TY - CONF A1 - Gottlieb, Cassian T1 - Cluster algorithm for the evaluation of heterogeneous materials by LIBS N2 - The laser-induced breakdown spectroscopy (LIBS) is a fast method to provide multi-elemental analysis of any sample. At the Federal Institute for Materials Research and Testing (BAM) the LIBS technique is applied on building materials to measure ingress profiles of harmful species like chloride and alkalis. The ingress depth and the quantitative amount is important for the evaluation of the potential for damage processes like the alkali-silica reaction or chloride-induced corrosion. Concrete as an example is a highly heterogeneous material with 1/7 cement (major component CaO) and 6/7 aggregates (SiO2) with different grain sizes. Due to a scanning procedure a two dimensional element distribution of a concrete surface can be measured. In order to have an automated Separation method to evaluate heterogeneous materials, different cluster algorithm have been tested. Best results have been achieved with the Expectation-Maximization-Algorithm (EM-Algorithm). T2 - Chemometrics in analytical chemistry CY - Barcelona, Spain DA - 06.06.2016 KW - LIBS KW - Concrete KW - Multivariate analysis PY - 2016 AN - OPUS4-36471 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Völker, Christoph T1 - Understanding distributed data – a semantic web approach for data based analysis of NDT data in civil engineering N2 - In the field of non-destructive testing (NDT) in civil engineering, a large number of measurement data are collected. Although they serve as a basis for scientific analyses, there is still no uniform representation of the data. An analysis of various distributed data sets across different test objects is therefore only possible with high manual effort. We present a system architecture for an integrated data management of distributed data sets based on Semantic Web technologies. The approach is essentially based on a mathematical model - the so-called ontology - which represents the knowledge of our domain NDT. The ontology developed by us is linked to data sources and thus describes the semantic meaning of the data. Furthermore, the ontology acts as a central concept for database access. Non-domain data sources can be easily integrated by linking them to the NDT construction ontology and are directly available for generic use in the sense of digitization. Based on an extensive literature research, we outline the possibilities that this offers for NDT in civil engineering, such as computer-aided sorting, analysis, recognition and explanation of relationships (explainable AI) for several million measurement data. The expected benefits of this approach of knowledge representation and data access for the NDT community are an expansion of knowledge through data exchange in research (interoperability), the scientific exploitation of large existing data sources with data-based methods (such as image recognition, measurement uncertainty calculations, factor analysis, material characterization) and finally a simplified exchange of NDT data with engineering models and thus with the construction industry. Ontologies are already the core of numerous intelligent systems such as building information modeling or research databases. This contribution gives an overview of the range of tools we are currently creating to communicate with them. T2 - EGU General Assembly 2020 CY - Online meeting DA - 04.05.2020 KW - Ontology KW - NDT KW - Concrete KW - Onotology KW - Semantic Data Management KW - Reproducible Science PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-518076 DO - https://doi.org/10.5194/egusphere-egu2020-19332 AN - OPUS4-51807 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gottlieb, Cassian A1 - Bohling, Christian A1 - Wilsch, Gerd T1 - New possibilities for concrete analysis 4.0 with the Laser-Induced Breakdown Spectroscopy (LIBS) N2 - In civil engineering the damage assessment of concrete infrastructures is an important task to monitor and ensure the estimated life-time. The aging of concrete is caused by different damage processes like the chloride induced pitting corrosion of the reinforcement. The penetration depth and the concentration of harmful species are crucial factors in the damage assessment. As a highly cost and time-consuming standard procedure, the analysis of concrete drill cores or drilling by wet-chemistry is widely used. This method provides element concentration to the total mass as aggregates and binder are homogenized. In order to provide a method that is capable to detect the element concentration regarding the cement content only, the laser-induced breakdown spectroscopy (LIBS) will be presented. The LIBS method uses a focused pulsed laser on the sample surface to ablate material. The high-power density and the laser-material interaction causes a laser-induced plasma that emits elemental and molecular line emission due to energy transition of the excited species in the plasma during the cooling phase. As each element provides element-specific line emission, it is in principle possible to detect any element on the periodic table (spectroscopic fingerprint) with one laser shot. In combination with a translation stage the sample under investigation can be spatially resolved using a scan raster with a resolution up to 100 µm (element mapping). Due to the high spatial resolution, the element distribution and the heterogeneity of the concrete can be evaluated. By using chemometrics the non-relevant aggregates can be excluded from the data set and the element concentration can be quantified and referred to a specific solid phase like the binding matrix (cement) only. In order to analyze transport processes like diffusion and migration the twodimensional element distributions can provide deep insight into the transport through the pore space and local enrichments of elements. As LIBS is a multi-elemental method it is also possible to compare the ingress and transport process of different elements like Cl, Na, K, S, C, and Li simultaneously and evaluate cross-correlations between the different ions. Furthermore, the element mapping allows to visualize the transport along cracks. This work will show the state of the art in terms of hardware and software for an automated LIBS system as well as different application for a concrete analysis 4.0. Focus will be the application of LIBS for a fast concrete analysis. T2 - SMAR 2019 CY - Potsdam, Germany DA - 27.08.2019 KW - Damage KW - LIBS KW - Concrete KW - Mapping KW - Chlorine PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-517282 UR - https://www.ndt.net/?id=24963 SN - 1435-4934 VL - 25 IS - 1 SP - 1 EP - 8 PB - NDT.net CY - Kirchwald AN - OPUS4-51728 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Aßmann, Norman A1 - Bühling, Benjamin T1 - Impact-echo dataset "Radarplatte" N2 - This dataset contains raw data resulting from Impact-Echo measurements at the reference conrete block "Radarplatte", located at BAM (German Federal Institute for Materials Research and Testing). This specimen has been described in detail by Niederleithinger et al. (2021), who applied muon tomography, ultrasonic echo measurements, radar and X-ray laminography to visualize its internal structure. The Impact-Echo method is based on the excitation of the zero-group-velocity frequency of the first symmetric Lamb mode of a plate-like structure, in order to assess its thickness. Numerous publication elaborate on Impact-Echo theory, examples are (Gibson and Popovics 2005, Schubert and Köhler 2008 , Abraham and Popovics 2010). The measurements have been conducted using a setup that contains only commercially available components. The setup consists of an Olson CTG-2 concrete thickness gauge (Olsen Instruments, USA) for actuation and sensing and an 8-bit NI USB-5132 digital storage oscilloscope (National Instruments, USA) combined with the Echolyst software (Schweizerischer Verein für technische Inspektionen (SVTI), Switzerland) for data acquisition. Measurements were conducted using a grid of 23x23 points with a spacing of 50 mm. At each point 8192 samples were recorded at a sampling rate of 1 MS/s. The dataset contains the (X,Y) location in mm of the individual measurement points as well as the raw measurement data at those points. The data is provided in the formats *.mir/*.mhdr (Echolyst), *.npy (Python) and *.mat (Matlab) and *.csv to ease the import in various post-processing tools. KW - Nondestructive testing KW - Impact-echo KW - S1-ZGV mode KW - Concrete PY - 2021 DO - https://doi.org/10.7910/DVN/UNOH2U PB - Harvard College CY - Cambridge, MA, USA AN - OPUS4-53886 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schweitzer, T. A1 - Hörmann, M. A1 - Bühling, Benjamin A1 - Bobusch, B. T1 - Switching Action of a Bistable Fluidic Amplifier for Ultrasonic Testing N2 - Air-coupled ultrasonic testing is widely used in the industry for the non-destructive testing of compound materials. It provides a fast and efficient way to inspect large concrete civil infrastructures for damage that might lead to catastrophic failure. Due to the large penetration depths required for concrete structures, the use of traditional piezoelectric transducer requires high power electric systems. In this study, a novel fluidic transducer based on a bistable fluidic amplifier is investigated. Previous experiments have shown that the switching action of the device produces a high-power broadband ultrasonic signal. This study will provide further insight into the switching behaviour of the fluidic switch. Therefore, parametric CFD simulations based on compressible supersonic RANS simulations were performed, varying the inlet pressure and velocity profiles for the control flow. Switching times are analyzed with different methods, and it was found that These are mostly independent of the slope of the velocity profile at the control port. Furthermore, it was found that an inversely proportional relationship exists between flow velocity in the throat and the switching time. The results agree with the theoretical background established by experimental studies that can be found in the literature. KW - Ultrasound KW - Non-destructive testing KW - Fluidic devices KW - Computational fluid dynamics KW - Concrete KW - Bistable fluidic amplifier PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-525115 DO - https://doi.org/10.3390/fluids6050171 SN - 2311-5521 VL - 6 IS - 5 SP - 171 PB - MDPI CY - Basel, Switzerland AN - OPUS4-52511 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Grotelüschen, Bjarne A1 - Bühling, Benjamin T1 - Impact-Echo Dataset "IE Platte" N2 - This dataset contains raw data resulting from Impact-Echo measurements at the reference concrete block "IE Platte", located at BAM (German Federal Institute for Materials Research and Testing). The specimen contains three polystyrene slabs and one polyethylene foil to act as reflectors. The specimen was produced in a three-step process. First, the base plate was cast. Second, the reflectors were taped to the base plate. Finally, the upper layer was cast on top of base plate and reflectors. A drawing is contained in the dataset. The Impact-Echo method is based on the excitation of the zero-group-velocity frequency of the first symmetric Lamb mode of a plate-like structure, in order to assess its thickness. Numerous publications elaborate on Impact-Echo theory, examples are (Gibson and Popovics 2005, Schubert and Köhler 2008 , Abraham and Popovics 2010). The measurements have been conducted using a setup that contains only commercially available components. The setup consists of an Olson CTG-2 concrete thickness gauge (Olsen Instruments, USA) for actuation and sensing and an 8-bit NI USB-5132 digital storage oscilloscope (National Instruments, USA) combined with the Echolyst software (Schweizerischer Verein für technische Inspektionen (SVTI), Switzerland) for data acquisition. Measurements were conducted using a grid of 29x29 points with a spacing of 50 mm. At each point 8192 samples were recorded at a sampling rate of 1 MS/s. The dataset contains the (X,Y) location in mm of the individual measurement points as well as the raw measurement data at those points. The data is provided in the formats *.mir/*.mhdr (Echolyst), *.npy (Python) and *.mat (Matlab) and *.csv to ease the import in various post-processing tools. KW - Concrete KW - Impact-Echo KW - Nondestructive testing PY - 2022 DO - https://doi.org/10.7910/DVN/EH4E9G PB - Harvard College CY - Cambridge, MA, USA AN - OPUS4-55279 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Völker, Tobias T1 - Laser Induced Breakdown Spectroscopy A Tool for Imaging the Chemical Composition of Concrete N2 - One of the most common causes of damage is the ingress of harmful ions into the concrete, which can lead to deterioration processes and affect structural performance. Therefore, the increasingly aging infrastructure is regularly inspected to assess durability. Regular chemical analysis can be useful to determine the extent and evolution of ion ingress and to intervene in a timely manner. This could prove more economical than extensive repairs for major damage, particularly for critical infrastructure. In addition to already established elemental analysis techniques in civil engineering such as potentiometric titration or X-ray fluorescence analysis, laser-induced breakdown spectroscopy (LIBS) can provide further important complementary information and benefits. The possibilities of LIBS are demonstrated using the example of a drill core taken from a parking garage. T2 - 6th International Conference on Concrete Repair, Rehabilitation and Retrofitting CY - Cape Town, South Africa DA - 03.10.2022 KW - LIBS KW - Concrete KW - Cement KW - Chlorine PY - 2022 AN - OPUS4-56061 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wilsch, Gerd A1 - Völker, Tobias A1 - Klewe, Tim A1 - Kruschwitz, Sabine T1 - Laser Induced Breakdown Spectroscopy – A Tool for Imaging the Chemical Composition of Concrete N2 - One of the most common causes of damage is the ingress of harmful ions into the concrete, which can lead to deterioration processes and affect structural performance. Therefore, the increasingly aging infrastructure is regularly inspected to assess durability. Regular chemical analysis can be useful to determine the extent and evolution of ion ingress and to intervene in a timely manner. This could prove more economical than extensive repairs for major damage, particularly for critical infrastructure. In addition to already established elemental analysis techniques in civil engineering such as potentiometric titration or X-ray fluorescence analysis, laser-induced breakdown spectroscopy (LIBS) can provide further important complementary information and benefits. The possibilities of LIBS are demonstrated using the example of a drill core taken from a parking garage. T2 - 6th International Conference on Concrete Repair, Rehabilitation and Retrofitting CY - Kapstadt, South Africa DA - 03.10.2022 KW - LIBS KW - Concrete KW - Chlorine PY - 2022 UR - https://iccrrr2022.org/downloads SP - 126 EP - 127 AN - OPUS4-56062 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wilsch, Gerd T1 - Laser induced breakdown spectroscopy to investigate the chemical composition of concrete N2 - Laser-induced breakdown spectroscopy (LIBS) is a spectroscopic method for detecting the chemical composition of optically accessible surfaces. In principle, the measurement of all elements of the periodic table is possible. System calibrations allow the quantification of element concentrations. In combination with scanner systems, the two-dimensional element distribution can be determined. Even rough surfaces can be measured by online adjustment of the laser focus. To detect element ingress into the concrete, typically cores are taken, cut in half, and LIBS measurements are performed on the cross-section. The high spatial resolution as well as the simultaneous multi-element analysis enables a separate evaluation of the binder-matrix and aggregates. Therefore, the element concentrations can be determined directly related to the cement paste. LIBS measurements are applicable in the laboratory, on-site and also over a distance of several meters. Common applications include the investigation of material deterioration due to the ingress of harmful ions and their interaction in porous building materials. LIBS is able to provide precise input parameters for simulation and modelling of the remaining lifetime of a structure. Besides the identification of materials, also their composition can be determined on hardened concrete, such as the type of cement or type of aggregate. This also involves the identification of environmentally hazardous elements contained in concrete. Another possible application is the detection of the composition of material flows during dismantling. Non-contact NDT for “difficult to assess” structures as an example application through safety glass or in combination with robotics and automation are also possible. This work presents the state of the art concerning LIBS investigations on concrete by showing exemplary laboratory and on-site applications. T2 - NDE NucCon 2023 CY - Espoo, Finland DA - 25.01.2023 KW - LIBS KW - Concrete PY - 2023 AN - OPUS4-57323 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wilsch, Gerd A1 - Völker, Tobias A1 - Klewe, Tim A1 - Kruschwitz, Sabine T1 - Laser-induced breakdown spectroscopy to investigate the chemical composition of concrete N2 - Laser-induced breakdown spectroscopy (LIBS) is a spectroscopic method for the analysis of the chemical composition of sample materials. Generally, the measurement of all elements of the periodic table is possible. In particular, light elements such as H, Li, Be, S, C, O, N and halogens can be measured. Calibration with matrix-matching standards allows the quantification of element concentrations. In combination with scanner systems, the two-dimensional element distribution can be determined. Even rough surfaces can be measured by online adjustment of the laser focus. LIBS can also be used on-site with mobile systems. Hand-held systems are available for point measurements. Common applications include the investigation of material deterioration due to the ingress of harmful ions and their interaction in porous building materials. Due to the high spatial resolution of LIBS and the consideration of the heterogeneity of concrete, the determination of precise input parameters for simulation and modelling of the remaining lifetime of a structure is possible. In addition to the identification of materials, it is also possible to assess the composition for example of hardened concrete, which involves the cement or aggregate type used. Other important fields of application are the detection of environmentally hazardous elements or the material classification for sorting heterogeneous material waste streams during dismantling. Non-contact NDT for “difficult to assess” structures as an example application through safety glass or in combination with robotics and automation are also possible. In this work, an overview of LIBS investigations on concrete is given based on exemplary laboratory and on-site applications. T2 - NDE NucCon 2023 CY - Espoo, Finland DA - 25.01.2023 KW - LIBS KW - Concrete KW - Chemical analysis PY - 2023 UR - https://www.aalto.fi/en/nde-nuccon-2023 SP - 351 EP - 359 AN - OPUS4-57303 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -