TY - CONF A1 - Krankenhagen, Rainer A1 - Altenburg, Simon T1 - Direct comparison of two pyrometers and a low-cost thermographic camera for time resolved LWIR temperature measurements N2 - The contactless measurement of temperatures with pyrometers is state of the art and a number of different commercial devices are available. Alternatively, these temperature measurements can be performed by means of infrared cameras. In light of permanently falling costs, the application of IR cameras simply as contactless thermometers appears to be an alternative to the use of pyrometers. For a current study, the surface temperature development of a sample has to be measured and recorded with at least 20 Hz sampling rate in a temperature range between 0°C and 70°C and with a temperature resolution of 0.1 K. The absolute value of the temperature is not as important as relative changes. Due to disturbing irradiation in the SWIR and MWIR regions, the sensor should work in the LWIR. We compared two pyrometers and a low-cost infrared camera with regard to the requirements defined above. In this paper we describe the setup, the results and the data evaluation. Both, raw data and post processed data, were considered. Surprisingly, the infrared camera had by far the best performance of the considered devices. Particularly, due to the large number of pixel (160 x 120), the S/N could be reduced considerably compared to the pyrometers. We also studied the stability of the frame rate and the related time steps of the IR camera. Although the frame rate is unstable (running under Windows operating system), the output data for the time steps were found to be correct and the required time resolution was achieved. The application of IR cameras simply as contactless thermometers appears to be an alternative to the use of pyrometers. For a current study, the surface temperature development of a sample has to be measured and recorded with at least 20 Hz sampling rate in a temperature range between 0°C and 70°C and with a temperature resolution of 0.1 K. We compared two pyrometers and a low-cost infrared camera both sensitive in the LWIR only. Surprisingly, the infrared camera had by far the best performance of the considered devices. T2 - Thermosense XXXIX: Thermal Infrared Applications CY - Anaheim, CA, USA DA - 10.04.2017 KW - Contactless temperature measurement KW - Layer thickness KW - Pyrometer KW - Infrared camera PY - 2017 AN - OPUS4-43391 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -