Today, mainly optical online methods are applied. NMR spectroscopy has a high potential for direct loop process control. Compact NMR instruments based on permanent magnets are robust and relatively inexpensive analysers, which feature advantages like low cost, low maintenance, ease of use, and cryogen-free operation. Instruments for online NMR measurements equipped with a flow-through cell, possessing a good signal-to-noise-ratio, sufficient robustness, and meeting the requirements for integration into industrial plants (i.e., explosion safety and fully automated data analysis) are currently not available off the rack. A major advantage of NMR spectroscopy is that the method features a high linearity between absolute signal area and sample concentration, which makes it an absolute analytical comparison method which is independent of the matrix. This is an important prerequisite for robust data evaluation strategies within a control concept and reduces the need for extensive maintenance of the evaluation model over the time of operation. Additionally, NMR spectroscopy provides orthogonal, but complimentary physical information to conventional, e.g., optical spectroscopy. It increases the accessible information for technical processes, where aromatic-to-aliphatic conversions or isomerisation’s occur and conventional methods fail due to only minor changes in functional groups. As a technically relevant example, the catalytic hydrogenation of 2-butyne-1,4-diol and further pharmaceutical reactions were studied using an online NMR sensor based on a commercially available low-field NMR spectrometer within the framework of the EU project CONSENS (Integrated Control and Sensing). T2 - 11. Interdisziplinäres Doktorandenseminar CY - Berlin, Germany DA - 12.03.2017 KW - Niederfeld-NMR-Spektroskopie KW - Zerstörungfreie Analytik KW - Online NMR Spektroskopie PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-394241 AN - OPUS4-39424 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Thiel, Erik T1 - Novel thermographic methods for non-destructive testing using structured illumination N2 - Photothermal imaging is commonly used for the characterization of material properties, the determination of layer thicknesses or the detection of inhomogeneities such as voids or cracks. For this purpose, the solid specimen is externally heated, e.g. by using a light source. The resulting transient heat flows interact with the inner structures of the specimen, which in turn is measured as a transient temperature distribution at the surface. Novel array-shaped, high-power laser light sources allow to control the heating of the surface arbitrarily, both temporally and spatially. This enables us to shape the heat flows within the material in a very specific way. In a first application, we demonstrate how to apply destructively interfering thermal wave fields in order to detect subsurface defects with a very high sensitivity. A similar technique, although originating from a very different physical domain, is already in use for medical 3D imaging showing the high potential of this approach. T2 - Adlershofer For­schungs­forum 2017 CY - Berlin, Germany DA - 10.11.2017 KW - Active thermography KW - Photothermal KW - Crack detection KW - Thermal wave KW - Structured heating PY - 2017 AN - OPUS4-42835 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gawlitza, Kornelia A1 - Tiebe, Carlo A1 - Banach, Ulrich A1 - Noske, Reinhard A1 - Bartholmai, Matthias A1 - Rurack, Knut T1 - Novel sensor for long-term monitoring of ammonia in gas phase N2 - Pollution through emission of toxic gases is of utmost environmental concern, raising the interest in developing reliable gas sensors. Exemplarily, ammonia and its conversion products can provoke considerable damage on human health and ecosystems. Hence, there is a need for reliable and reversible sensor materials to monitor traces of gaseous ammonia in ambient air, which at best can be used on-site for field measurements. Although various types of sensors such as potentiometric, amperometric, and biological sensors are available for detecting trace amounts of gases, fluorescent sensors have gained importance due to several advantages such as high sensitivity, possible miniaturization, as well as potential multiplexing. Herein, we present the development of a sensor material for gaseous ammonia in the lower ppm or even ppb range using optical fluorescence as transduction mechanism due to its intrinsically high sensitivity and high spatial resolution.[1] Therefore, a fluorescent dye, which shows reversible fluorescence enhancement in the presence of the analyte was incorporated into a polymer matrix, the latter to ensure the accumulation of ammonia. To calibrate the designed optical sensor system a gas standard generator was used, producing standard gas mixtures, which comply with the metrological traceability for ammonia gas standards in the desired environmentally relevant measurement range.[2] Beside the development of a highly sensitive, selective, and reversible sensor, the integration of such systems into mobile sensor devices is addressed. Therefore, a prototype of a miniaturized hand-held instrument was developed enabling a straightforward and long-term read-out of the measurement signal. T2 - 13. Dresdner Sensor Symposium (13. DSS) CY - Dresden, Germany DA - 04.12.2017 KW - Ammonia gas sensor KW - Fluorescence KW - Air quality monitoring KW - Standard gas generator KW - Minitaurized sensor device PY - 2017 AN - OPUS4-43351 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Steger, Simon A1 - Rabin, Ira A1 - Stege, H. A1 - Hahn, Oliver T1 - Non-invasive, spectroscopic study of a modern reverse glass painting N2 - We present the first spectroscopic study on a reverse glass painting form the classic modern period (1905-1955). Marianne Uhlenhuth’s painting “Ohne Titel, 1954” shows characteristics like experimental use of colorants and abstract compositions, which are well-established in classic modern art. Compared to stained glass, reverse glass paintings are viewed in reflected light, hence they reveal strong and intense colors. New inorganic pigments, development of synthetic organic pigments and the simultaneous supersession of well-known ancient colorants result in experimental works and remarkable pigment mixtures in this period of time. An in-situ, non-invasive approach was used to study the pigments and binding media. In-situ measurements were carried out using Raman spectroscopy (i-Raman®Plus, Bwtek Inc., 785 nm, 20× objective, resolution 4 cm-1), X-ray fluorescence (Tracer III-SD, Bruker AXS Microanalysis GmbH, 40 kV, 15 μA), VIS spectroscopy (SPM 100, Gretag-Imaging AG) and DRIFTS: Diffuse Reflection-Infrared-Fourier-Transform Spectroscopy (ExoScan, Agilent GmbH, 4000-650 cm-1, 256 scans, resolution 4cm-1). The pigments consist of inorganic as well as organic materials. Phthalocyanin green (PG7, colour index No. 74260), viridian and emerald green were used for the green areas. The yellow parts consist of chrome yellow and cadmium yellow. Pigment Yellow 1 (C.I. 11680) was used for the dark yellow/orange part. Red areas were characterized by the presence of cadmium and selenium (cadmium red) in the XRF spectrum. Ultramarine was detected in the blue parts. Concerning the violet color PR81 (bluish red, C.I. 45160:1) in mixture with PG7 (bluish green) were identified as main components. We want to outline that PR81 was rarely found in paintings. It was only recorded in the palettes of Lucio Fontana and Mary Cassatt before. The dark violet areas consist of Prussian blue and an unknown red (organic) colorant. Brown iron oxide was identified as the brown pigment. Bone black in mixture with black iron oxide were used as black materials and zinc white and titanium white as white pigments. XRF analysis of the metal color yields intense copper, zinc and nickel peaks (intensity ratio 3:3:1), which corresponds to “new silver” alloy. Barite and chalk are the fillers in this painting. Results of DRIFTS spectra show gum sometimes mixed with protein or oil (metal soaps) as binding media. The results point out that reverse glass paintings from the classic modern period are excellent examples to study the evolution of new pigments and their acceptance in artist’s palettes. T2 - CSI-XL CY - Pisa, Italy DA - 11.06.2017 KW - Pigments KW - Reverse glass painting KW - Spectroscopy PY - 2017 AN - OPUS4-42336 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Heinrich, Thomas A1 - Hupatz, H. A1 - Lippitz, Andreas A1 - Schalley, C. A1 - Unger, Wolfgang T1 - NEXAFS and XPS investigations of a dual switchable rotaxane multilayer N2 - A multilayer consisting of two different rotaxanes was investigated with different analytical methods. The rotaxanes can be switched with two different stimuli - chemical and photochemical. XPS indicates that our layer-by-layer approach worked and a layer growth with every deposition step is present. NEXAFS showed that both stimuli cause an increase of the multilayer's preferential orientation. T2 - BESSY User Meeting CY - Berlin, Germany DA - 13.12.2017 KW - NEXAFS KW - XPS KW - Rotaxanes PY - 2017 AN - OPUS4-43616 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hoffmann, Katrin A1 - Pauli, Jutta A1 - Resch-Genger, Ute T1 - New NIR fluorescence reference materials and quantum yield standards for standardization of fluorescence-based measurements N2 - Luminescence techniques are amongst the most commonly used analytical methods in the life and the material sciences due to their sensitivity and nondestructive character. All photoluminescence signals are, however, affected by wavelength-, polarization- and time-dependent instrument-related effects. Furthermore, substantial challenges to measure absolute luminescence intensities complicate the comparison of data recorded with different instruments and on the same instrument at different times. These problems can be easily resolved with fluorescence standards used for instrument performance validation (IPV) and determination of instrument-to-instrument variations, which allow to measure, quantify, and monitor the wavelength-dependent spectral responsivity for typically used instrument settings. For example, a set of liquid fluorescence standards, the BAM Kit F001-F005, and a ready-to-use glass-based fluorescence standard BAM F-012 developed and certified by BAM enable the characterization of many fluorescence parameters in the UV/vis wavelength range. For the increasingly used near infrared (NIR) region, standards and calibration tools are still very rare. Reliable spectral fluorescence standards and intensity or quantum yield standards are currently not available for the NIR, even though in biology, molecular imaging, and clinical diagnostics fluorescence labels absorbing and emitting in the long wavelength region beyond 650 nm are being increasingly used. This limitation hampers the reliability and comparability of fluorescence measurements in the NIR and calls for simple fluorescence standards for instrument characterization and for the quantification of fluorescence intensities and efficiencies to improve the comparability of the emission measurements in the NIR. This encouraged us to assess the potential of several NIR-emitting materials as spectral fluorescence standards, thereby extending the BAM Kit from the UV/vis into the NIR up to 950 nm. Moreover, we currently certify quantum yield standards for the UV/vis/NIR to improve the reliability of relative measurements of this spectroscopic key quantity particularly > 650 nm. These tools enable an instrument characterization, signal referencing, quality assurance, traceability, and method validation now also for wavelengths > 650 nm, thereby improving the reliability of fluorescence data in pharmaceutical research, medical and clinical diagnostics, material analysis, and environmental monitoring. T2 - 15th Conference on Methods and Applications in Fluorescence (MAF) CY - Brugge, Belgium DA - 10.09.2017 KW - Fluorescence reference materials KW - Quantum yield standard KW - Glass-based fluorescence standard PY - 2017 AN - OPUS4-41990 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - You, Zengchao A1 - Weidner, Steffen A1 - Jakubowski, Norbert A1 - Panne, Ulrich T1 - Nanoparticles separation using capillary electrophoresis N2 - Capillary electrophoresis (CE) is an analytical technique that separates analytes based on their electrophoretic mobility with the use of an applied voltage. Nanoparticles separation using CE exhibits good separation and analysis efficiency, especially for nanoparticles smaller than 30 nm. The coupling of CE with inductively coupled plasma mass spectrometry (ICP-MS) provides the possibility to detect nanoparticles in the concentration range of nanograms per litre and enables the simultaneous detection of nanoparticles and its [1][2] ionic counter parts. Our objective is to develop a fast and reliable separation method for differently modified nanoparticles using capillary electrophoresis. T2 - 2017 BAM PhD Day DA - 18.09.2017 KW - Nanoparticles separation capillary electrophoresis asymmetrcial flow field flow fractionation PY - 2017 AN - OPUS4-47195 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Carl, Peter A1 - Sarma, Dominik A1 - Ramos, I. I. A1 - Machado, A. A1 - Lehmann, Andreas A1 - Hoffmann, Kristin A1 - Rurack, Knut A1 - Segundo, M. A. A1 - Bordalo, A. A. A1 - Schneider, Rudolf T1 - Multiplex suspension array fluorescence immunoassay (SAFIA) for environmental screening of bioactive compounds in wastewater. N2 - Due to the demand of monitoring the water quality regarding emerging pollutants, such as drug residues, selective, high-throughput and multi-target analytical methods must be established. On the one hand, the influence of sewage on natural surface waters must be routinely monitored. On the other hand, estimation of removal efficiencies of pollutants, such as drug residues, is in the focus of industrial and public wastewater treatment. Immunoassays, such as ELISA, offer the possibility to be highly sensitive and selective due to the high target affine and specific recognition of antibodies to target molecules. Batch-wise processing in microtiter plates allow the necessary high-throughput, but only a single analyte can be determined within one measurement. To overcome these disadvantages, we developed a four-plex micro-bead based flow cytometric assay, which is adaptable for the microtiter plate format. The modular and self-prepared bead support consists of polystyrene-core-silica-shell particles. While the polystyrene core is used for encoding, by introducing different amounts of fluorescent dyes, the silica-shell creates a solid-support for the immunoassay: The target analytes, three drugs, carbamazepine, diclofenac and caffeine and the f ecal marker isolithocholic acid are covalently coupled to amino-groups on the surface via NHS-chemistry. A competitive immunoassay is subsequently conducted in a simple mix-and-read procedure. Finally, we could use SAFIA to assess the influent of treated and untreated waste water on the Douro river estuary in Portugal. The results of the analysis are comparable to ELISA. However, measurements could be carried out in 25% the time of analysis. T2 - Adlershofer For­schungs­forum 2017 CY - Berlin, Germany DA - 10.11.2016 KW - Immunoassay KW - Anthropogenic markers KW - Wastewater KW - Flowcytometry KW - Bead-based assay PY - 2017 AN - OPUS4-42824 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Carl, Peter A1 - Sarma, Dominik A1 - Ramos, I. I. A1 - Machado, A. A1 - Lehmann, Andreas A1 - Hoffmann, Kristin A1 - Rurack, Knut A1 - Segundo, M. A. A1 - Bordalo, A. A. A1 - Schneider, Rudolf T1 - Multiplex suspension array fluorescence immunoassay (SAFIA) for environmental screening of bioactive compounds in wastewater N2 - Due to the demand of monitoring the water quality regarding emerging pollutants, such as drug residues, selective, high-throughput and multi-target analytical methods must be established. On the one hand, the influence of sewage on natural surface waters must be routinely monitored. On the other hand, estimation of removal efficiencies of pollutants, such as drug residues, is in the focus of industrial and public wastewater treatment. Immunoassays, such as ELISA, offer the possibility to be highly sensitive and selective due to the high target affine and specific recognition of antibodies to target molecules. Batch-wise processing in microtiter plates allow the necessary high-throughput, but only a single analyte can be determined within one measurement. To overcome these disadvantages, we developed a four-plex micro-bead based flow cytometric assay, which is adaptable for the microtiter plate format. The modular and self-prepared bead support consists of polystyrene-core-silica-shell particles. While the polystyrene core is used for encoding, by introducing different amounts of fluorescent dyes, the silica-shell creates a solid-support for the immunoassay: The target analytes, three drugs, carbamazepine, diclofenac and caffeine and the f ecal marker isolithocholic acid are covalently coupled to amino-groups on the surface via NHS-chemistry. A competitive immunoassay is subsequently conducted in a simple mix-and-read procedure. Finally, we could use SAFIA to assess the influent of treated and untreated waste water on the Douro river estuary in Portugal. The results of the analysis are comparable to ELISA. However, measurements could be carried out in 25% the time of analysis. T2 - BAM - BfR-Seminar Scientific exchange between: BAM und Abteilung „Chemikalien und Produktsicherheit" (Abteilung 7) des BfR CY - Berlin, Germany DA - 15.02.2018 KW - Bead based assay KW - Fluorescence KW - Emerging pollutants KW - Environment KW - Flow cytometry PY - 2017 AN - OPUS4-44337 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan A1 - Rades, Steffi A1 - Oswald, F. A1 - Narbey, S. A1 - Radnik, Jörg T1 - Morphological and Chemical Composition of a CH3NH3PbI3/TiO2 Solar Cell Layered System N2 - Manufacturing of new perovskite layered solar cells with constant high light conversion efficiency over time may be hampered by the loss of efficiency caused by structural and/or chemical alterations of the complex layered system. SEM/EDX combined with XPS were chosen as an appropriate methodical approach to characterize perovskite laboratory cells in depth and at surface, before and after light exposure. The layered perovskite system investigated here is based on glass covered with fluorine doped tin oxide (FTO), followed by thin films of TiO2, ZrO2 and a thick monolithic carbon. TiO2 film is subdivided into a dense layer covered by porous one constituted of nanoparticles (NPs) of truncated bipyramidal shape. This layered system serves as the matrix for the perovskite. EDX spectral maps on cross-sections of specimen have shown that Pb and I are distributed homogeneously throughout the porous layers C, ZrO2 and TiO2. SEM/EDX data show that 20 weeks of ambient daylight did not change significantly the indepth distribution of the elemental composition of Pb and I throughout the entire solar cell system. It was confirmed with EDX that NPs identified in high-resolution SEM micrographs contain mainly Pb and I, indicating these to be the perovskite crystals. However, a compositional and chemical altering began in the near-surface region of the outermost ~10 nm after 2 months of illumination which was observed with XPS. T2 - 17th European Conference on Applications of Surface and Interface Analysis ECASIA 2017 CY - Montpellier, France DA - 24.09.2017 KW - Perovskite KW - Solar cells KW - SEM/EDX KW - XPS KW - Layer analysis PY - 2017 AN - OPUS4-42657 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Abad Andrade, Carlos Enrique A1 - Florek, S. A1 - Becker-Ross, H. A1 - Huang, H.-D. A1 - Heinrich, Hans-Joachim A1 - Recknagel, Sebastian A1 - Vogl, Jochen A1 - Jakubowski, Norbert A1 - Panne, Ulrich T1 - Molecular absorption spectrometry: a fast and accurate optical method for boron isotope analysis comparable to mass spectrometry N2 - Boron presents two stable isotopes, 10B and 11B and due to their relatively large mass difference (~ 10%) isotope fractionation leads to considerable isotope amount ratio variations n(10B)/n(11B) in natural occurrence. These have been used as a proof of provenance of mineral and biological samples, to estimate a contamination source and to the determination of geological processes by erosion or subduction. Additionally, boron is employed in the nuclear industry due to the capability of its isotope 10B to thermal-neutron capture and therefore 10B enriched boric acid solutions are used in the cooling system of thermonuclear facilities and in the alloying of steel and carbides for protective shielding. Usually, isotope ratio variations are determined by mass spectroscopic methods. Here an alternative faster and low cost method for isotope ratio determination is proposed: high-resolution continuum source molecular absorption spectrometry (HR-CS-MAS). Boron isotope amount ratios have been determined by monitoring the absorption spectrum of boron monohydride (BH) in graphite furnace HR-CS-MAS. Bands (0→0) and (1→1) for the electronic transition X1Σ+ → A1Π were evaluated around wavelengths 433.1 nm and 437.1 nm respectively. Partial least square regression (PLS) for analysis of samples and reference materials were applied. For this, a spectral library with different isotopes ratios for PLS regression was built. Results obtained around the 433.1 nm and 437.1 nm spectral regions are metrologically compatible with those reported by mass spectrometric methods. Moreover, a precision and accuracy of the method of ± 0.5 ‰ for the evaluated spectral region around 437.1 nm is reported here. This accuracy and precision is comparable with those obtained by thermal ionization mass spectrometry (TIMS) and multiple collector inductively coupled plasma mass spectrometry (MC-ICP-MS) for boron isotope ratio measurements. T2 - 30. Tag der Chemie CY - Berlin, Germany DA - 05.07.2017 KW - Boron isotopes KW - High-Resolution Continuum Source Molecular Absorption Spectrometry KW - HR-CS-MAS KW - Isotopic shift KW - Boron monohydride KW - Isotope ratio KW - Molecular absorption KW - Memory effect KW - Graphite furnace PY - 2017 AN - OPUS4-41059 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Dörfel, Ilona A1 - Nofz, Marianne A1 - Sojref, Regine A1 - Schulz, Wencke A1 - Saliwan Neumann, Romeo A1 - Hesse, Rene A1 - Meyer, Christian A1 - Kranzmann, Axel T1 - Microstructure of alumina coating on steel P92 after thermal cycling N2 - 1. Introduction Alumina coatings are one possibility to increase the corrosion resistance, lifetime and application range of thermally loaded steel components, e.g. in modern power plants where the use of the Oxy-fuel technology corrosive fuel gas (H2O-CO2-O2-SO2 at 650 °C) affects the steel parts. In previous investigations the efficacy of protective alumina coatings on steel P 92 under those conditions was demonstrated. A shutdown and re-start of power plants or parts of them causes thermal stresses of the components which can cause detrimental effects like microstructural changes in the steel itself, changes in its oxidation behavior, delamination or microstructural changes in the coating. All those effects can lead to failure of the components, resulting in lifetime reduction. 2. Objectives As a first step, we concentrate on the influence of thermal cycling tests and observe the impact on the microstructure of the coating and the interface in laboratory air. These investigations will help understanding the processes which occur, show directions of potentially necessary changes of the coating due to improved thermal stress behaviour. 3. Materials & methods P 92 is a ferritic-martensitic steel, containing 9% Cr which forms protective Cr-oxide-rich scales in dry environments and non-protective ones in water-containing environments. Coupons of P 92, having ground surfaces, were dip-coated via a sol-gel process and subjected to thermal cycling for 500 h (1000 cycles) in laboratory air in a temperature range between room temperature and 660° C. The resulting mass loss was determined by weighing. Samples for TEM investigations were produced as cross sections normal to the sample surface by FIB preparation (Quanta 3D, (FEI)). The TEM/STEM investigations were performed using a JEM2200FS (JEOL) operated at 200 kV. The microstructure of the coating and the interface after cycling tests was characterized via TEM, HREM, and STEM images, electron diffraction as well as EDX and EFTEM methods. 4. Results At steep edges in the surface profile the coating was imperfect and cracks have formed during the thermal cycling. Flat surface regions are well-covered. The whole interface region between the steel and the coating shows a dense Cr-oxide-rich zone, which can form protective regions in case of local failure. The Cr-oxide zone is followed by a region of mixed oxides, containing Cr, Mn, Fe, and Al in variable composition, to which a porous δ-Al2O3 zone is joined. 5. Conclusions • Alumina coatings promote the formation of dense, Cr-rich zones at the interface, which makes the system self-healing. • These zones are stable during thermal stresses, even in regions with cracked coatings. • They cause reduction of outward diffusion and mass loss during thermal cycling. T2 - MC2017 CY - Lausanne, Switzerland DA - 21.08.2017 KW - Coating KW - Thermal cycling KW - TEM PY - 2017 UR - https://www.mc2017.ch/general-information/downloads/ AN - OPUS4-41724 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bolz, Axel A1 - Rurack, Knut A1 - Buurman, Merwe T1 - Microfluidic Paper-Based Analytical Devices with Surface Enhanced Raman Scattering Detection N2 - Microfluidic paper-based analytical devices (μPADs) in combination with surface enhanced Raman scattering (SERS) provide a way for analyses of complex mixtures. The μPADs can be used for the chromatographic separation of different compounds of mixtures in combination with the separate detection of the analytes in different zones on the paper by SERS. SERS allows to observe analytes directly without labelling in low concentrations in aqueous solutions and to identify them by their spectral fingerprint. SERS substrates on the μPADs were created by drying standard silver nanoparticle (AgNP) solution on the paper. The microfluidic structure of the μPADs was prepared by wax printing. As a model system, an aqueous solution of the non-fluorescent analyte adenine and two fluorescent dyes tris(2,2’-bipyridyl)dichlororuthenium(II) and sulforhodamine B was tested. The dependency of the SERS signal intensity on the analyte concentration can be fitted using a Langmuir isotherm curve progression. With this approach, a semi-quantitative analysis of the components is possible. The reproducibility and stability of the measurement procedure was tested with several measurements over time, different NP batches, and with different analytes in different concentrations and resulted in an average relative standard deviation of 16 %. The SERS spectra of the mixture of the model system are dominated by one compound depending on the concentration ratio. For the detection and identification of all components of the mixture, the compounds were therefore separated on the μPADs and measured at different positions. The position of adenine on the μPADs is dependent on the AgNP coverage of the paper. Due to this effect, it possible to detect adenine on a defined point on the μPADs and to get an information on the concentration in a mixture of three components. T2 - 30. Tag der Chemie Humboldt-Universität zu Berlin CY - Berlin, Germany DA - 05.07.2017 KW - SERS KW - µPAD PY - 2017 AN - OPUS4-42265 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bremser, Wolfram A1 - Kern, Simon A1 - Guhl, Svetlana A1 - Meyer, Klas A1 - Paul, Andrea A1 - Maiwald, Michael T1 - Mathematical and statistical tools for online NMR spectroscopy in chemical processes N2 - Monitoring chemical reactions is the key to chemical process control. Today, mainly optical online methods are applied, which are calibration intensive. NMR spectroscopy has a high potential for direct loop process control while exhibiting short set-up times. Compact NMR instruments make NMR spectroscopy accessible in industrial and harsh environments for advanced process monitoring and control. Within the European Union’s Research Project CONSENS (Integrated CONtrol and SENsing by development and integration of a smart NMR module for process monitoring was designed and delivers online spectra of various reactions. The presented NMR module is provided in an explosion proof housing of 57 x 57 x 85 cm module size and involves a compact spectrometer together with an acquisition unit and a programmable logic controller for automated data preparation (phasing, baseline correction), and evaluation. For reaction monitoring and process control using NMR instruments after acquisition of the FID the data needs to be corrected in real-time for common effects using fast interfaces and automated methods. When it comes to NMR data evaluation under industrial process conditions, the shape of signals can change drastically due to nonlinear effects. Additionally, the multiplet structure becomes more dominant because of the comparably low-field strengths which results in overlapping of multiple signals. However, the structural and quantitative information is still present but needs to be extracted by applying predictive models. We present a range of approaches for the automated spectra analysis moving from statistical approach, (i.e., Partial Least Squares Regression) to physically motivated spectral models (i.e., Indirect Hard Modelling and Quantum Mechanical calculations). By using the benefits of traditional qNMR experiments data analysis models can meet the demands of the PAT community (Process Analytical Technology) regarding low calibration effort/calibration free methods, fast adaptions for new reactants, or derivatives and robust automation schemes. T2 - Advanced Mathematical and Computational Tools in Metrology and Testing XI (AMCTM) CY - Glasgow, UK DA - 29.08.2017 KW - Process Monitoring KW - CONSENS KW - Online NMR Spectroscopy KW - Indirect Hard Modeling KW - Data Analysis PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-416560 AN - OPUS4-41656 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kern, Simon A1 - Guhl, Svetlana A1 - Meyer, Klas A1 - Paul, Andrea A1 - Maiwald, Michael T1 - Mathematical and statistical tools for online NMR spectroscopy in chemical processes N2 - Monitoring chemical reactions is the key to chemical process control. Today, mainly optical online methods are applied, which are calibration intensive. NMR spectroscopy has a high potential for direct loop process control while exhibiting short set-up times. Compact NMR instruments make NMR spectroscopy accessible in industrial and harsh environments for advanced process monitoring and control. Within the European Union’s Research Project CONSENS (Integrated CONtrol and SENsing, www.consens-spire.eu) by development and integration of a smart NMR module for process monitoring was designed and delivers online spectra of various reactions. The presented NMR module is provided in an explosion proof housing of 57 x 57 x 85 cm module size and involves a compact spectrometer together with an acquisition unit and a programmable logic controller for automated data preparation (phasing, baseline correction), and evaluation. For reaction monitoring and process control using NMR instruments after acquisition of the FID the data needs to be corrected in real-time for common effects using fast interfaces and automated methods. When it comes to NMR data evaluation under industrial process conditions, the shape of signals can change drastically due to nonlinear effects. Additionally, the multiplet structure becomes more dominant because of the comparably low-field strengths which results in overlapping of multiple signals. However, the structural and quantitative information is still present but needs to be extracted by applying predictive models. We present a range of approaches for the automated spectra analysis moving from statistical approach, (i.e., Partial Least Squares Regression) to physically motivated spectral models (i.e., Indirect Hard Modelling and Quantum Mechanical calculations). By using the benefits of traditional qNMR experiments data analysis models can meet the demands of the PAT community (Process Analytical Technology) regarding low calibration effort/calibration free methods, fast adaptions for new reactants, or derivatives and robust automation schemes. T2 - 13. Dresdner Sensor Symposium CY - Dresden, Germany DA - 04.12.2017 KW - Process Monitoring KW - Process sensors KW - Process analytical technology KW - Online NMR spectroscopy KW - Direct loop control KW - Numerical methods KW - Spectral modeling KW - Indirect hard modeling KW - CONSENS PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-432085 AN - OPUS4-43208 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gottlieb, Cassian A1 - Günther, Tobias A1 - Wilsch, Gerd T1 - Material properties and their impact on laserinduced plasmas for concrete analysis N2 - For concrete production aggregates, cement and water are mixed together and after 28 days of hydration a porous and multiphase material is formed. To consider the heterogeneity of concrete a 2D scanning system is used. The coarse aggregates (limit > 2 X d ) can be excluded. laser spot The remaining content is a mixture of flour grains and cement particles (micro heterogeneity). Harmful species like chlorides may penetrate together with water through the capillary pore space. A quantification of Cl regarding to the cement content only (European standard EN 206) is necessary for the damage assessment. A LIBS system operating with a NdCr:YAG laser (pulse energy of 3 mJ, a wavelength of 1064 nm, a pulse width of 1.5 ns, a repetition rate of 100 Hz) and two Czerny-Turner spectrometer (UV and NIR range) have been used. T2 - EMSLIBS Konferenz 2017 CY - Pisa, Italy DA - 12.06.2017 KW - Concrete KW - LIBS KW - Micro-heterogeneity PY - 2017 AN - OPUS4-40938 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gebbers, R. A1 - Riebe, D. A1 - Beitz, T. A1 - Löhmannsröben, H.-G. A1 - Rühlmann, Madlen A1 - Schmid, Thomas T1 - Laser-induced breakdown spectroscopy (LIBS) for efficient quantitative determination of elemental plant nutrients in soils: A contribution to precision agriculture N2 - One important aim of precision agriculture (PA) is the optimization of crop growth by means of site-specific measures, e.g. fertilizer application. Thus, PA should contribute to a resource efficient and ecofriendly soil management. Due to the expenses associated with traditional methods of soil analysis, requiring sample collection and laboratory analysis, PA technologies are still not in widespread use. Therefore, the aim of the project “I4S – Integrated System for Site-Specific Soil Fertility Management” is the development of a field-deployed, sensor-based analysis system offering rapid, cost-effective and spatially-resolved fertilizer recommendations. In this system, laser-induced breakdown spectroscopy (LIBS) could be ideally suited to assessing elemental nutrient contents of soils. In addition to low cost, durability and small size, a reliable quantification procedure is a crucial requirement for such a system. However, the texture as well as the composition of the soil can affect the spectra. This matrix dependence is the key challenge to be addressed in the application of LIBS for soil evaluation. The focus of this work was the establishment of a LIBS method for soil analysis in a laboratory environment for future field application. Natural soil samples of various origins, textures and compositions were used to characterize the matrix dependence of the LIBS spectra. Reference samples were prepared by adding defined amounts of the target elements to the soils (standard addition). Signals not superimposed by peaks of other elements were identified for each element. The reference samples also provided calibration curves for the respective soil type when the initial concentrations in the soils were taken into account. Additionally, the common laboratory method ICP-OES following aqua regia extraction was used to obtain reference values. Various approaches of calibration free evaluation of the data were also evaluated. In addition to traditional single-pulse experiments, the advantages of dual-pulse LIBS in relation to signal intensity, reproducibility as well as overcoming the matrix dependence of soil spectra were investigated. These methods were subsequently applied to validation samples collected on a dense grid within a field. T2 - Pedometrics 2017 CY - Wageningen, The Netherlands DA - 26.06.2017 KW - LIBS KW - Precision KW - Agriculture KW - Soil KW - Site-specific PY - 2017 AN - OPUS4-40808 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mekonnen, Tessema Fenta A1 - Byrne, Liam A1 - Panne, Ulrich A1 - Koch, Matthias T1 - Investigation of chlorpyrifos and its transformation products in food samples N2 - Chlorpyrifos (CPF), an anticholinesterase organophosphate insecticide, is commonly used to control pests in agricultural sectors. In recent years, it is one of the most frequently detected residues in fruits and vegetables. On the other hand, pesticides including chlorpyrifos undergo extensive abiotic (industrial processes, waste treatments and photodegradations) and/or biotic (metabolism and microbial activities) processes which lead to transformation products (TPs) with different toxicity. Furthermore, lack of representative standards and complexity of transformation mechanisms make monitoring of TPs in real samples difficult. The aim of this work was to investigate CPF and its TPs in selected food matrices. Representative standards of TPs were synthesized by electrochemistry coupled online to liquid chromatography-mass spectrometry (EC/LC/MS) that equipped with a follow-through and/or synthesis cell with boron doped diamond working electrode. The TPs were characterized by LC-MS/MS and high resolution mass spectrometry (HRMS) and used for real sample investigations. Different fruit and spice samples (fortified by TPs standards and blank) were extracted by dispersive solid phase extraction (dSPE) and analyzed by LC-MS/MS. Recoveries were obtained ranging between 94 – 101% (with matrix effect 85 – 97%). The method limit of detection (LOD) and quantification (LOQ) for CPF were 1.9 and 5.7 µg/kg, respectively. Among investigated samples CPF was detected in fresh lemon, black pepper and fenugreek seed with a content of 104, 31 and 4 µg/kg, respectively. Coriander and cinnamon samples also contained trace levels of CPF (