TY - JOUR A1 - Daly, H.C A1 - Matikonda, S.S A1 - Steffens, H.C A1 - Rühle, Bastian A1 - Resch-Genger, Ute A1 - Ivanic, J. A1 - Schermann, M.J T1 - Daly_Photochem Photobiol 2021_Ketone Incorporation Extends the Emission Properties of the Xanthene Scaffold JF - Photochemistry and Photobiology N2 - Imaging in the shortwave-infrared region (SWIR, λ = 1000–2500 nm) has the potential to enable deep tissue imaging with high resolution. Critical to the development of these Methods is the identification of low molecular weight, biologically compatible fluorescent probes that emit beyond 1000 nm. Exchanging the bridging oxygen atom on the xanthene scaffold (C10’ position) with electron withdrawing groups has been shown to lead to significant redshifts in absorbance and emission. Guided by quantum chemistry computational modeling studies, we investigated the installation of a Ketone bridge at the C10’ position. This simple modification extends the absorbance maxima to 860 nm and the emission beyond 1000 nm, albeit with reduced photon output. Overall, These studies demonstrate that broadly applied xanthene dyes can be extended into the SWIR range. KW - Flourescence KW - Optical probe KW - Dye KW - Photophysics KW - Quantum yield KW - Mechanism KW - NIR KW - SWIR KW - Imaging KW - Reliability KW - Method KW - Quality assurance PY - 2021 DO - https://doi.org/10.1111/php.13544 SN - 1751-1097 VL - 98 IS - 2 SP - 325 EP - 333 PB - Wiley Online Library AN - OPUS4-54080 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nelson, G. A1 - Boehm, U. A1 - Bagley, S. A1 - Bajcsy, P. A1 - Bischof, J. A1 - Brown, C. M. A1 - Dauphin, A. A1 - Dobbie, I. M. A1 - Eriksson, J. E. A1 - Faklaris, O. A1 - Fernandez-Rodriguez, J. A1 - Ferrand, A. A1 - Gelman, L, A1 - Gheisari, A. A1 - Hartmann, H. A1 - Kukat, C. A1 - Laude, A. A1 - Mitkovski, M. A1 - Munck, S. A1 - North, A. J. A1 - Rasse, T. A1 - Resch-Genger, Ute A1 - Schuetz, L. C. A1 - Seitz, A. A1 - Strambio-De-Castillia, C. A1 - Swedlow, J. R. A1 - Alexopoulos, I. A1 - Aumayr, K. A1 - Avilov, S. A1 - Bakker, G.-J. A1 - Bammann, R. R. A1 - Bassi, A. A1 - Beckert, H. A1 - Beer, S. A1 - Belyaev, Y. A1 - Bierwagen, J. A1 - Birngruber, K. A. A1 - Bosch, M. A1 - Breitlow, J. A1 - Cameron, L. A. A1 - Chalfoun, J. A1 - Chambers, J. J. A1 - Chen, C.-L. A1 - Conde-Sousa, E. A1 - Corbett, A. D. A1 - Cordelieres, F. P. A1 - Del Nery, E. A1 - Dietzel, R. A1 - Eismann, F. A1 - Fazeli, E. A1 - Felscher, A. A1 - Fried, H. A1 - Gaudreault, N. A1 - Goh, W. I. A1 - Guilbert, T. A1 - Hadleigh, R. A1 - Hemmerich, P. A1 - Holst, G. A. A1 - Itano, M. S. A1 - Jaffe, C. B. A1 - Jambor, H. K. A1 - Jarvis, S. C. A1 - Keppler, A. A1 - Kirchenbuechler, D. A1 - Kirchner, M. A1 - Kobayashi, N. A1 - Krens, G. A1 - Kunis, S. A1 - Lacoste, J. A1 - Marcello, M. A1 - Martins, G. G. A1 - Metcalf, D. J. A1 - Mitchell, C. A. A1 - Moore, J. A1 - Mueller, T. A1 - Nelson, M. S. A1 - Ogg, S. A1 - Onami, S. A1 - Palmer, A. L. A1 - Paul-Gilloteaux, P. A1 - Pimentel, J. A. A1 - Plantard, L. A1 - Podder, S. A1 - Rexhepaj, E. A1 - Royon, A. A1 - Saari, M. A. A1 - Schapman, D. A1 - Schoonderwoert, V. A1 - Schroth-Diez, B. A1 - Schwartz, S. A1 - Shaw, M. A1 - Spitaler, M. A1 - Stoeckl, M. T. A1 - Sudar, D. A1 - Teillon, J. A1 - Terjung, S. A1 - Thuenauer, R. A1 - Wilms, C. D. A1 - Wright, G. D. A1 - Nitschke, R. T1 - QUAREP-LiMi: A community-driven initiative to establish guidelines for quality assessment and reproducibility for instruments and images in light microscopy JF - Journal of microscopy N2 - A modern day light microscope has evolved from a tool devoted to making primarily empirical observations to what is now a sophisticated, quantitative device that is an integral part of both physical and life science research. Nowadays, microscopes are found in nearly every experimental laboratory. However, despite their prevalent use in capturing and quantifying scientific phenomena, neither a thorough understanding of the principles underlying quantitative imaging techniques nor appropriate knowledge of how to calibrate, operate and maintain microscopes can be taken for granted. This is clearly demonstrated by the well-documented and widespread difficulties that are routinely encountered in evaluating acquired data and reproducing scientific experiments. Indeed, studies have shown that more than 70% of researchers have tried and failed to repeat another scientist’s experiments, while more than half have even failed to reproduce their own experiments1. One factor behind the reproducibility crisis of experiments published in scientific journals is the frequent underreporting of imaging methods caused by a lack of awareness and/or a lack of knowledge of the applied technique2,3. Whereas quality control procedures for some methods used in biomedical research, such as genomics (e.g., DNA sequencing, RNA-seq) or cytometry, have been introduced (e.g. ENCODE4), this issue has not been tackled for optical microscopy instrumentation and images. Although many calibration standards and protocols have been published, there is a lack of awareness and agreement on common Standards and guidelines for quality assessment and reproducibility5. In April 2020, the QUality Assessment and REProducibility for instruments and images in Light Microscopy (QUAREP-LiMi) initiative6 was formed. This initiative comprises imaging scientists from academia and industry who share a common interest in achieving a better understanding of the performance and limitations of microscopes and improved quality control (QC) in light microscopy. The ultimate goal of the QUAREP-LiMi initiative is to establish a set of common QC standards, guidelines, metadata models7,8, and tools9,10, including detailed protocols, with the ultimate aim of improving reproducible advances in scientific research. This White Paper 1) summarizes the major obstacles identified in the field that motivated the launch of the QUAREP-LiMi initiative; 2) identifies the urgent need to address these obstacles in a grassroots manner, through a community of Stakeholders including, researchers, imaging scientists11, bioimage analysts, bioimage informatics developers, corporate partners, Funding agencies, standards organizations, scientific publishers, and observers of such; 3) outlines the current actions of the QUAREPLiMi initiative, and 4) proposes future steps that can be taken to improve the dissemination and acceptance of the proposed guidelines to manage QC. To summarize, the principal goal of the QUAREP-LiMi initiative is to improve the overall quality and reproducibility of light microscope image data by introducing broadly accepted standard practices and accurately captured image data metrics. KW - Fluorescence KW - Microscopy KW - Quality assurance KW - Comparability KW - Imaging KW - Standards KW - Reference materials KW - Reliability KW - Data KW - Reference data KW - Biology KW - Medicine KW - Life science PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-530629 DO - https://doi.org/10.1111/jmi.13041 SN - 1365-2818 VL - 284 IS - 1 SP - 56 EP - 73 PB - Wiley-Blackwell CY - Oxford AN - OPUS4-53062 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pauli, Jutta A1 - Würth, Christian A1 - Güttler, Arne A1 - Resch-Genger, Ute T1 - Reliable Determination of the Signal-Relevant Spectroscopic Key Characteristics of Luminescent Reporters and Optical Probes for Imaging in the vis/NIR/SWIR N2 - Introduction. Comparing different emitter classes and rationally designing the next generation of molecular and nanoscale probes for bioimaging applications require accurate and quantitative methods for the measurement of the key parameter photoluminescence quantum yield f.1 f equals the number of emitted per number of absorbed photons. This is particularly relevant for increasingly used fluorescence imaging in the short wave-infrared region (SWIR) ≥ 900 nm providing deeper penetration depths, a better image resolution, and an improved signal-to-noise or tumor-to-background ratio.2, 3 However, spectroscopic measurements in the SWIR are more challenging and require specific calibrations and standards. T2 - EMIM 2021 CY - Göttingen, Germany DA - 24.08.2021 KW - Fluorescence KW - Optical probe KW - Dye KW - Photophysics KW - Quantum yield KW - Mechanism KW - NIR KW - SWIR KW - Imaging KW - Reference material KW - Reliability KW - Nano KW - Particle KW - Method KW - Quality assurance PY - 2021 AN - OPUS4-53233 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Boehm, U. A1 - Nelson, G. A1 - Brown, C. M. A1 - Bagley, S. A1 - Bajcsy, P. A1 - Bischof, J. A1 - Dauphin, A. A1 - Dobbie, I. M. A1 - Eriksson, J. E. A1 - Faklaris, O. A1 - Fernandez-Rodriguez, J. A1 - Ferrand, A. A1 - Gelman, L. A1 - Gheisari, A. A1 - Hartmann, H. A1 - Kukat, C. A1 - Laude, A. A1 - Mitkovski, M. A1 - Munck, S. A1 - North, A. J. A1 - Rasse, T. M. A1 - Resch-Genger, Ute A1 - Schuetz, L. C. A1 - Seitz, A. A1 - Strambio-De-Castillia, C. A1 - Swedlow, J. R. A1 - Nitschke, R. T1 - QUAREP-LiMi: A community endeavor to advance quality assessment and reproducibility in light microscopy JF - Nature methods N2 - The community-driven initiative Quality Assessment and Reproducibility for Instruments & Images in Light Microscopy (QUAREP-LiMi) wants to improve reproducibility for light microscopy image data through Quality control (QC) management of instruments and images. It aims for a common set of QC guidelines for Hardware calibration and image acquisition, management and analysis. KW - Fluorescence KW - Microscopy KW - Quality assurance KW - Comparability KW - Imaging KW - Standards KW - Reference materials KW - Reliability KW - Data KW - Reference data KW - Biology KW - Medicine KW - Life science PY - 2021 DO - https://doi.org/10.1038/s41592-021-01162-y SN - 1548-7105 VL - 18 SP - 1424 EP - 1427 PB - Nature Publishing Group CY - London AN - OPUS4-52722 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -