TY - JOUR A1 - Niederleithinger, Ernst A1 - Wolf, Julia A1 - Mielentz, Frank A1 - Wiggenhauser, Herbert A1 - Pirskawetz, Stephan T1 - Embedded ultrasonic transducers for active and passive concrete monitoring JF - Sensors N2 - Recently developed new transducers for ultrasonic transmission, which can be embedded right into concrete, are now used for non-destructive permanent monitoring of concrete. They can be installed during construction or thereafter. Large volumes of concrete can be monitored for changes of material properties by a limited number of transducers. The transducer design, the main properties as well as installation procedures are presented. It is shown that compressional waves with a central frequency of 62 kHz are mainly generated around the transducer's axis. The transducer can be used as a transmitter or receiver. Application examples demonstrate that the transducers can be used to monitor concrete conditions parameters (stress, temperature, …) as well as damages in an early state or the detection of acoustic events (e.g., crack opening). Besides application in civil engineering our setups can also be used for model studies in geosciences. KW - Ultrasound KW - Transmission KW - Concrete KW - Damages KW - Cracks KW - Stress KW - Monitoring KW - Acoustic emission KW - Transducers KW - Coda wave interferometry PY - 2015 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-345632 DO - https://doi.org/10.3390/s150509756 SN - 1424-8220 VL - 15 IS - 5 SP - 9756 EP - 9772 PB - MDPI CY - Basel AN - OPUS4-34563 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Niederleithinger, Ernst A1 - Wang, Xin A1 - Herbrand, M. A1 - Müller, M. T1 - Processing ultrasonic data by coda wave interferometry to monitor load tests of concrete beams JF - Sensors N2 - Ultrasonic transmission measurements have been used for decades to monitor concrete elements, mostly on a laboratory scale. Recently, coda wave interferometry (CWI), a technique adapted from seismology, was introduced to civil engineering experiments. It can be used to reveal subtle changes in concrete laboratory samples and even large structural elements without having a transducer directly at the place where the change is taking place. Here, several load tests until failure on large posttensioned concrete beams have been monitored using networks of embedded transducers. To detect subtle effects at the beginning of the experiments and cope with severe changes due to cracking close to failure, the coda wave interferometry procedures had to be modified to an adapted step-wise approach. Using this methodology, we were able to monitor stress distribution and localize large cracks by a relatively simple technique. Implementation of this approach on selected real structures might help to make decisions in infrastructure asset management. KW - Ultrasound KW - Concrete KW - Monitoring KW - Coda wave interferometry KW - Embedded transducers PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-452328 DO - https://doi.org/10.3390/s19010147 SN - 1424-8220 VL - 19 IS - 1 SP - Article 147, 1 EP - 13 PB - MDPI CY - Basel AN - OPUS4-45232 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bassil, A. A1 - Wang, Xin A1 - Chapeleau, X. A1 - Niederleithinger, Ernst A1 - Abraham, O. A1 - Leduc, D. T1 - Distributed fiber optics sensing and coda wave interferometry techniques for damage monitoring in concrete structures JF - Sensors N2 - The assessment of Coda Wave Interferometry (CWI) and Distributed Fiber Optics Sensing (DFOS) techniques for the detection of damages in a laboratory size reinforced concrete beam is presented in this paper. The sensitivity of these two novel techniques to micro cracks is discussed and compared to standard traditional sensors. Moreover, the capacity of a DFOS technique to localize cracks and quantify crack openings is also assessed. The results show that the implementation of CWI and DFOS techniques allow the detection of early subtle changes in reinforced concrete structures until crack formation. With their ability to quantify the crack opening, following early detection and localization, DFOS techniques can achieve more effective monitoring of reinforced concrete structures. Contrary to discrete sensors, CWI and DFOS techniques cover larger areas and thus provide more efficient infrastructures asset management and maintenance operations throughout the lifetime of the structure. KW - Distributed fiber optic sensors KW - Coda wave interferometry KW - Reinforced concrete KW - Cracks KW - Damage detection KW - Structural health monitoring PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-472549 DO - https://doi.org/10.3390/s19020356 SN - 1424-8220 VL - 19 IS - 2 SP - 356, 1 EP - 15 PB - MDPI AN - OPUS4-47254 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Niederleithinger, Ernst A1 - Wang, Xin A1 - Epple, Niklas A1 - Schumacher, T. A1 - Ahmend, S. A1 - Klikowicz, P. ED - Yokota, H. ED - Frangopol, D. W. T1 - Ultrasonic coda wave monitoring of concrete structures: First experiences with large-scale experiments and real structures T2 - Bridge Maintenance, Safety, Management, Life-Cycle Sustainability and Innovations N2 - Ultrasonic monitoring, making use of the sensitivity of the coda of repeated transmission meas-urements to changes in stress, temperature, moisture, as well as localized or distributed damage, has gotten at-tention in structural health monitoring (SHM) research recently. Analysis methods such as coda wave inter-ferometry (CWI), including its nonlinear extension, have been shown to be able to measure ultrasonic wave velocity changes with a 1∙10-5 resolution, while indicators such as cross-correlation or cross-coherence have been used to distinguish between reversible and irreversible changes. Several small- and large-scale laboratory experiments have demonstrated that stress changes in structures can be captured or damage detected in a very early stage. The use of this technique for pre-warning before failure are currently under investigation, as well as detailed research on the physical causes and the connection between ultrasonic wave properties and materi-al/structural behavior. Recently, several of large-scale laboratory and real structures have been instrumented with embedded ultrasonic transducers to gather experience and evidence on how to use this technology in re-al-world applications. Preliminary results from installations on a new bridge, an existing bridge, a tunnel, a la-boratory earthquake test as well as a historic stadium in Germany, Poland, and the United States, respectively, are presented. Environmental influences (mainly temperature) and validation by load tests are discussed. KW - Coda wave interferometry KW - Structural health monitoring KW - Ultrasound KW - Concrete KW - Bridges PY - 2021 SN - 978-0-367-23278-8 DO - https://doi.org/10.1201/9780429279119-345 SP - 2525 EP - 2531 PB - Taylor & Francis CY - London, UK AN - OPUS4-54168 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Chakraborty, J. A1 - Wang, Xin A1 - Stolinski, M. T1 - Analysis of Sensitivity of Distance between Embedded Ultrasonic Sensors and Signal Processing on Damage Detectability in Concrete Structures JF - acoustics N2 - Damage detection of reinforced concrete (RC) structures is becoming a more attractive domain due to the safety issues arising in the last few decades. The damage in concrete can be caused by excessive exploitation of the structure or environmental effects. The cracks in concrete can be detected by different nondestructive testing methods. However, the available methods used for this purpose have numerous limitations. The technologies available in the market nowadays have difficulties detecting slowly progressive, locally limited damage. In addition, some of These methods cannot be applied, especially in hard-to-reach areas in the superstructures. In order to avoid these deficiencies, an embedded ultrasonic methodology can be used to detect cracks in RC structures. In this study, the methodology of crack detection supported with the advanced Signal processing algorithm was proposed and verified on RC structures of various types, and cracks occurring between embedded sensors can be detected. Moreover, different pairs of ultrasonic sensors located in the considered structures are used for the analysis of the sensitivity of distance between them. It is shown that the ultrasonic sensors placed in the range of 1.5–2 m can detect cracks, even when the other methods failed to detect changes in the structure. The obtained results confirmed that diffuse ultrasonic sensor methodology is able to monitor real structures more effectively than traditional techniques. KW - Ultrasound KW - Coda wave interferometry KW - Structural health monitoring PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-543624 DO - https://doi.org/10.3390/acoustics4010007 VL - 4 IS - 1 SP - 89 EP - 110 PB - MDPI CY - Basel, Schweiz AN - OPUS4-54362 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -