TY - JOUR A1 - Reinmuth-Selzle, K. A1 - Kampf, C. J. A1 - Lucas, K. A1 - Lang-Yona, N. A1 - Fröhlich-Nowoisky, J. A1 - Shiraiwa, M. A1 - Lakey, P. S. J. A1 - Lai, S. A1 - Liu, F. A1 - Kunert, A. T. A1 - Ziegler, K. A1 - Shen, F. A1 - Sgarbanti, R. A1 - Weber, B. A1 - Bellinghausen, I. A1 - Saloga, J. A1 - Weller, Michael G. A1 - Duschl, A. A1 - Schuppan, D. A1 - Pöschl, U. T1 - Air pollution and climate change effects on allergies in the anthropocene: Abundance, interaction, and modification of allergens and adjuvants JF - Environmental Science & Technology N2 - Air pollution and climate change are potential drivers for the increasing burden of allergic diseases. The molecular mechanisms by which air pollutants and climate parameters may influence allergic diseases, however, are complex and elusive. This article provides an overview of physical, chemical and biological interactions between air pollution, climate change, allergens, adjuvants and the immune system, addressing how these interactions may promote the development of allergies. We reviewed and synthesized key findings from atmospheric, climate, and biomedical research. The current state of knowledge, open questions, and future research perspectives are outlined and discussed. The Anthropocene, as the present era of globally pervasive anthropogenic influence on planet Earth and, thus, on the human environment, is characterized by a strong increase of carbon dioxide, ozone, nitrogen oxides, and combustion- or traffic-related particulate matter in the atmosphere. These environmental factors can enhance the abundance and induce chemical modifications of allergens, increase oxidative stress in the human body, and skew the immune system toward allergic reactions. In particular, air pollutants can act as adjuvants and alter the immunogenicity of allergenic proteins, while climate change affects the atmospheric abundance and human exposure to bioaerosols and aeroallergens. To fully understand and effectively mitigate the adverse effects of air pollution and climate change on allergic diseases, several challenges remain to be resolved. Among these are the identification and quantification of immunochemical reaction pathways involving allergens and adjuvants under relevant environmental and physiological conditions. KW - Allergie KW - Klimaveränderung KW - Luftverschmutzung KW - Partikel KW - Ozon KW - Stickoxide KW - Allergene KW - Adjuvantien KW - PALM KW - DAMP PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-404531 DO - https://doi.org/10.1021/acs.est.6b04908 SN - 1520-5851 SN - 0013-936X VL - 51 IS - 8 SP - 4119 EP - 4141 PB - American Chemical Society (ACS) CY - Washington AN - OPUS4-40453 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Scala-Benuzzi, M. L. A1 - Takara, E. A. A1 - Alderete, M. A1 - Soler-Illia, G. J. A. A. A1 - Schneider, Rudolf A1 - Raba, J. A1 - Messina, G. A. T1 - Ethinylestradiol quantification in drinking water sources using a fluorescent paper based immunosensor JF - Microchemical Journal N2 - In this work we report a novel paper-based analytical device read-out via LED-induced fluorescence detection (FPAD) for the quantification of the emerging pollutant ethinylestradiol (EE2) in river water samples. The PAD was used as a reaction platform for a competitive enzyme immunoassay. For the PAD development, microzones of filter paper, printed by a wax printing method, were modified with amino-functionalized SBA-15 and subsequently, anti-EE2 specific antibodies were covalently immobilized. The determination of EE2 in water was carried out by adding a fixed concentration of EE2 conjugated with the enzyme horseradish peroxidase (HRP) to samples and standards. Then, the FPAD were added and incubated for 10 min. Finally, the detection was performed by the reaction of 10-acetyl-3,7-dihydroxyphenoxazine (ADHP) whose oxidation is catalyzed by HRP in the presence of H2O2, obtaining the highly fluorescent resorufin (R). Resorufin was detected by LED excitation at 550 nm, observing emission at 585 nm. The EE2 concentration in the samples was inversely proportional to the relative fluorescence obtained from the enzymatic reaction products. The FPAD assay showed a detection Limit (LOD) of 0.05 ng L−1 and coefficients of variation (CV) below 4.5% within-assay and below 6.5% between-assay, respectively. The results obtained show the potential suitability of our FPAD for the selective and sensitive quantification of EE2 in river water samples. In addition, it has the PADs advantages of being disposable, easy to apply and inexpensive. KW - Immunoassay KW - Arzneimittel KW - Antikörper KW - LED-induzierte Fluoreszenz KW - Paper based devices KW - Mesoporöses Silica KW - Partikel PY - 2018 DO - https://doi.org/10.1016/j.microc.2018.05.038 SN - 0026-265X VL - 141 SP - 287 EP - 293 PB - Elsevier B.V. CY - Amsterdam, NL AN - OPUS4-45269 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -